Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -7,122 +7,192 @@ size_categories:
|
|
7 |
- 10B<n<100B
|
8 |
---
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Challenge FLAIR #2: textural and temporal information for semantic segmentation from multi-source optical imagery
|
13 |
-
|
14 |
-
Code : [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/IGNF/FLAIR-1-AI-Challenge/blob/master/LICENSE)   Dataset : [![license](https://img.shields.io/badge/License-IO%202.0-green.svg)](https://github.com/etalab/licence-ouverte/blob/master/open-licence.md)
|
15 |
-
|
16 |
-
Participate in obtaining more accurate maps for a more comprehensive description and a better understanding of our environment! Come push the limits of state-of-the-art semantic segmentation approaches on a large and challenging dataset. Get in touch at ai-challenge@ign.fr
|
17 |
-
|
18 |
-
|
19 |
-
![Alt bandeau FLAIR-IGN](images/flair_bandeau.jpg?raw=true)
|
20 |
-
<img width="100%" src="images/flair-2_logos-hd.png">
|
21 |
-
|
22 |
-
<div style="border-width:1px; border-style:solid; border-color:#d2db8c; padding-left: 1em; padding-right: 1em; ">
|
23 |
-
|
24 |
-
<h2 style="margin-top:5px;">Links</h2>
|
25 |
-
|
26 |
-
|
27 |
-
- **Datapaper : https://arxiv.org/pdf/2305.14467.pdf**
|
28 |
-
|
29 |
-
- **Dataset links :** https://ignf.github.io/FLAIR/#FLAIR2
|
30 |
-
|
31 |
-
- **Challenge page : https://codalab.lisn.upsaclay.fr/competitions/13447**
|
32 |
-
|
33 |
-
</div>
|
34 |
-
<br><br>
|
35 |
-
|
36 |
-
|
37 |
|
38 |
|
39 |
|
40 |
## Context & Data
|
41 |
|
42 |
-
The FLAIR #2 dataset is sampled countrywide and is composed of over 20 billion annotated pixels of very high resolution aerial imagery at 0.2 m spatial resolution, acquired over three years and different months (spatio-temporal domains).
|
|
|
|
|
|
|
43 |
<br>
|
44 |
|
45 |
-
The dataset covers 50 spatial domains, encompassing 916 areas spanning 817 km².
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
<thead>
|
50 |
-
<tr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
</thead>
|
52 |
<tbody>
|
53 |
-
<tr
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
<tr
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
<tr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
</tbody>
|
91 |
</table>
|
92 |
-
</center>
|
93 |
-
|
94 |
-
|
95 |
<br><br>
|
96 |
|
|
|
97 |
|
98 |
-
|
|
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
- use the `./notebook/flair-2-notebook.ipynb` notebook guiding you through data visualization, training and testing steps.
|
109 |
-
|
110 |
-
A toy dataset (reduced size) is available to check that your installation and the information in the configuration file are correct.
|
111 |
-
|
112 |
-
<br><br>
|
113 |
|
114 |
|
115 |
## Reference
|
116 |
-
Please include a citation to the following article if you use the FLAIR
|
117 |
|
118 |
```
|
119 |
-
@
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
}
|
127 |
```
|
128 |
|
|
|
7 |
- 10B<n<100B
|
8 |
---
|
9 |
|
10 |
+
# Datset Card for FLAIR land-cover semantic segmentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
|
14 |
## Context & Data
|
15 |
|
16 |
+
The hereby FLAIR (#2) dataset is sampled countrywide and is composed of over 20 billion annotated pixels of very high resolution aerial imagery at 0.2 m spatial resolution, acquired over three years and different months (spatio-temporal domains).
|
17 |
+
Aerial imagery patches consist of 5 channels (RVB-Near Infrared-Elevation) and have corresponding annotation (with 19 semantic classes or 13 for the baselines).
|
18 |
+
Furthermore, to integrate broader spatial context and temporal information, high resolution Sentinel-2 1-year time series with 10 spectral band are also provided.
|
19 |
+
More than 50,000 Sentinel-2 acquisitions with 10 m spatial resolution are available.
