|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
import json |
|
import datasets |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners. |
|
It contina |
|
""" |
|
|
|
_HOMEPAGE = "https://multidialog.github.io/" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_SUBSETS = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare") |
|
|
|
_BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/" |
|
|
|
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "data/{subset}/{subset}_chunks_{archive_id:04}.tar.gz" |
|
|
|
_META_URL = _BASE_DATA_URL + "metadata/{subset}/{subset}_metadata_{archive_id:04}.jsonl" |
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
class MultidialogConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Multidialog.""" |
|
|
|
def __init__(self, name, *args, **kwargs): |
|
"""BuilderConfig for Multidialog |
|
""" |
|
super().__init__(name=name, *args, **kwargs) |
|
self.subsets_to_download = (name,) |
|
|
|
|
|
class Multidialog(datasets.GeneratorBasedBuilder): |
|
""" |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in _SUBSETS] |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 128 |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"file_name": datasets.Value("string"), |
|
"conv_id": datasets.Value("string"), |
|
"utterance_id": datasets.Value("float32"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"from": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
"emotion": datasets.Value("string"), |
|
"original_full_path": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
splits = (self.config.name,) |
|
|
|
n_archives = { |
|
"train" : [15, 4], |
|
"test_freq": [1, 1], |
|
"test_rare": [1, 1], |
|
"valid_freq": [1, 1], |
|
"valid_rare": [1, 1], |
|
} |
|
|
|
|
|
audio_archives_urls = { |
|
split: [ |
|
_AUDIO_ARCHIVE_URL.format(subset=split, archive_id=i) |
|
for i in range(n_archives[split][0]) |
|
] |
|
for split in splits |
|
} |
|
audio_archives_paths = dl_manager.download(audio_archives_urls) |
|
|
|
|
|
|
|
|
|
local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \ |
|
else None |
|
|
|
|
|
meta_urls = { |
|
split: [ |
|
_META_URL.format(subset=split, archive_id=i) |
|
for i in range(n_archives[split][1]) |
|
] |
|
for split in splits |
|
} |
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
|
|
|
|
if self.config.name == "test_freq": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_freq"] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
"test_freq"] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths["test_freq"] |
|
}, |
|
), |
|
] |
|
|
|
if self.config.name == "test_rare": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_rare"] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
"test_rare"] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths["test_rare"] |
|
}, |
|
), |
|
] |
|
|
|
if self.config.name == "valid_freq": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_freq"] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
"valid_freq"] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths["valid_freq"] |
|
}, |
|
), |
|
] |
|
|
|
if self.config.name == "valid_rare": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_rare"] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
"valid_rare"] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths["valid_rare"] |
|
}, |
|
), |
|
] |
|
|
|
if self.config.name == "train": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"audio_archives_iterators": [ |
|
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["train"] |
|
], |
|
"local_audio_archives_paths": local_audio_archives_paths[ |
|
"train"] if local_audio_archives_paths else None, |
|
"meta_paths": meta_paths["train"] |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths): |
|
assert len(audio_archives_iterators) == len(meta_paths) |
|
if local_audio_archives_paths: |
|
assert len(audio_archives_iterators) == len(local_audio_archives_paths) |
|
|
|
for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)): |
|
meta_dict = dict() |
|
with open(meta_path) as jsonl_file: |
|
for line in jsonl_file: |
|
data = json.loads(line.strip()) |
|
meta_dict[data["file_name"]] = data |
|
|
|
|
|
|
|
|
|
|
|
for audio_path_in_archive, audio_file in audio_archive_iterator: |
|
|
|
audio_filename = os.path.split(audio_path_in_archive)[1] |
|
audio_id = audio_filename.split(".wav")[0] |
|
audio_meta = meta_dict[audio_path_in_archive] |
|
audio_meta["conv_id"] = audio_meta.pop("conv_id") |
|
audio_meta["utterance_id"] = audio_meta.pop("utterance_id") |
|
audio_meta["from"] = audio_meta.pop("from") |
|
audio_meta["value"] = audio_meta.pop("value") |
|
audio_meta["emotion"] = audio_meta.pop("emotion") |
|
audio_meta["original_full_path"] = audio_meta.pop("audpath") |
|
|
|
path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \ |
|
else audio_path_in_archive |
|
|
|
yield audio_id, { |
|
"audio": {"path": path , "bytes": audio_file.read()}, |
|
**{feature: value for feature, value in audio_meta.items() if feature in self.info.features} |
|
} |
|
|
|
|
|
def _flatten_nested_dict(nested_dict): |
|
return { |
|
key: [inner_list_element for inner_list in value_to_lists.values() for inner_list_element in inner_list] |
|
for key, value_to_lists in nested_dict.items() |
|
} |