File size: 3,562 Bytes
7b73601 e1e8f97 7b73601 5769e53 649c4af e600c67 0fc3db7 e600c67 7b73601 e3abea0 7b73601 5769e53 7b73601 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# 《从零开始学扩散模型》
## 术语表
| 词汇 | 翻译 |
| :---------------------- | :--- |
| Corruption Process | 退化过程 |
| Pipeline | 管线 |
| Timestep | 时间步 |
| Scheduler | 调度器 |
| Fine-Tuning | 微调 |
| Guidance | 引导 |
# 目录
## 第一部分 基础知识
### 第一章 扩散模型的原理、发展和应用
#### 1.1 扩散模型的原理
#### 1.2 扩散模型的发展
#### 1.3 扩散模型的应用
### 第二章 HuggingFace介绍与环境准备
#### 2.1 HuggingFace Space
#### 2.2 Transformer 与 diffusers 库
#### 2.3 环境准备
## 第二部分 扩散模型实战
### 第三章 从零开始做扩散模型
#### 3.1 章节概述
#### 3.2 环境准备
#### 3.2.1 环境的创建与导入
#### 3.2.2 数据集测试
#### 3.3 扩散模型-退化过程
#### 3.4 扩散模型训练
#### 3.4.1 Unet模型
#### 3.4.2 开始训练模型
#### 3.5 扩散模型-采样(取样)过程
#### 3.5.1 采样(取样)过程
#### 3.5.2 与DDPM的区别
#### 3.5.3 UNet2DModel模型
#### 3.6 扩散模型-退化过程示例
#### 3.6.1 退化过程
#### 3.6.2 最终的训练目标
#### 3.7 拓展知识
#### 3.7.1 迭代周期(Timestep)的调节
#### 3.7.2 采样(取样)的关键问题
#### 3.8 本章小结
### 第四章 Diffusers实战
#### 4.1 章节概述
#### 4.2 环境准备
#### 4.2.1 安装Diffusers库
#### 4.2.2 Dreambooth-全新的扩散模型
#### 4.2.3 Diffusers核心API
#### 4.3 实战:生成美丽的蝴蝶图片
#### 4.3.1 下载蝴蝶图像集
#### 4.3.2 扩散模型-调度器
#### 4.3.3 定义扩散模型
#### 4.3.4 创建扩散模型训练循环
#### 4.3.5 图像的生成
#### 4.4 拓展知识
#### 4.4.1 将模型上传到Hub上
#### 4.4.2 扩大训练模型的规模
#### 4.5 本章小结
### 第五章 微调和引导
#### 5.1 章节概述
#### 5.2 环境准备
#### 5.3 载入一个预训练过的管线
#### 5.4 DDIM-更快的采样过程
#### 5.5 扩散模型-微调
#### 5.5.1 实战:微调
#### 5.5.2 使用最小化样例脚本微调模型
#### 5.5.3 保存和载入微调过的管线
#### 5.6 扩散模型-引导
#### 5.6.1 实战:引导
#### 5.6.2 CLIP 引导
#### 5.7 分享你的自定义采样训练
#### 5.7.1 环境准备
#### 5.7.2 创建一个以类别为条件的UNet
#### 5.7.3 训练与采样
#### 5.8 本章小结
#### 5.9 实战:创建一个类别条件扩散模型
### 第六章 Stable Diffusion
#### 6.1 章节概述
#### 6.2 环境准备
#### 6.3 从文本生成图像
#### 6.4 Stable Diffusion Pipeline
#### 6.4.1 可变分自编码器(VAE)
#### 6.4.2 分词器(Tokenizer)和文本编码器(Text Encoder)
#### 6.4.3 UNet
#### 6.4.4 调度器(Scheduler)
#### 6.4.5 DIY一个采样循环
#### 6.5 其他管线介绍
#### 6.5.1 Img2Img
#### 6.5.2 In-Painting
#### 6.5.3 Depth2Image
#### 6.5.4 拓展:管理你的模型缓存
#### 6.6 本章小结
### 第七章 DDIM反转
#### 7.1 本章概述
#### 7.2 实战:反转
#### 7.2.1 设置
#### 7.2.2 加载一个已训练的管道
#### 7.2.3 DDIM采样
#### 7.2.4 反转
#### 7.3 组合封装
#### 7.4 本章小结
### 第八章 音频扩散模型
#### 8.1 本章概述
#### 8.2 实战:音频扩散模型
#### 8.2.1 设置与导入
#### 8.2.2 从预先训练的音频管道采样
#### 8.2.3 从音频到频谱的转换
#### 8.2.4 微调管道
#### 8.2.5 循环训练
#### 8.3 将模型上传到Hub上
#### 8.4 本章小结
### 第九章 ControlNet和LoRa
#### 9.1 ControlNet
#### 9.2 LoRa
## 附录 精美图像集展示 |