|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Charades is dataset composed of 9848 videos of daily indoors activities collected through Amazon Mechanical Turk""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
from .classes import CHARADES_CLASSES |
|
|
|
_CITATION = """ |
|
@article{sigurdsson2016hollywood, |
|
author = {Gunnar A. Sigurdsson and G{\"u}l Varol and Xiaolong Wang and Ivan Laptev and Ali Farhadi and Abhinav Gupta}, |
|
title = {Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding}, |
|
journal = {ArXiv e-prints}, |
|
eprint = {1604.01753}, |
|
year = {2016}, |
|
url = {http://arxiv.org/abs/1604.01753}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Charades is dataset composed of 9848 videos of daily indoors activities collected through Amazon Mechanical Turk. 267 different users were presented with a sentence, that includes objects and actions from a fixed vocabulary, and they recorded a video acting out the sentence (like in a game of Charades). The dataset contains 66,500 temporal annotations for 157 action classes, 41,104 labels for 46 object classes, and 27,847 textual descriptions of the videos. |
|
""" |
|
|
|
|
|
_ANNOTATIONS_URL = "https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/Charades.zip" |
|
_VIDEOS_URL = { |
|
"default": "https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/Charades_v1.zip", |
|
"480p": "https://ai2-public-datasets.s3-us-west-2.amazonaws.com/charades/Charades_v1_480.zip", |
|
} |
|
|
|
|
|
class Charades(datasets.GeneratorBasedBuilder): |
|
"""Charades is dataset composed of 9848 videos of daily indoors activities collected through Amazon Mechanical Turk""" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default"), datasets.BuilderConfig(name="480p")] |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"video_id": datasets.Value("string"), |
|
"video": datasets.Value("string"), |
|
"subject": datasets.Value("string"), |
|
"scene": datasets.Value("string"), |
|
"quality": datasets.Value("int32"), |
|
"relevance": datasets.Value("int32"), |
|
"verified": datasets.Value("string"), |
|
"script": datasets.Value("string"), |
|
"objects": datasets.features.Sequence(datasets.Value("string")), |
|
"descriptions": datasets.features.Sequence(datasets.Value("string")), |
|
"labels": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
num_classes=len(CHARADES_CLASSES), names=list(CHARADES_CLASSES.values()) |
|
) |
|
), |
|
"action_timings": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"length": datasets.Value("float32"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
annotations_path = dl_manager.download_and_extract(_ANNOTATIONS_URL) |
|
archive = os.path.join(dl_manager.download_and_extract(_VIDEOS_URL[self.config.name]), "Charades_v1") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_file": os.path.join(annotations_path, "Charades", "Charades_v1_train.csv"), |
|
"video_folder": archive, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_file": os.path.join(annotations_path, "Charades", "Charades_v1_test.csv"), |
|
"video_folder": archive, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotation_file, video_folder): |
|
"""This function returns the examples.""" |
|
with open(annotation_file, "r", encoding="utf-8") as csv_file: |
|
reader = csv.DictReader(csv_file) |
|
idx = 0 |
|
for row in reader: |
|
path = os.path.join(video_folder, row["id"] + ".mp4") |
|
labels = [] |
|
action_timings = [] |
|
for class_label in row["actions"].split(";"): |
|
|
|
if len(class_label) != 0: |
|
|
|
labels.append(CHARADES_CLASSES[class_label.split(" ")[0]]) |
|
timings = list(map(float, class_label.split(" ")[1:])) |
|
action_timings.append(timings) |
|
|
|
yield idx, { |
|
"video_id": row["id"], |
|
"video": path, |
|
"subject": row["subject"], |
|
"scene": row["scene"], |
|
"quality": int(row["quality"]) if len(row["quality"]) != 0 else -100, |
|
"relevance": int(row["relevance"]) if len(row["relevance"]) != 0 else -100, |
|
"verified": row["verified"], |
|
"script": row["script"], |
|
"objects": row["objects"].split(";"), |
|
"descriptions": row["descriptions"].split(";"), |
|
"labels": labels, |
|
"action_timings": action_timings, |
|
"length": row["length"], |
|
} |
|
|
|
idx += 1 |
|
|