|
20 |
<br>
|
21 |
|
22 |
+
The dataset covers 50 spatial domains, encompassing 916 areas spanning 817 km². This dataset provides a robust foundation for advancing land cover mapping techniques.<br><br>
|
23 |
+
<style type="text/css">
|
24 |
+
.tg {border-collapse:collapse;border-spacing:0;}
|
25 |
+
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
|
26 |
+
overflow:hidden;padding:10px 5px;word-break:normal;}
|
27 |
+
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
|
28 |
+
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
|
29 |
+
.tg .tg-kors{background-color:#3de6eb;border-color:#ffffff;text-align:left;vertical-align:top}
|
30 |
+
.tg .tg-km2t{border-color:#ffffff;font-weight:bold;text-align:left;vertical-align:top}
|
31 |
+
.tg .tg-oe15{background-color:#ffffff;border-color:#ffffff;text-align:left;vertical-align:top}
|
32 |
+
.tg .tg-r3rw{background-color:#a97101;border-color:#ffffff;text-align:left;vertical-align:top}
|
33 |
+
.tg .tg-0u95{background-color:#55ff00;border-color:#ffffff;text-align:left;vertical-align:top}
|
34 |
+
.tg .tg-zv4m{border-color:#ffffff;text-align:left;vertical-align:top}
|
35 |
+
.tg .tg-9efv{background-color:#938e7b;border-color:#ffffff;text-align:left;vertical-align:top}
|
36 |
+
.tg .tg-pop6{background-color:#fff30d;border-color:#ffffff;text-align:left;vertical-align:top}
|
37 |
+
.tg .tg-8jgo{border-color:#ffffff;text-align:center;vertical-align:top}
|
38 |
+
.tg .tg-j3z6{background-color:#194a26;border-color:#ffffff;text-align:left;vertical-align:top}
|
39 |
+
.tg .tg-oedl{background-color:#000000;border-color:#ffffff;text-align:left;vertical-align:top}
|
40 |
+
.tg .tg-40e0{background-color:#c5dc42;border-color:#ffffff;text-align:left;vertical-align:top}
|
41 |
+
.tg .tg-9xgv{background-color:#1553ae;border-color:#ffffff;text-align:left;vertical-align:top}
|
42 |
+
.tg .tg-7f0h{background-color:#6b714f;border-color:#ffffff;text-align:left;vertical-align:top}
|
43 |
+
.tg .tg-3m6m{background-color:#f80c00;border-color:#ffffff;text-align:left;vertical-align:top}
|
44 |
+
.tg .tg-2e1p{background-color:#db0e9a;border-color:#ffffff;color:#db0e9a;text-align:left;vertical-align:top}
|
45 |
+
.tg .tg-edjf{background-color:#46e483;border-color:#ffffff;text-align:left;vertical-align:top}
|
46 |
+
.tg .tg-3chm{background-color:#e4df7c;border-color:#ffffff;text-align:left;vertical-align:top}
|
47 |
+
.tg .tg-jmwx{background-color:#f3a60d;border-color:#ffffff;text-align:left;vertical-align:top}
|
48 |
+
.tg .tg-qwc7{background-color:#9999ff;border-color:#ffffff;text-align:left;vertical-align:top}
|
49 |
+
.tg .tg-69kt{background-color:#660082;border-color:#ffffff;text-align:left;vertical-align:top}
|
50 |
+
.tg .tg-x5zi{background-color:#8ab3a0;border-color:#ffffff;text-align:left;vertical-align:top}
|
51 |
+
</style>
|
52 |
+
<table class="tg">
|
53 |
<thead>
|
54 |
+
<tr>
|
55 |
+
<th class="tg-zv4m"></th>
|
56 |
+
<th class="tg-zv4m">Class</th>
|
57 |
+
<th class="tg-8jgo">Freq.-train(%)</th>
|
58 |
+
<th class="tg-8jgo">Freq.-test(%)</th>
|
59 |
+
