|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Preprocessed Dataset from IWSLT'15 English-Vietnamese machine translation: English-Vietnamese. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{Luong-Manning:iwslt15, |
|
Address = {Da Nang, Vietnam} |
|
Author = {Luong, Minh-Thang and Manning, Christopher D.}, |
|
Booktitle = {International Workshop on Spoken Language Translation}, |
|
Title = {Stanford Neural Machine Translation Systems for Spoken Language Domain}, |
|
Year = {2015}} |
|
""" |
|
|
|
_DATA_URL = "https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/{}.{}" |
|
|
|
|
|
|
|
|
|
TranslateData = collections.namedtuple("TranslateData", ["url", "language_to_file"]) |
|
|
|
|
|
class MT_Eng_ViConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MT_Eng_Vietnamese.""" |
|
|
|
def __init__(self, language_pair=(None, None), **kwargs): |
|
"""BuilderConfig for MT_Eng_Vi. |
|
Args: |
|
for the `datasets.features.text.TextEncoder` used for the features feature. |
|
language_pair: pair of languages that will be used for translation. Should |
|
contain 2-letter coded strings. First will be used at source and second |
|
as target in supervised mode. For example: ("vi", "en"). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1]) |
|
super(MT_Eng_ViConfig, self).__init__( |
|
description=description, |
|
version=datasets.Version("1.0.0"), |
|
**kwargs, |
|
) |
|
self.language_pair = language_pair |
|
|
|
|
|
class MTEngVietnamese(datasets.GeneratorBasedBuilder): |
|
"""English Vietnamese machine translation dataset from IWSLT2015.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
MT_Eng_ViConfig( |
|
name="iwslt2015-vi-en", |
|
language_pair=("vi", "en"), |
|
), |
|
MT_Eng_ViConfig( |
|
name="iwslt2015-en-vi", |
|
language_pair=("en", "vi"), |
|
), |
|
] |
|
BUILDER_CONFIG_CLASS = MT_Eng_ViConfig |
|
|
|
def _info(self): |
|
source, target = self.config.language_pair |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
supervised_keys=(source, target), |
|
homepage="https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
source, target = self.config.language_pair |
|
|
|
files = {} |
|
for split in ("train", "dev", "test"): |
|
if split == "dev": |
|
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format("tst2012", source)) |
|
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format("tst2012", target)) |
|
if split == "dev": |
|
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format("tst2013", source)) |
|
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format("tst2013", target)) |
|
if split == "train": |
|
dl_dir_src = dl_manager.download_and_extract(_DATA_URL.format(split, source)) |
|
dl_dir_tar = dl_manager.download_and_extract(_DATA_URL.format(split, target)) |
|
|
|
files[split] = {"source_file": dl_dir_src, "target_file": dl_dir_tar} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
with open(target_file, encoding="utf-8") as f: |
|
target_sentences = f.read().split("\n") |
|
|
|
source, target = self.config.language_pair |
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
|
|
yield idx, result |
|
|