# ruff: noqa: F405, F403, F401 """ Custom evaluation tasks for lighteval Do note that we ran the evals with `max_samples=1000` to speed up large evals. Most custom prompt changes were in an attempt to improve signal for small models in general. This file generally creates just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval. Example usage (lighteval_tasks.py is the path to this file): =================== accelerate launch --num_processes=1 lighteval/run_evals_accelerate.py --model_args="pretrained=HuggingFaceFW/ablation-model-fineweb-edu" \ --custom_tasks "lighteval_tasks.py" --output_dir [OUTPUTPATH] --max_samples 1000 \ --tasks "custom|hellaswag|0|1,custom|winogrande|0|1,custom|piqa|0|1,custom|siqa|0|1,custom|openbookqa|0|1,custom|arc:easy|0|1,custom|arc:challenge|0|1,custom|commonsense_qa|0|1,custom|mmlu:abstract_algebra|0|1,custom|mmlu:anatomy|0|1,custom|mmlu:astronomy|0|1,custom|mmlu:business_ethics|0|1,custom|mmlu:clinical_knowledge|0|1,custom|mmlu:college_biology|0|1,custom|mmlu:college_chemistry|0|1,custom|mmlu:college_computer_science|0|1,custom|mmlu:college_mathematics|0|1,custom|mmlu:college_medicine|0|1,custom|mmlu:college_physics|0|1,custom|mmlu:computer_security|0|1,custom|mmlu:conceptual_physics|0|1,custom|mmlu:econometrics|0|1,custom|mmlu:electrical_engineering|0|1,custom|mmlu:elementary_mathematics|0|1,custom|mmlu:formal_logic|0|1,custom|mmlu:global_facts|0|1,custom|mmlu:high_school_biology|0|1,custom|mmlu:high_school_chemistry|0|1,custom|mmlu:high_school_computer_science|0|1,custom|mmlu:high_school_european_history|0|1,custom|mmlu:high_school_geography|0|1,custom|mmlu:high_school_government_and_politics|0|1,custom|mmlu:high_school_macroeconomics|0|1,custom|mmlu:high_school_mathematics|0|1,custom|mmlu:high_school_microeconomics|0|1,custom|mmlu:high_school_physics|0|1,custom|mmlu:high_school_psychology|0|1,custom|mmlu:high_school_statistics|0|1,custom|mmlu:high_school_us_history|0|1,custom|mmlu:high_school_world_history|0|1,custom|mmlu:human_aging|0|1,custom|mmlu:human_sexuality|0|1,custom|mmlu:international_law|0|1,custom|mmlu:jurisprudence|0|1,custom|mmlu:logical_fallacies|0|1,custom|mmlu:machine_learning|0|1,custom|mmlu:management|0|1,custom|mmlu:marketing|0|1,custom|mmlu:medical_genetics|0|1,custom|mmlu:miscellaneous|0|1,custom|mmlu:moral_disputes|0|1,custom|mmlu:moral_scenarios|0|1,custom|mmlu:nutrition|0|1,custom|mmlu:philosophy|0|1,custom|mmlu:prehistory|0|1,custom|mmlu:professional_accounting|0|1,custom|mmlu:professional_law|0|1,custom|mmlu:professional_medicine|0|1,custom|mmlu:professional_psychology|0|1,custom|mmlu:public_relations|0|1,custom|mmlu:security_studies|0|1,custom|mmlu:sociology|0|1,custom|mmlu:us_foreign_policy|0|1,custom|mmlu:virology|0|1,custom|mmlu:world_religions|0|1" =================== More info here: https://github.com/huggingface/lighteval?tab=readme-ov-file#evaluate-a-model-on-extended-community-or-custom-tasks For more info on differences between MMLU implementations: https://huggingface.co/blog/open-llm-leaderboard-mmlu#1001-flavors-of-mmlu In particular, the default leaderboard MMLU implementation (which uses "A", "B", etc as answer targets) gives generally random results on small/non instruction tuned models. Instead, we use the full MMLU answer as the target. """ import re from typing import List, Tuple from lighteval.metrics import Metrics from lighteval.tasks.lighteval_task import LightevalTaskConfig from lighteval.tasks.requests import Doc from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES _TASKS_STRINGS: List[Tuple[LightevalTaskConfig, str]] = [] _TASKS: List[LightevalTaskConfig] = [] ## COMMON_SENSE_REASONING_TASKS ## COMMON_SENSE_REASONING_TASKS = [ LightevalTaskConfig( name="hellaswag", prompt_function="hellaswag_prompt", hf_repo="hellaswag", hf_subset="default", metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="winogrande", prompt_function="winogrande", hf_repo="winogrande", hf_subset="winogrande_xl", metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="piqa", prompt_function="piqa_harness", hf_repo="piqa", hf_subset="plain_text", metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="siqa", prompt_function="siqa_prompt", hf_repo="lighteval/siqa", hf_subset="default", hf_avail_splits=["train", "validation"], metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="openbookqa", prompt_function="openbookqa", hf_repo="openbookqa", hf_subset="main", metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="arc:easy", prompt_function="arc", hf_repo="ai2_arc", hf_subset="ARC-Easy", evaluation_splits=["test"], generation_size=1, metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="arc:challenge", prompt_function="arc", hf_repo="ai2_arc", hf_subset="ARC-Challenge", evaluation_splits=["test"], generation_size=1, metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), LightevalTaskConfig( name="commonsense_qa", prompt_function="commonsense_qa_prompt", hf_repo="commonsense_qa", hf_subset="default", metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"], ), ] def commonsense_qa_prompt(line, task_name: str = None): return Doc( task_name=task_name, query=line["question"], choices=[f" {c}" for c in line["choices"]["text"]], gold_index=LETTER_INDICES.index(line["answerKey"].strip()), instruction="", ) def siqa_prompt(line, task_name: str = None): return Doc( task_name=task_name, query=line["context"] + " " + line["question"], choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]], gold_index=int(line["label"]) - 1, instruction="", ) def hellaswag_prompt(line, task_name: str = None): def preprocess(text): """Comes from AiHarness""" # text = text.strip() # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag. text = text.replace(" [title]", ". ") text = re.sub("\\[.