Diffusion-book-cn / markdown /unit2 /finetune_model.py
Luke Cheng
Add markdown
96d06f0
import wandb
import numpy as np
import torch, torchvision
import torch.nn.functional as F
from PIL import Image
from tqdm.auto import tqdm
from fastcore.script import call_parse
from torchvision import transforms
from diffusers import DDPMPipeline
from diffusers import DDIMScheduler
from datasets import load_dataset
from matplotlib import pyplot as plt
@call_parse
def train(
image_size = 256,
batch_size = 16,
grad_accumulation_steps = 2,
num_epochs = 1,
start_model = "google/ddpm-bedroom-256",
dataset_name = "huggan/wikiart",
device='cuda',
model_save_name='wikiart_1e',
wandb_project='dm_finetune',
log_samples_every = 250,
save_model_every = 2500,
):
# Initialize wandb for logging
wandb.init(project=wandb_project, config=locals())
# Prepare pretrained model
image_pipe = DDPMPipeline.from_pretrained(start_model);
image_pipe.to(device)
# Get a scheduler for sampling
sampling_scheduler = DDIMScheduler.from_config(start_model)
sampling_scheduler.set_timesteps(num_inference_steps=50)
# Prepare dataset
dataset = load_dataset(dataset_name, split="train")
preprocess = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["image"]]
return {"images": images}
dataset.set_transform(transform)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Optimizer & lr scheduler
optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
for epoch in range(num_epochs):
for step, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
# Get the clean images
clean_images = batch['images'].to(device)
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps)
# Get the model prediction for the noise
noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0]
# Compare the prediction with the actual noise:
loss = F.mse_loss(noise_pred, noise)
# Log the loss
wandb.log({'loss':loss.item()})
# Calculate the gradients
loss.backward()
# Gradient Acccumulation: Only update every grad_accumulation_steps
if (step+1)%grad_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# Occasionally log samples
if (step+1)%log_samples_every == 0:
x = torch.randn(8, 3, 256, 256).to(device) # Batch of 8
for i, t in tqdm(enumerate(sampling_scheduler.timesteps)):
model_input = sampling_scheduler.scale_model_input(x, t)
with torch.no_grad():
noise_pred = image_pipe.unet(model_input, t)["sample"]
x = sampling_scheduler.step(noise_pred, t, x).prev_sample
grid = torchvision.utils.make_grid(x, nrow=4)
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
im = Image.fromarray(np.array(im*255).astype(np.uint8))
wandb.log({'Sample generations': wandb.Image(im)})
# Occasionally save model
if (step+1)%save_model_every == 0:
image_pipe.save_pretrained(model_save_name+f'step_{step+1}')
# Update the learning rate for the next epoch
scheduler.step()
# Save the pipeline one last time
image_pipe.save_pretrained(model_save_name)
# Wrap up the run
wandb.finish()