Datasets:

ArXiv:
License:
File size: 3,469 Bytes
06747a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e14983
06747a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
059eca0
06747a2
 
1e14983
06747a2
059eca0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AFQMC"""


import os
import json
import datasets


_CITATION = """\
"""

_DESCRIPTION = """\
Download from https://www.cluebenchmarks.com/introduce.html
"""

_LICENSE = "apache-license-2.0"
_HOMEPAGE = "https://github.com/IDEA-CCNL/Fengshenbang-LM"


class AFQMCConfig(datasets.BuilderConfig):
    """BuilderConfig for AFQMCConfig"""

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        """
        Args:
            **kwargs: keyword arguments forwarded to super.
        """


class AFQMCConfig(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIG_CLASS = AFQMCConfig
    BUILDER_CONFIGS = [
        AFQMCConfig(description=_DESCRIPTION)
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "sentence1": datasets.Value("string"),
                "sentence2": datasets.Value("string"),
                "label": datasets.ClassLabel(num_classes=2, names=['not similar', 'similar']),
            }),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE
        )

    def _split_generators(self, dl_manager):

        files = {
            "test": os.path.join("afqmc_public", f"test.json"),
            "validation": os.path.join("afqmc_public", f"dev.json"),
            "train": os.path.join("afqmc_public", f"train.json"),
        }
        data_dir = dl_manager.download_and_extract(files)

        output = []
        test = datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={
                "filepath": data_dir["test"]
            }
        )
        output.append(test)

        # if os.path.exists(data_dir["validation"]):
        valid = datasets.SplitGenerator(
            name=datasets.Split.VALIDATION,
            gen_kwargs={
                "filepath": data_dir["validation"]
            }
        )
        output.append(valid)

        train = datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "filepath": data_dir["train"]
            }
        )
        output.append(train)

        return output

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            lines = f.readlines()
            for id_, line in enumerate(lines):
                data = json.loads(line)
                s = {
                    'sentence1': data['sentence1'],
                    'sentence2': data['sentence2'],
                    'label': 'not similar',
                }
                if 'label' in data:
                    s['label'] = 'not similar' if data['label'] == '0' else 'similar'
                yield id_, s