*?\\]", "", text) text = text.replace(" ", " ") return text ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} " return Doc( task_name=task_name, query=preprocess(line["activity_label"] + ": " + ctx), choices=[" " + preprocess(ending) for ending in line["endings"]], gold_index=int(line["label"]) if line["label"] != "" else -1, # -1 for test # "metric": "choices_loglikelihood", ) # 0 short for common sense COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS] _TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING) _TASKS += COMMON_SENSE_REASONING_TASKS ## MMLU ## class CustomMMLUEvaluationTask(LightevalTaskConfig): def __init__( self, name, prompt_function="mmlu_prompt", hf_repo="lighteval/mmlu", hf_subset=None, # metric=[Metrics.loglikelihood_acc_single_token], metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace], hf_avail_splits=None, evaluation_splits=["test"], few_shots_split="dev", few_shots_select=None, suite=None, generation_size=-1, stop_sequence=None, output_regex=None, frozen=False, ): super().__init__( name=name, prompt_function=prompt_function, hf_repo=hf_repo, hf_subset=hf_subset, metric=metric, hf_avail_splits=hf_avail_splits, evaluation_splits=evaluation_splits, few_shots_split=few_shots_split, few_shots_select=few_shots_select, suite=suite, generation_size=generation_size, stop_sequence=stop_sequence, output_regex=output_regex, frozen=frozen, ) MMLU_TASKS = [ CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"), CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"), CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"), CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"), CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"), CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"), CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"), CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"), CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"), CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"), CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"), CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"), CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"), CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"), CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"), CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"), CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"), CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"), CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"), CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"), CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"), CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"), CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"), CustomMMLUEvaluationTask( name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics" ), CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"), CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"), CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"), CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"), CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"), CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"), CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"), CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"), CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"), CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"), CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"), CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"), CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"), CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"), CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"), CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"), CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"), CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"), CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"), CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"), CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"), CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"), CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"), CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"), CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"), CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"), CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"), CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"), CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"), CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"), CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"), CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"), CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"), ] def mmlu_prompt(line, task_name: str = None): """MMLU prompt without letters""" topic = line["subject"] prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: " prompt += line["question"] + "\nAnswer:" return Doc( task_name=task_name, query=prompt, choices=[f" {c}" for c in line["choices"]], gold_index=line["answer"], instruction=f"The following are questions about {topic.replace('_', ' ')}.\n", ) MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS] _TASKS_STRINGS.extend(MMLU_STRING) _TASKS += MMLU_TASKS # common sense reasoning + mmlu EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING] + ["lighteval|sciq|0|0"]) # note that we actually do not use sciq to compute the agg score # Convert to dict for lighteval TASKS_TABLE = [task.as_dict() for task in _TASKS] # You can have a few pre-organised groups of tasks TASKS_GROUPS = { "early-signal": EARLY_SIGNAL_TASKS, }