Datasets:
Tasks:
Text Generation
Size:
10K - 100K
File size: 4,706 Bytes
2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d 497e94f 876f047 2b65a1d 497e94f 95e3688 8cd5b5e 95e3688 497e94f 95e3688 497e94f 66c9469 497e94f 66c9469 20f144b 497e94f 7241b46 497e94f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
dataset_info:
features:
- name: id
dtype: uint32
- name: language
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text_markdown
dtype: string
- name: text_html
dtype: string
- name: author
dtype: string
- name: original_author
dtype: string
- name: original_url
dtype: string
- name: lead_html
dtype: string
- name: lead_markdown
dtype: string
- name: type
dtype: string
- name: time_published
dtype: uint64
- name: statistics
struct:
- name: commentsCount
dtype: uint32
- name: favoritesCount
dtype: uint32
- name: readingCount
dtype: uint32
- name: score
dtype: int32
- name: votesCount
dtype: int32
- name: votesCountPlus
dtype: int32
- name: votesCountMinus
dtype: int32
- name: labels
sequence: string
- name: hubs
sequence: string
- name: flows
sequence: string
- name: tags
sequence: string
- name: reading_time
dtype: uint32
- name: format
dtype: string
- name: complexity
dtype: string
- name: comments
sequence:
- name: id
dtype: uint64
- name: parent_id
dtype: uint64
- name: level
dtype: uint32
- name: time_published
dtype: uint64
- name: score
dtype: int32
- name: votes
dtype: uint32
- name: message_html
dtype: string
- name: message_markdown
dtype: string
- name: author
dtype: string
- name: children
sequence: uint64
splits:
- name: train
num_bytes: 19968161329
num_examples: 302049
download_size: 3485570346
dataset_size: 19968161329
task_categories:
- text-generation
language:
- ru
- en
size_categories:
- 100K<n<1M
---
# Habr dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Description](#description)
- [Usage](#usage)
- [Data Instances](#data-instances)
- [Source Data](#source-data)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
## Description
**Summary:** Dataset of posts and comments from [habr.com](https://habr.com/ru/all/).
**Script:** [save_habr.py](https://github.com/IlyaGusev/rulm/blob/master/data_processing/save_habr.py)
**Point of Contact:** [Ilya Gusev](ilya.gusev@phystech.edu)
**Languages:** Russian, English, some programming code.
## Usage
Prerequisites:
```bash
pip install datasets zstandard jsonlines pysimdjson
```
Dataset iteration:
```python
from datasets import load_dataset
dataset = load_dataset('IlyaGusev/habr', split="train", streaming=True)
for example in dataset:
print(example["text_markdown"])
```
## Data Instances
```
{
"id": 12730,
"language": "ru",
"url": "https://habr.com/ru/post/12730/",
"text_markdown": "...",
"text_html": "...",
"lead_markdown": "...",
"lead_html": "...",
"type": "article",
"labels": [],
"original_author": null,
"original_url": null,
"time_published": 1185962380,
"author": "...",
"title": "Хочешь в университет — сделай презентацию",
"statistics": {
"commentsCount": 23,
"favoritesCount": 1,
"readingCount": 1542,
"score": 7,
"votesCount": 15,
"votesCountPlus": 11,
"votesCountMinus": 4
},
"hubs": [
"itcompanies"
],
"flows": [
"popsci"
],
"tags": [
"PowerPoint",
"презентация",
"абитуриенты",
],
"reading_time": 1,
"format": null,
"complexity": null,
"comments": {
"id": [11653537, 11653541],
"parent_id": [null, 11653537],
"level": [0, 1],
"time_published": [1185963192, 1185967886],
"score": [-1, 0],
"votes": [1, 0],
"message_html": ["...", "..."],
"author": ["...", "..."],
"children": [[11653541], []]
}
}
```
You can use this little helper to unflatten sequences:
```python
def revert_flattening(records):
fixed_records = []
for key, values in records.items():
if not fixed_records:
fixed_records = [{} for _ in range(len(values))]
for i, value in enumerate(values):
fixed_records[i][key] = value
return fixed_records
```
The original JSONL is already unflattened.
## Source Data
* The data source is the [Habr](https://habr.com/) website.
* API call example: [post 709430](https://habr.com/kek/v2/articles/709430).
* Processing script is [here](https://github.com/IlyaGusev/rulm/blob/master/data_processing/create_habr.py).
## Personal and Sensitive Information
The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original authors is included in the dataset where possible.
|