Datasets:

Languages:
English
ArXiv:
License:
chae-won-kim commited on
Commit
2d3f7eb
·
verified ·
1 Parent(s): de4ad49

Update calling split

Browse files
Files changed (1) hide show
  1. Multidialog.py +7 -5
Multidialog.py CHANGED
@@ -22,7 +22,6 @@ _CITATION = """\
22
 
23
  _DESCRIPTION = """\
24
  Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners.
25
-
26
  It contina
27
  """
28
 
@@ -30,6 +29,8 @@ _HOMEPAGE = "https://multidialog.github.io/"
30
 
31
  _LICENSE = "Apache License 2.0"
32
 
 
 
33
  _BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/"
34
 
35
  _AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "data/{subset}/{subset}_chunks_{archive_id:04}.tar.gz"
@@ -55,7 +56,7 @@ class Multidialog(datasets.GeneratorBasedBuilder):
55
 
56
  VERSION = datasets.Version("1.0.0")
57
 
58
- BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in ["train", "test_freq", "test_rare", "valid_freq", "valid_rare"]]
59
 
60
  DEFAULT_WRITER_BATCH_SIZE = 128
61
 
@@ -81,7 +82,8 @@ class Multidialog(datasets.GeneratorBasedBuilder):
81
  )
82
 
83
  def _split_generators(self, dl_manager):
84
- splits = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare")
 
85
 
86
  n_archives = {
87
  "train" : [15, 4],
@@ -94,7 +96,7 @@ class Multidialog(datasets.GeneratorBasedBuilder):
94
  # 2. prepare sharded archives with audio files
95
  audio_archives_urls = {
96
  split: [
97
- _AUDIO_ARCHIVE_URL.format(subset=split, archive_id=i)
98
  for i in range(n_archives[split][0])
99
  ]
100
  for split in splits
@@ -110,7 +112,7 @@ class Multidialog(datasets.GeneratorBasedBuilder):
110
  # 3. prepare sharded metadata csv files
111
  meta_urls = {
112
  split: [
113
- _META_URL.format(subset=split, archiv_id=i)
114
  for i in range(n_archives[split][1])
115
  ]
116
  for split in splits
 
22
 
23
  _DESCRIPTION = """\
24
  Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners.
 
25
  It contina
26
  """
27
 
 
29
 
30
  _LICENSE = "Apache License 2.0"
31
 
32
+ _SUBSETS = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare")
33
+
34
  _BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/"
35
 
36
  _AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "data/{subset}/{subset}_chunks_{archive_id:04}.tar.gz"
 
56
 
57
  VERSION = datasets.Version("1.0.0")
58
 
59
+ BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in _SUBSETS]
60
 
61
  DEFAULT_WRITER_BATCH_SIZE = 128
62
 
 
82
  )
83
 
84
  def _split_generators(self, dl_manager):
85
+ splits_to_subsets = self.config.subsets_to_download
86
+ splits = _SUBSETS
87
 
88
  n_archives = {
89
  "train" : [15, 4],
 
96
  # 2. prepare sharded archives with audio files
97
  audio_archives_urls = {
98
  split: [
99
+ _AUDIO_ARCHIVE_URL.format(subset=splits_to_subsets[split], archive_id=i)
100
  for i in range(n_archives[split][0])
101
  ]
102
  for split in splits
 
112
  # 3. prepare sharded metadata csv files
113
  meta_urls = {
114
  split: [
115
+ _META_URL.format(subset=splits_to_subsets[split], archiv_id=i)
116
  for i in range(n_archives[split][1])
117
  ]
118
  for split in splits