File size: 10,619 Bytes
159348b a51a586 159348b a51a586 159348b a51a586 159348b a51a586 159348b a51a586 159348b a51a586 159348b a51a586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FGVC Aircraft loading script."""
import csv
import json
import os
from pathlib import Path
import datasets
_CITATION = """\
@techreport{maji13fine-grained,
title = {Fine-Grained Visual Classification of Aircraft},
author = {S. Maji and J. Kannala and E. Rahtu
and M. Blaschko and A. Vedaldi},
year = {2013},
archivePrefix = {arXiv},
eprint = {1306.5151},
primaryClass = "cs-cv",
}
"""
_DESCRIPTION = """\
The dataset contains 10,200 images of aircraft, with 100 images for each of 102 different aircraft model variants, most of which are airplanes. The (main) aircraft in each image is annotated with a tight bounding box and a hierarchical airplane model label.
Aircraft models are organized in a four-levels hierarchy. The four levels, from finer to coarser, are:
Model, e.g. Boeing 737-76J. Since certain models are nearly visually indistinguishable, this level is not used in the evaluation.
Variant, e.g. Boeing 737-700. A variant collapses all the models that are visually indistinguishable into one class. The dataset comprises 102 different variants.
Family, e.g. Boeing 737. The dataset comprises 70 different families.
Manufacturer, e.g. Boeing. The dataset comprises 41 different manufacturers.
The data is divided into three equally-sized training, validation and test subsets. The first two sets can be used for development, and the latter should be used for final evaluation only.
"""
_HOMEPAGE = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/"
_LICENSE = "exclusively for non-commercial research purposes"
_URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz"
_FAMILIES = [
"A300",
"A310",
"A320",
"A330",
"A340",
"A380",
"ATR-42",
"ATR-72",
"An-12",
"BAE 146",
"BAE-125",
"Beechcraft 1900",
"Boeing 707",
"Boeing 717",
"Boeing 727",
"Boeing 737",
"Boeing 747",
"Boeing 757",
"Boeing 767",
"Boeing 777",
"C-130",
"C-47",
"CRJ-200",
"CRJ-700",
"Cessna 172",
"Cessna 208",
"Cessna Citation",
"Challenger 600",
"DC-10",
"DC-3",
"DC-6",
"DC-8",
"DC-9",
"DH-82",
"DHC-1",
"DHC-6",
"DR-400",
"Dash 8",
"Dornier 328",
"EMB-120",
"Embraer E-Jet",
"Embraer ERJ 145",
"Embraer Legacy 600",
"Eurofighter Typhoon",
"F-16",
"F/A-18",
"Falcon 2000",
"Falcon 900",
"Fokker 100",
"Fokker 50",
"Fokker 70",
"Global Express",
"Gulfstream",
"Hawk T1",
"Il-76",
"King Air",
"L-1011",
"MD-11",
"MD-80",
"MD-90",
"Metroliner",
"PA-28",
"SR-20",
"Saab 2000",
"Saab 340",
"Spitfire",
"Tornado",
"Tu-134",
"Tu-154",
"Yak-42",
]
_MANUFACTURERS = [
"ATR",
"Airbus",
"Antonov",
"Beechcraft",
"Boeing",
"Bombardier Aerospace",
"British Aerospace",
"Canadair",
"Cessna",
"Cirrus Aircraft",
"Dassault Aviation",
"Dornier",
"Douglas Aircraft Company",
"Embraer",
"Eurofighter",
"Fairchild",
"Fokker",
"Gulfstream Aerospace",
"Ilyushin",
"Lockheed Corporation",
"Lockheed Martin",
"McDonnell Douglas",
"Panavia",
"Piper",
"Robin",
"Saab",
"Supermarine",
"Tupolev",
"Yakovlev",
"de Havilland",
]
_VARIANTS = [
"707-320",
"727-200",
"737-200",
"737-300",
"737-400",
"737-500",
"737-600",
"737-700",
"737-800",
"737-900",
"747-100",
"747-200",
"747-300",
"747-400",
"757-200",
"757-300",
"767-200",
"767-300",
"767-400",
"777-200",
"777-300",
"A300B4",
"A310",
"A318",
"A319",
"A320",
"A321",
"A330-200",
"A330-300",
"A340-200",
"A340-300",
"A340-500",
"A340-600",
"A380",
"ATR-42",
"ATR-72",
"An-12",
"BAE 146-200",
"BAE 146-300",
"BAE-125",
"Beechcraft 1900",
"Boeing 717",
"C-130",
"C-47",
"CRJ-200",
"CRJ-700",
"CRJ-900",
"Cessna 172",
