File size: 21,233 Bytes
47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 47ccc0d f4637d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
# 30 分钟吃掉 Accelerate 模型训练加速工具
🤗 Accelerate 是 Hugging Face 开源的一个方便将 PyTorch 模型迁移到 GPU/multi-GPUs/TPU/fp16/bf16 模式下训练的小巧工具。
和标准的 PyTorch 方法相比,使用 Accelerate 进行多 GPU DDP 模式/TPU/fp16/bf16 训练你的模型变得非常简单,而且训练速度非常快。
官方范例:<url>https://github.com/huggingface/accelerate/tree/main/examples</url>
本文将以一个图片分类模型为例,演示在 Accelerate 的帮助下使用 PyTorch 编写一套可以在 CPU、单 GPU、多 GPU (DDP) 模式、TPU 下通用的训练代码。
在我们的演示范例中,在 Kaggle 的双 GPU 环境下,双 GPU (DDP) 模式是单 GPU 训练速度的 1.6 倍,加速效果非常明显。
DP 和 DDP 的区别
* DP (DataParallel):实现简单但更慢。只能单机多卡使用。GPU 分成 server 节点和 worker 节点,有负载不均衡。
* DDP (DistributedDataParallel):更快但实现麻烦。可单机多卡也可多机多卡。各个 GPU 是平等的,无负载不均衡。
参考文章:《PyTorch 中的分布式训练之 DP vs. DDP》<url>https://zhuanlan.zhihu.com/p/356967195</url>
```python
#从 git 安装最新的 accelerate 仓库
!pip install git+https://github.com/huggingface/accelerate
```
Kaggle 源码:https://www.kaggle.com/code/lyhue1991/kaggle-ddp-tpu-examples
## 一、使用 CPU / 单 GPU 训练你的 PyTorch 模型
当系统存在 GPU 时,Accelerate 会自动使用 GPU 训练你的 PyTorch 模型,否则会使用 CPU 训练模型。
```python
import os,PIL
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch
from torch import nn
import torchvision
from torchvision import transforms
import datetime
#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================
def create_dataloaders(batch_size=64):
transform = transforms.Compose([transforms.ToTensor()])
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
num_workers=2,drop_last=True)
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False,
num_workers=2,drop_last=True)
return dl_train,dl_val
def create_net():
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(256,128))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(128,10))
return net
def training_loop(epochs = 5,
lr = 1e-3,
batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no", #'fp16' or 'bf16'
):
train_dataloader, eval_dataloader = create_dataloaders(batch_size)
model = create_net()
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr,
epochs=epochs, steps_per_epoch=len(train_dataloader))
#======================================================================
# initialize accelerator and auto move data/model to accelerator.device
set_seed(42)
accelerator = Accelerator(mixed_precision=mixed_precision)
accelerator.print(f'device {str(accelerator.device)} is used!')
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
#======================================================================
for epoch in range(epochs):
model.train()
for step, batch in enumerate(train_dataloader):
features,labels = batch
preds = model(features)
loss = nn.CrossEntropyLoss()(preds,labels)
#======================================================================
#attention here!
accelerator.backward(loss) #loss.backward()
#======================================================================
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
accurate = 0
num_elems = 0
for _, batch in enumerate(eval_dataloader):
features,labels = batch
with torch.no_grad():
preds = model(features)
predictions = preds.argmax(dim=-1)
#======================================================================
#gather data from multi-gpus (used when in ddp mode)
predictions = accelerator.gather_for_metrics(predictions)
labels = accelerator.gather_for_metrics(labels)
#======================================================================
accurate_preds = (predictions==labels)
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
eval_metric = accurate.item() / num_elems
#======================================================================
#print logs and save ckpt
accelerator.wait_for_everyone()
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
net_dict = accelerator.get_state_dict(model)
accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
#======================================================================
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt",
# mixed_precision="no")
```
```python
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no") #mixed_precision='fp16' or 'bf16'
```
```
device cuda is used!
