HugoLaurencon
commited on
Commit
·
744dc75
1
Parent(s):
54606c1
IIIT5K dataset
Browse files- IIIT-5K.py +104 -0
IIIT-5K.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""IIIT5K dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import scipy.io
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
import os
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@InProceedings{MishraBMVC12,
|
30 |
+
author = "Mishra, A. and Alahari, K. and Jawahar, C.~V.",
|
31 |
+
title = "Scene Text Recognition using Higher Order Language Priors",
|
32 |
+
booktitle= "BMVC",
|
33 |
+
year = "2012"
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
The IIIT 5K-Word dataset is harvested from Google image search.
|
39 |
+
Query words like billboards, signboard, house numbers, house name plates, movie posters were used to collect images.
|
40 |
+
The dataset contains 5000 cropped word images from Scene Texts and born-digital images.
|
41 |
+
The dataset is divided into train and test parts.
|
42 |
+
This dataset can be used for large lexicon cropped word recognition.
|
43 |
+
We also provide a lexicon of more than 0.5 million dictionary words with this dataset.
|
44 |
+
"""
|
45 |
+
|
46 |
+
_HOMEPAGE = "http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html"
|
47 |
+
|
48 |
+
_DL_URL = "http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K-Word_V3.0.tar.gz"
|
49 |
+
|
50 |
+
|
51 |
+
class IIIT5K(datasets.GeneratorBasedBuilder):
|
52 |
+
"""IIIT-5K dataset."""
|
53 |
+
|
54 |
+
def _info(self):
|
55 |
+
features = datasets.Features(
|
56 |
+
{
|
57 |
+
"image": datasets.Image(),
|
58 |
+
"label": datasets.Value("string"),
|
59 |
+
"small_lexicon": datasets.Sequence(datasets.Value("string")),
|
60 |
+
"medium_lexicon": datasets.Sequence(datasets.Value("string")),
|
61 |
+
}
|
62 |
+
)
|
63 |
+
|
64 |
+
return datasets.DatasetInfo(
|
65 |
+
description=_DESCRIPTION,
|
66 |
+
features=features,
|
67 |
+
homepage=_HOMEPAGE,
|
68 |
+
citation=_CITATION,
|
69 |
+
)
|
70 |
+
|
71 |
+
def _split_generators(self, dl_manager):
|
72 |
+
archive_path = dl_manager.download_and_extract(_DL_URL)
|
73 |
+
return [
|
74 |
+
datasets.SplitGenerator(
|
75 |
+
name=datasets.Split.TRAIN,
|
76 |
+
gen_kwargs={
|
77 |
+
"archive_path": archive_path,
|
78 |
+
"info_path": Path(archive_path) / "traindata.mat",
|
79 |
+
},
|
80 |
+
),
|
81 |
+
datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.TEST,
|
83 |
+
gen_kwargs={
|
84 |
+
"archive_path": archive_path,
|
85 |
+
"info_path": Path(archive_path) / "testdata.mat",
|
86 |
+
},
|
87 |
+
),
|
88 |
+
]
|
89 |
+
|
90 |
+
def _generate_examples(self, archive_path, info_path):
|
91 |
+
info = scipy.io.loadmat(info_path)
|
92 |
+
info = info["testdata"][0]
|
93 |
+
|
94 |
+
for idx, info_ex in enumerate(info):
|
95 |
+
path_image = os.path.join(archive_path, str(info_ex[0][0]))
|
96 |
+
label = str(info_ex[1][0])
|
97 |
+
small_lexicon = [str(lab[0]) for lab in info_ex[2][0]]
|
98 |
+
medium_lexicon = [str(lab[0]) for lab in info_ex[2][0]]
|
99 |
+
yield idx, {
|
100 |
+
"image": path_image,
|
101 |
+
"label": label,
|
102 |
+
"small_lexicon": small_lexicon,
|
103 |
+
"medium_lexicon": medium_lexicon,
|
104 |
+
}
|