"Cessna 208",
"Cessna 525",
"Cessna 560",
"Challenger 600",
"DC-10",
"DC-3",
"DC-6",
"DC-8",
"DC-9-30",
"DH-82",
"DHC-1",
"DHC-6",
"DHC-8-100",
"DHC-8-300",
"DR-400",
"Dornier 328",
"E-170",
"E-190",
"E-195",
"EMB-120",
"ERJ 135",
"ERJ 145",
"Embraer Legacy 600",
"Eurofighter Typhoon",
"F-16A/B",
"F/A-18",
"Falcon 2000",
"Falcon 900",
"Fokker 100",
"Fokker 50",
"Fokker 70",
"Global Express",
"Gulfstream IV",
"Gulfstream V",
"Hawk T1",
"Il-76",
"L-1011",
"MD-11",
"MD-80",
"MD-87",
"MD-90",
"Metroliner",
"Model B200",
"PA-28",
"SR-20",
"Saab 2000",
"Saab 340",
"Spitfire",
"Tornado",
"Tu-134",
"Tu-154",
"Yak-42",
]
def parse_annotations(annotations, join_labels=True):
annotations = [annotation.strip().split() for annotation in annotations]
if join_labels:
return {
annotation[0].strip(): " ".join(annotation[1:])
for annotation in annotations
}
else:
return {annotation[0].strip(): annotation[1:] for annotation in annotations}
class FGVCAircraft(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# # This is an example of a dataset with multiple configurations.
# # If you don't want/need to define several sub-sets in your dataset,
# # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# # If you need to make complex sub-parts in the datasets with configurable options
# # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# # BUILDER_CONFIG_CLASS = MyBuilderConfig
# # You will be able to load one or the other configurations in the following list with
# # data = datasets.load_dataset('my_dataset', 'first_domain')
# # data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"bbox": {
"ymin": datasets.features.Value(dtype="int64"),
"xmin": datasets.features.Value(dtype="int64"),
"ymax": datasets.features.Value(dtype="int64"),
"xmax": datasets.features.Value(dtype="int64"),
},
"family": datasets.features.ClassLabel(names=_FAMILIES),
"manufacturer": datasets.features.ClassLabel(names=_MANUFACTURERS),
"variant": datasets.features.ClassLabel(names=_VARIANTS),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
data_dir = Path(data_dir) / "fgvc-aircraft-2013b" / "data"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images_dir": data_dir / "images",
"annotations_dir": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images_dir": data_dir / "images",
"annotations_dir": data_dir,
"split": "val",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"images_dir": data_dir / "images",
"annotations_dir": data_dir,
"split": "test",
},
),
]
def _generate_examples(self, images_dir, annotations_dir, split):
image_ids = open(annotations_dir / f"images_{split}.txt").readlines()
image_ids = [image_id.strip() for image_id in image_ids]
families = open(annotations_dir / f"images_family_{split}.txt").readlines()
families = parse_annotations(families)
manufacturers = open(
annotations_dir / f"images_manufacturer_{split}.txt"
).readlines()
manufacturers = parse_annotations(manufacturers)
variants = open(annotations_dir / f"images_variant_{split}.txt").readlines()
variants = parse_annotations(variants)
bounding_boxes = open(
os.path.join(annotations_dir, "images_box.txt")
).readlines()
bounding_boxes = parse_annotations(bounding_boxes, join_labels=False)
for image_id in image_ids:
full_path = images_dir / f"{image_id}.jpg"
family = families[image_id]
manufacturer = manufacturers[image_id]
variant = variants[image_id]
xmin, ymin, xmax, ymax = list(map(int, bounding_boxes[image_id]))
record = {
"image": str(full_path),
"bbox": {"ymin": ymin, "xmin": xmin, "ymax": ymax, "xmax": xmax},
"family": family,
"manufacturer": manufacturer,
"variant": variant,
}
yield image_id, record
|