epoch【0】@2023-01-15 12:06:45 --> eval_metric= 95.20%
epoch【1】@2023-01-15 12:07:01 --> eval_metric= 96.79%
epoch【2】@2023-01-15 12:07:17 --> eval_metric= 98.47%
epoch【3】@2023-01-15 12:07:34 --> eval_metric= 98.78%
epoch【4】@2023-01-15 12:07:51 --> eval_metric= 98.87%
```
## 二、使用多 GPU DDP 模式训练你的 PyTorch 模型
Kaggle 中右边 settings 中的 ACCELERATOR 选择 GPU T4x2。
### 1. 设置 config
```python
import os
from accelerate.utils import write_basic_config
write_basic_config() # Write a config file
os._exit(0) # Restart the notebook to reload info from the latest config file
```
```python
# or answer some question to create a config
#!accelerate config
```
```python
# %load /root/.cache/huggingface/accelerate/default_config.yaml
{
"compute_environment": "LOCAL_MACHINE",
"deepspeed_config": {},
"distributed_type": "MULTI_GPU",
"downcast_bf16": false,
"dynamo_backend": "NO",
"fsdp_config": {},
"machine_rank": 0,
"main_training_function": "main",
"megatron_lm_config": {},
"mixed_precision": "no",
"num_machines": 1,
"num_processes": 2,
"rdzv_backend": "static",
"same_network": false,
"use_cpu": false
}
```
### 2. 训练代码
与之前代码完全一致。
如果是脚本方式启动,需要将训练代码写入到脚本文件中,如 `cv_example.py`
```python
%%writefile cv_example.py
import os,PIL
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch
from torch import nn
import torchvision
from torchvision import transforms
import datetime
#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================
def create_dataloaders(batch_size=64):
transform = transforms.Compose([transforms.ToTensor()])
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
num_workers=2,drop_last=True)
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False,
num_workers=2,drop_last=True)
return dl_train,dl_val
def create_net():
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(256,128))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(128,10))
return net
def training_loop(epochs = 5,
lr = 1e-3,
batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no", #'fp16' or 'bf16'
):
train_dataloader, eval_dataloader = create_dataloaders(batch_size)
model = create_net()
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr,
epochs=epochs, steps_per_epoch=len(train_dataloader))
#======================================================================
# initialize accelerator and auto move data/model to accelerator.device
set_seed(42)
accelerator = Accelerator(mixed_precision=mixed_precision)
accelerator.print(f'device {str(accelerator.device)} is used!')
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
#======================================================================
for epoch in range(epochs):
model.train()
for step, batch in enumerate(train_dataloader):
features,labels = batch
preds = model(features)
loss = nn.CrossEntropyLoss()(preds,labels)
#======================================================================
#attention here!
accelerator.backward(loss) #loss.backward()
#======================================================================
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
accurate = 0
num_elems = 0
for _, batch in enumerate(eval_dataloader):
features,labels = batch
with torch.no_grad():
preds = model(features)
predictions = preds.argmax(dim=-1)
#======================================================================
#gather data from multi-gpus (used when in ddp mode)
predictions = accelerator.gather_for_metrics(predictions)
labels = accelerator.gather_for_metrics(labels)
#======================================================================
accurate_preds = (predictions==labels)
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
eval_metric = accurate.item() / num_elems
#======================================================================
#print logs and save ckpt
accelerator.wait_for_everyone()
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
net_dict = accelerator.get_state_dict(model)
accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
#======================================================================
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024,ckpt_path = "checkpoint.pt",
mixed_precision="no") #mixed_precision='fp16' or 'bf16'
```
### 3. 执行代码
**方式 1: 在 Notebook 中启动**
```python
from accelerate import notebook_launcher
#args = (5,1e-4,1024,'checkpoint.pt','no')
args = dict(epochs = 5,
lr = 1e-4,
batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no").values()
notebook_launcher(training_loop, args, num_processes=2)
```
```
Launching training on 2 GPUs.
device cuda:0 is used!
epoch【0】@2023-01-15 12:10:48 --> eval_metric= 89.18%
epoch【1】@2023-01-15 12:10:58 --> eval_metric= 97.20%
epoch【2】@2023-01-15 12:11:08 --> eval_metric= 98.03%
epoch【3】@2023-01-15 12:11:19 --> eval_metric= 98.16%
epoch【4】@2023-01-15 12:11:30 --> eval_metric= 98.32%
```
**方式 2: Accelerate 方式执行脚本**
```python
!accelerate launch ./cv_example.py
```
```
device cuda:0 is used!
