File size: 4,214 Bytes
bd1907f
 
 
 
 
 
 
 
 
 
 
 
 
91d655b
 
bd1907f
 
91d655b
bd1907f
 
 
 
 
92df019
bd1907f
 
6babc9a
bd1907f
 
2238d2f
a9eaa5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1907f
 
 
91d655b
bd1907f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9b48e
bd1907f
 
 
 
 
 
22f3db1
bd1907f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: cc-by-4.0
language:
- en
- es
- fr
- it
tags:
- casimedicos
- explainability
- medical exams
- medical question answering
- multilinguality
- argument mining
- argument generation
- LLMs
- LLM
pretty_name: CasiMedicos-Arg
configs:
- config_name: en
  data_files:
  - split: train
    path:
    - en/train_en_ordered.csv
  - split: validation
    path:
    - en/validation_en_ordered.csv
  - split: test
    path:
    - en/test_en_ordered.csv
- config_name: es
  data_files:
  - split: train
    path:
    - es/train_es_ordered.csv
  - split: validation
    path:
    - es/validation_es_ordered.csv
  - split: test
    path:
    - es/test_es_ordered.csv
- config_name: fr
  data_files:
  - split: train
    path:
    - fr/train_fr_ordered.csv
  - split: validation
    path:
    - fr/validation_fr_ordered.csv
  - split: test
    path:
    - fr/test_fr_ordered.csv
- config_name: it
  data_files:
  - split: train
    path:
    - it/train_it_ordered.csv
  - split: validation
    path:
    - it/validation_it_ordered.csv
  - split: test
    path:
    - it/test_it_ordered.csv
task_categories:
- text-generation
- question-answering
- token-classification
size_categories:
- 1K<n<10K
---

<p align="center">
    <br>
    <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 200px;">
    <br>

# CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures

[CasiMedicos-Arg](https://huggingface.co/datasets/HiTZ/casimedicos-arg) is, to the best of our knowledge, the first 
multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are 
enriched with a natural language explanation written by doctors. 
The [casimedicos-exp](https://huggingface.co/datasets/HiTZ/casimedicos-exp) have been manually annotated with 
argument components (i.e., premise, claim) and argument relations (i.e., attack, support). 
Thus, Multilingual CasiMedicos-arg dataset consists of 558 clinical cases (English, Spanish, French, Italian) with explanations,
where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations.

<table style="width:33%">
    <tr>
         <th>Antidote CasiMedicos-Arg splits</th>
     <tr>
         <td>train</td>
         <td>434</td>
     </tr>
     <tr>
         <td>validation</td>
         <td>63</td>
     </tr>
     <tr>
         <td>test</td>
         <td>125</td>
     </tr>
 </table>

- 📖 Paper:[CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures](https://aclanthology.org/2024.emnlp-main.1026/)
- 💻 Github Repo (Data and Code): [https://github.com/ixa-ehu/antidote-casimedicos](https://github.com/ixa-ehu/antidote-casimedicos)
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR


## Example of Document in Antidote CasiMedicos Dataset

<p align="center">
<img src="https://github.com/ixa-ehu/antidote-casimedicos/blob/main/casimedicos-arg-example.png?raw=true" style="height: 600px;">
</p>


## Results of Argument Component Detection using LLMs

<p align="left">
<img src="https://github.com/ixa-ehu/antidote-casimedicos/blob/main/multingual-data-transfer.png?raw=true" style="height: 400px;">
</p>

## Citation

If you use CasiMedicos-Arg then please **cite the following paper**:

```bibtex
@inproceedings{sviridova-etal-2024-casimedicos,
    title = {{CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures}},
    author = "Sviridova, Ekaterina  and
      Yeginbergen, Anar  and
      Estarrona, Ainara  and
      Cabrio, Elena  and
      Villata, Serena  and
      Agerri, Rodrigo",
    booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
    year = "2024",
    url = "https://aclanthology.org/2024.emnlp-main.1026",
    pages = "18463--18475"
}
```

**Contact**: [Rodrigo Agerri](https://ragerri.github.io/)
HiTZ Center - Ixa, University of the Basque Country UPV/EHU