<th class="tg-zv4m"></th>
|
60 |
+
<th class="tg-zv4m">Class</th>
|
61 |
+
<th class="tg-8jgo">Freq.-train(%)</th>
|
62 |
+
<th class="tg-8jgo">Freq.-test(%)</th>
|
63 |
+
<th class="tg-zv4m"></th>
|
64 |
+
<th class="tg-zv4m">Class</th>
|
65 |
+
<th class="tg-8jgo">Freq.-train(%)</th>
|
66 |
+
<th class="tg-8jgo">Freq.-test(%)</th>
|
67 |
+
<th class="tg-zv4m"></th>
|
68 |
+
<th class="tg-zv4m">Class</th>
|
69 |
+
<th class="tg-8jgo">Freq.-train(%)</th>
|
70 |
+
<th class="tg-8jgo">Freq.-test(%)</th>
|
71 |
+
</tr>
|
72 |
</thead>
|
73 |
<tbody>
|
74 |
+
<tr>
|
75 |
+
<td class="tg-2e1p"></td>
|
76 |
+
<td class="tg-km2t">(1) Building</td>
|
77 |
+
<td class="tg-8jgo">8.14</td>
|
78 |
+
<td class="tg-8jgo">3.26</td>
|
79 |
+
<td class="tg-j3z6"></td>
|
80 |
+
<td class="tg-km2t">(6) Coniferous</td>
|
81 |
+
<td class="tg-8jgo">2.74</td>
|
82 |
+
<td class="tg-8jgo">10.24</td>
|
83 |
+
<td class="tg-pop6"></td>
|
84 |
+
<td class="tg-km2t">(11) Agricultural Land</td>
|
85 |
+
<td class="tg-8jgo">10.98</td>
|
86 |
+
<td class="tg-8jgo">18.19</td>
|
87 |
+
<td class="tg-7f0h"></td>
|
88 |
+
<td class="tg-km2t">(16) Mixed</td>
|
89 |
+
<td class="tg-8jgo">0.05</td>
|
90 |
+
<td class="tg-8jgo">0.12</td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td class="tg-9efv"></td>
|
94 |
+
<td class="tg-km2t">(2) Pervious surface</td>
|
95 |
+
<td class="tg-8jgo">8.25</td>
|
96 |
+
<td class="tg-8jgo">3.82</td>
|
97 |
+
<td class="tg-edjf"></td>
|
98 |
+
<td class="tg-km2t">(7) Deciduous</td>
|
99 |
+
<td class="tg-8jgo">15.38</td>
|
100 |
+
<td class="tg-8jgo">24.79</td>
|
101 |
+
<td class="tg-3chm"></td>
|
102 |
+
<td class="tg-km2t">(12) Plowed land</td>
|
103 |
+
<td class="tg-8jgo">3.88</td>
|
104 |
+
<td class="tg-8jgo">1.81</td>
|
105 |
+
<td class="tg-40e0"></td>
|
106 |
+
<td class="tg-km2t">(17) Ligneous</td>
|
107 |
+
<td class="tg-8jgo">0.01</td>
|
108 |
+
<td class="tg-8jgo">-</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td class="tg-3m6m"></td>
|
112 |
+
<td class="tg-km2t">(3) Impervious surface</td>
|
113 |
+
<td class="tg-8jgo">13.72</td>
|
114 |
+
<td class="tg-8jgo">5.87</td>
|
115 |
+
<td class="tg-jmwx"></td>
|
116 |
+
<td class="tg-km2t">(8) Brushwood</td>
|
117 |
+
<td class="tg-8jgo">6.95</td>
|
118 |
+
<td class="tg-8jgo">3.81</td>
|
119 |
+
<td class="tg-kors"></td>
|
120 |
+
<td class="tg-km2t">(13) Swimming pool</td>
|
121 |
+
<td class="tg-8jgo">0.01</td>
|
122 |
+
<td class="tg-8jgo">0.02</td>
|
123 |
+
<td class="tg-qwc7"></td>
|
124 |
+
<td class="tg-km2t">(18) Greenhouse</td>
|
125 |
+
<td class="tg-8jgo">0.12</td>
|
126 |
+
<td class="tg-8jgo">0.15</td>
|
127 |
+
</tr>
|
128 |
+
<tr>
|
129 |
+
<td class="tg-r3rw"></td>
|
130 |
+
<td class="tg-km2t">(4) Bare soil</td>
|
131 |
+
<td class="tg-8jgo">3.47</td>
|
132 |
+
<td class="tg-8jgo">1.6</td>
|
133 |
+
<td class="tg-69kt"></td>
|
134 |
+
<td class="tg-km2t">(9) Vineyard</td>
|
135 |
+
<td class="tg-8jgo">3.13</td>
|
136 |
+
<td class="tg-8jgo">2.55</td>
|
137 |
+
<td class="tg-oe15"></td>
|
138 |
+
<td class="tg-km2t">(14) Snow</td>