epoch【0】@2023-02-03 11:38:02 --> eval_metric= 91.79%
epoch【1】@2023-02-03 11:38:13 --> eval_metric= 97.22%
epoch【2】@2023-02-03 11:38:22 --> eval_metric= 98.18%
epoch【3】@2023-02-03 11:38:32 --> eval_metric= 98.33%
epoch【4】@2023-02-03 11:38:43 --> eval_metric= 98.38%
```
**方式 3: PyTorch 方式执行脚本**
```python
# or traditional PyTorch style
!python -m torch.distributed.launch --nproc_per_node 2 --use_env ./cv_example.py
```
```
device cuda:0 is used!
epoch【0】@2023-01-15 12:18:26 --> eval_metric= 94.79%
epoch【1】@2023-01-15 12:18:37 --> eval_metric= 96.44%
epoch【2】@2023-01-15 12:18:48 --> eval_metric= 98.34%
epoch【3】@2023-01-15 12:18:59 --> eval_metric= 98.41%
epoch【4】@2023-01-15 12:19:10 --> eval_metric= 98.51%
```
## 三、使用 TPU 加速你的 PyTorch 模型
Kaggle 中右边 Settings 中的 ACCELERATOR 选择 TPU v3-8。
### 1. 安装 `torch_xla`
```python
#安装torch_xla支持
!pip uninstall -y torch torch_xla
!pip install torch==1.8.2+cpu -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.8-cp37-cp37m-linux_x86_64.whl
```
```python
#从git安装最新的accelerate仓库
!pip install git+https://github.com/huggingface/accelerate
```
```python
#检查是否成功安装 torch_xla
import torch_xla
```
### 2. 训练代码
和之前代码完全一样。
```python
import os,PIL
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch
from torch import nn
import torchvision
from torchvision import transforms
import datetime
#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================
def create_dataloaders(batch_size=64):
transform = transforms.Compose([transforms.ToTensor()])
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
num_workers=2,drop_last=True)
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False,
num_workers=2,drop_last=True)
return dl_train,dl_val
def create_net():
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(256,128))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(128,10))
return net
def training_loop(epochs = 5,
lr = 1e-3,
batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no", #fp16' or 'bf16'
):
train_dataloader, eval_dataloader = create_dataloaders(batch_size)
model = create_net()
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr,
epochs=epochs, steps_per_epoch=len(train_dataloader))
#======================================================================
# initialize accelerator and auto move data/model to accelerator.device
set_seed(42)
accelerator = Accelerator(mixed_precision=mixed_precision)
accelerator.print(f'device {str(accelerator.device)} is used!')
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
#======================================================================
for epoch in range(epochs):
model.train()
for step, batch in enumerate(train_dataloader):
features,labels = batch
preds = model(features)
loss = nn.CrossEntropyLoss()(preds,labels)
#======================================================================
#attention here!
accelerator.backward(loss) #loss.backward()
#======================================================================
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
accurate = 0
num_elems = 0
for _, batch in enumerate(eval_dataloader):
features,labels = batch
with torch.no_grad():
preds = model(features)
predictions = preds.argmax(dim=-1)
#======================================================================
#gather data from multi-gpus (used when in ddp mode)
predictions = accelerator.gather_for_metrics(predictions)
labels = accelerator.gather_for_metrics(labels)
#======================================================================
accurate_preds = (predictions==labels)
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
eval_metric = accurate.item() / num_elems
#======================================================================
#print logs and save ckpt
accelerator.wait_for_everyone()
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
net_dict = accelerator.get_state_dict(model)
accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
#======================================================================
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt",
# mixed_precision="no") #mixed_precision='fp16' or 'bf16'
```
### 3. 启动训练
```python
from accelerate import notebook_launcher
#args = (5,1e-4,1024,'checkpoint.pt','no')
args = dict(epochs = 5,
lr = 1e-4,
batch_size= 1024,
ckpt_path = "checkpoint.pt",
mixed_precision="no").values()
notebook_launcher(training_loop, args, num_processes=8)
```
作者介绍:吃货本货。算法工程师,擅长数据挖掘和计算机视觉算法。eat pytorch/tensorflow/pyspark 系列 GitHub 开源教程的作者。
|