Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
loubnabnl HF staff commited on
Commit
e92b25a
·
verified ·
1 Parent(s): 8f233cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -153,7 +153,7 @@ configs:
153
 
154
  📐 FineMath consists of **34B tokens** (FineMath-3+) and **54B tokens** (FineMath-3+ with InfiMM-WebMath-3+) of mathematical educational content filtered from CommonCrawl. To curate this dataset, we trained a mathematical content [classifier](https://huggingface.co/HuggingFaceTB/finemath-classifier) using annotations generated by LLama-3.1-70B-Instruct. We used the classifier to retain only the most educational mathematics content, focusing on clear explanations and step-by-step problem solving rather than advanced academic papers.
155
 
156
- The [Dataset Curation](#dataset-curation) section details the process for creating the dataset.
157
 
158
  <img src="assets/train_curves.png" width="800"/>
159
 
@@ -288,13 +288,13 @@ There are several avenues for future work:
288
  ### Citation Information
289
 
290
  ```
291
- @misc{lozhkov2024finemath,
292
- author = { Lozhkov, Anton and Ben Allal, Loubna and Bakouch, Elie and von Werra, Leandro and Wolf, Thomas },
293
- title = { FineMath: the Finest Collection of Mathematical Content },
294
- year = 2024,
295
- url = { https://huggingface.co/datasets/HuggingFaceTB/finemath },
296
- doi = { 10.57967/hf/3847 },
297
- publisher = { Hugging Face }
 
298
  }
299
-
300
  ```
 
153
 
154
  📐 FineMath consists of **34B tokens** (FineMath-3+) and **54B tokens** (FineMath-3+ with InfiMM-WebMath-3+) of mathematical educational content filtered from CommonCrawl. To curate this dataset, we trained a mathematical content [classifier](https://huggingface.co/HuggingFaceTB/finemath-classifier) using annotations generated by LLama-3.1-70B-Instruct. We used the classifier to retain only the most educational mathematics content, focusing on clear explanations and step-by-step problem solving rather than advanced academic papers.
155
 
156
+ The [Dataset Curation](#dataset-curation) section details the process for creating the dataset. More details in our paper: https://arxiv.org/abs/2502.02737v1.
157
 
158
  <img src="assets/train_curves.png" width="800"/>
159
 
 
288
  ### Citation Information
289
 
290
  ```
291
+ @misc{allal2025smollm2smolgoesbig,
292
+ title={SmolLM2: When Smol Goes Big -- Data-Centric Training of a Small Language Model},
293
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Guilherme Penedo and Lewis Tunstall and Andrés Marafioti and Hynek Kydlíček and Agustín Piqueres Lajarín and Vaibhav Srivastav and Joshua Lochner and Caleb Fahlgren and Xuan-Son Nguyen and Clémentine Fourrier and Ben Burtenshaw and Hugo Larcher and Haojun Zhao and Cyril Zakka and Mathieu Morlon and Colin Raffel and Leandro von Werra and Thomas Wolf},
294
+ year={2025},
295
+ eprint={2502.02737},
296
+ archivePrefix={arXiv},
297
+ primaryClass={cs.CL},
298
+ url={https://arxiv.org/abs/2502.02737},
299
  }
 
300
  ```