|
139 |
+
<td class="tg-8jgo">0.15</td>
|
140 |
+
<td class="tg-8jgo">-</td>
|
141 |
+
<td class="tg-oedl"></td>
|
142 |
+
<td class="tg-km2t">(19) Other</td>
|
143 |
+
<td class="tg-8jgo">0.14</td>
|
144 |
+
<td class="tg-8jgo">0.04</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td class="tg-9xgv"></td>
|
148 |
+
<td class="tg-km2t">(5) Water</td>
|
149 |
+
<td class="tg-8jgo">4.88</td>
|
150 |
+
<td class="tg-8jgo">3.17</td>
|
151 |
+
<td class="tg-0u95"></td>
|
152 |
+
<td class="tg-km2t">(10) Herbaceous vegetation</td>
|
153 |
+
<td class="tg-8jgo">17.84</td>
|
154 |
+
<td class="tg-8jgo">19.76</td>
|
155 |
+
<td class="tg-x5zi"></td>
|
156 |
+
<td class="tg-km2t">(15) Clear cut</td>
|
157 |
+
<td class="tg-8jgo">0.15</td>
|
158 |
+
<td class="tg-8jgo">0.82</td>
|
159 |
+
<td class="tg-zv4m"></td>
|
160 |
+
<td class="tg-zv4m"></td>
|
161 |
+
<td class="tg-8jgo"></td>
|
162 |
+
<td class="tg-8jgo"></td>
|
163 |
+
</tr>
|
164 |
</tbody>
|
165 |
</table>
|
|
|
|
|
|
|
166 |
<br><br>
|
167 |
|
168 |
+
## Dataset Structure
|
169 |
|
170 |
+
### Spatio-Temporal Distribution
|
171 |
+
The FLAIR dataset consists of 77 762 patches. Each patch includes a high-resolution aerial image of $0.2$\:m (512x512), a yearly satellite image time series with a spatial resolution of 10m (40x40), and pixel-precise elevation and land cover annotations at 0.2m resolution (512x512).
|
172 |
|
173 |
+
### Annotations
|
174 |
+
Each pixel has been manually annotated by photo-interpretation of the 20cm resolution aerial imagery, carried out by a team supervised by geography experts from the IGN.
|
175 |
+
Movable objects like cars or boats are annotated according to their underlying cover.
|
176 |
|
177 |
+
### Training Splits
|
178 |
+
The dataset is made up of 50 distinct spatial domains, aligned with the administrative boundaries of the French départements.
|
179 |
+
For our experiments, we designate 32 domains for training, 8 for validation, and reserve 10 as the official test set.
|
180 |
+
This arrangement ensures a balanced distribution of semantic classes, radiometric attributes, bioclimatic conditions, and acquisition times across each set.
|
181 |
+
Consequently, every split accurately reflects the landscape diversity inherent to metropolitan France.
|
182 |
+
It is important to mention that the patches come with meta-data permitting alternative splitting schemes, for example focused on domain shifts.
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
|
185 |
## Reference
|
186 |
+
Please include a citation to the following article if you use the FLAIR dataset:
|
187 |
|
188 |
```
|
189 |
+
@misc{garioud2023flair,
|
190 |
+
title={FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery},
|
191 |
+
author={Anatol Garioud and Nicolas Gonthier and Loic Landrieu and Apolline De Wit and Marion Valette and Marc Poupée and Sébastien Giordano and Boris Wattrelos},
|
192 |
+
year={2023},
|
193 |
+
eprint={2310.13336},
|
194 |
+
archivePrefix={arXiv},
|
195 |
+
primaryClass={cs.CV}
|
196 |
}
|
197 |
```
|
198 |
|