text
stringlengths 0
1.46k
|
---|
input_length=None, |
time_major=False, |
zero_output_for_mask=False, |
) |
Iterates over the time dimension of a tensor. |
Arguments |
step_function: RNN step function. Args; input; Tensor with shape (samples, ...) (no time dimension), representing input for the batch of samples at a certain time step. states; List of tensors. Returns; output; Tensor with shape (samples, output_dim) (no time dimension). new_states; List of tensors, same length and shapes as 'states'. The first state in the list must be the output tensor at the previous timestep. |
inputs: Tensor of temporal data of shape (samples, time, ...) (at least 3D), or nested tensors, and each of which has shape (samples, time, ...). |
initial_states: Tensor with shape (samples, state_size) (no time dimension), containing the initial values for the states used in the step function. In the case that state_size is in a nested shape, the shape of initial_states will also follow the nested structure. |
go_backwards: Boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence. |
mask: Binary tensor with shape (samples, time, 1), with a zero for every element that is masked. |
constants: List of constant values passed at each step. |
unroll: Whether to unroll the RNN or to use a symbolic while_loop. |
input_length: An integer or a 1-D Tensor, depending on whether the time dimension is fixed-length or not. In case of variable length input, it is used for masking in case there's no mask specified. |
time_major: Boolean. If true, the inputs and outputs will be in shape (timesteps, batch, ...), whereas in the False case, it will be (batch, timesteps, ...). Using time_major = True is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. |
zero_output_for_mask: Boolean. If True, the output for masked timestep will be zeros, whereas in the False case, output from previous timestep is returned. |
Returns |
A tuple, (last_output, outputs, new_states). last_output: the latest output of the rnn, of shape (samples, ...) outputs: tensor with shape (samples, time, ...) where each entry outputs[s, t] is the output of the step function at time t for sample s. new_states: list of tensors, latest states returned by the step function, of shape (samples, ...). |
Raises |
ValueError: if input dimension is less than 3. |
ValueError: if unroll is True but input timestep is not a fixed number. |
ValueError: if mask is provided (not None) but states is not provided (len(states) == 0). |
Model plotting utilities |
plot_model function |
tf.keras.utils.plot_model( |
model, |
to_file="model.png", |
show_shapes=False, |
show_dtype=False, |
show_layer_names=True, |
rankdir="TB", |
expand_nested=False, |
dpi=96, |
) |
Converts a Keras model to dot format and save to a file. |
Example |
input = tf.keras.Input(shape=(100,), dtype='int32', name='input') |
x = tf.keras.layers.Embedding( |
output_dim=512, input_dim=10000, input_length=100)(input) |
x = tf.keras.layers.LSTM(32)(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
x = tf.keras.layers.Dense(64, activation='relu')(x) |
output = tf.keras.layers.Dense(1, activation='sigmoid', name='output')(x) |
model = tf.keras.Model(inputs=[input], outputs=[output]) |
dot_img_file = '/tmp/model_1.png' |
tf.keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True) |
Arguments |
model: A Keras model instance |
to_file: File name of the plot image. |
show_shapes: whether to display shape information. |
show_dtype: whether to display layer dtypes. |
show_layer_names: whether to display layer names. |
rankdir: rankdir argument passed to PyDot, a string specifying the format of the plot: 'TB' creates a vertical plot; 'LR' creates a horizontal plot. |
expand_nested: Whether to expand nested models into clusters. |
dpi: Dots per inch. |
Returns |
A Jupyter notebook Image object if Jupyter is installed. This enables in-line display of the model plots in notebooks. |
model_to_dot function |
tf.keras.utils.model_to_dot( |
model, |
show_shapes=False, |
show_dtype=False, |
show_layer_names=True, |
rankdir="TB", |
expand_nested=False, |
dpi=96, |
subgraph=False, |
) |
Convert a Keras model to dot format. |
Arguments |
model: A Keras model instance. |
show_shapes: whether to display shape information. |
show_dtype: whether to display layer dtypes. |
show_layer_names: whether to display layer names. |
rankdir: rankdir argument passed to PyDot, a string specifying the format of the plot: 'TB' creates a vertical plot; 'LR' creates a horizontal plot. |
expand_nested: whether to expand nested models into clusters. |
dpi: Dots per inch. |
subgraph: whether to return a pydot.Cluster instance. |
Returns |
A pydot.Dot instance representing the Keras model or a pydot.Cluster instance representing nested model if subgraph=True. |
Raises |
ImportError: if graphviz or pydot are not available.Serialization utilities |
CustomObjectScope class |
tf.keras.utils.custom_object_scope(*args) |