|
import gzip |
|
import os |
|
import shutil |
|
import urllib |
|
from pathlib import Path |
|
from typing import List |
|
from tqdm import tqdm |
|
from ast import literal_eval |
|
|
|
import re |
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
from datasets import DatasetInfo |
|
from pyfaidx import Fasta |
|
from abc import ABC, abstractmethod |
|
|
|
|
|
""" |
|
---------------------------------------------------------------------------------------- |
|
Reference Genome URLS: |
|
---------------------------------------------------------------------------------------- |
|
""" |
|
H38_REFERENCE_GENOME_URL = ( |
|
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz" |
|
) |
|
H19_REFERENCE_GENOME_URL = ( |
|
"https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz" |
|
) |
|
|
|
""" |
|
---------------------------------------------------------------------------------------- |
|
Task Specific Handlers: |
|
---------------------------------------------------------------------------------------- |
|
""" |
|
|
|
class GenomicLRATaskHandler(ABC): |
|
""" |
|
Abstract method for the Genomic LRA task handlers. |
|
""" |
|
|
|
@abstractmethod |
|
def __init__(self, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the task |
|
""" |
|
pass |
|
|
|
def split_generators( |
|
self, dl_manager, cache_dir_root |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads required files using dl_manager and separates them by split. |
|
""" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"handler": self, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"} |
|
), |
|
] |
|
|
|
@abstractmethod |
|
def generate_examples(self, split): |
|
""" |
|
A generator that yields examples for the specified split. |
|
""" |
|
pass |
|
|
|
@staticmethod |
|
def hook(t): |
|
last_b = [0] |
|
|
|
def inner(b=1, bsize=1, tsize=None): |
|
""" |
|
b : int, optional |
|
Number of blocks just transferred [default: 1]. |
|
bsize : int, optional |
|
Size of each block (in tqdm units) [default: 1]. |
|
tsize : int, optional |
|
Total size (in tqdm units). If [default: None] remains unchanged. |
|
""" |
|
if tsize is not None: |
|
t.total = tsize |
|
t.update((b - last_b[0]) * bsize) |
|
last_b[0] = b |
|
|
|
return inner |
|
|
|
def download_and_extract_gz(self, file_url, cache_dir_root): |
|
""" |
|
Downloads and extracts a gz file into the given cache directory. Returns the |
|
full file path of the extracted gz file. |
|
Args: |
|
file_url: url of the gz file to be downloaded and extracted. |
|
cache_dir_root: Directory to extract file into. |
|
""" |
|
file_fname = Path(file_url).stem |
|
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname) |
|
|
|
if not os.path.exists(file_complete_path): |
|
if not os.path.exists(file_complete_path + ".gz"): |
|
with tqdm( |
|
unit="B", |
|
unit_scale=True, |
|
unit_divisor=1024, |
|
miniters=1, |
|
desc=file_url.split("/")[-1], |
|
) as t: |
|
urllib.request.urlretrieve( |
|
file_url, file_complete_path + ".gz", reporthook=self.hook(t) |
|
) |
|
with gzip.open(file_complete_path + ".gz", "rb") as file_in: |
|
with open(file_complete_path, "wb") as file_out: |
|
shutil.copyfileobj(file_in, file_out) |
|
return file_complete_path |
|
|
|
|
|
class CagePredictionHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the CAGE prediction task. |
|
""" |
|
|
|
NUM_TRAIN = 33891 |
|
NUM_TEST = 1922 |
|
NUM_VALID = 2195 |
|
DEFAULT_LENGTH = 114688 |
|
TARGET_SHAPE = ( |
|
896, |
|
50, |
|
) |
|
NPZ_SPLIT = 1000 |
|
NUM_BP_PER_BIN = 128 |
|
|
|
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs): |
|
""" |
|
Creates a new handler for the CAGE task. |
|
Args: |
|
sequence_length: allows for increasing sequence context. Sequence length |
|
must be an even multiple of 128 to align with binned labels. Note: |
|
increasing sequence length may decrease the number of usable samples. |
|
""" |
|
self.reference_genome = None |
|
self.coordinate_csv_file = None |
|
self.target_files_by_split = {} |
|
|
|
|
|
assert (sequence_length // 128) % 2 == 0, ( |
|
f"Requested sequence length must be an even multuple of 128 to align " |
|
f"with the binned labels." |
|
) |
|
|
|
self.sequence_length = sequence_length |
|
|
|
if self.sequence_length < self.DEFAULT_LENGTH: |
|
self.TARGET_SHAPE = (self.sequence_length // 128, 50) |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the CAGE dataset. Each example |
|
includes a genomic sequence and a 2D array of labels |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"sequence": datasets.Value("string"), |
|
|
|
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"start": datasets.Value(dtype="int32"), |
|
|
|
"stop": datasets.Value(dtype="int32") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The CAGE dataset requires reference genome, coordinate |
|
csv file,and npy files to be saved. |
|
""" |
|
|
|
|
|
|
|
reference_genome_file = self.download_and_extract_gz( |
|
H38_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
|
|
self.coordinate_csv_file = dl_manager.download_and_extract( |
|
"cage_prediction/sequences_coordinates.csv" |
|
) |
|
|
|
train_file_dict = {} |
|
for train_key, train_file in self.generate_npz_filenames( |
|
"train", self.NUM_TRAIN, folder="cage_prediction/targets_subset" |
|
): |
|
train_file_dict[train_key] = dl_manager.download(train_file) |
|
|
|
test_file_dict = {} |
|
for test_key, test_file in self.generate_npz_filenames( |
|
"test", self.NUM_TEST, folder="cage_prediction/targets_subset" |
|
): |
|
test_file_dict[test_key] = dl_manager.download(test_file) |
|
|
|
valid_file_dict = {} |
|
for valid_key, valid_file in self.generate_npz_filenames( |
|
"valid", self.NUM_VALID, folder="cage_prediction/targets_subset" |
|
): |
|
valid_file_dict[valid_key] = dl_manager.download(valid_file) |
|
|
|
|
|
self.target_files_by_split["train"] = train_file_dict |
|
self.target_files_by_split["test"] = test_file_dict |
|
self.target_files_by_split["validation"] = valid_file_dict |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"handler": self, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"handler": self, "split": "validation"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"handler": self, "split": "test"} |
|
), |
|
] |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples for the given split, each with a sequence |
|
and the corresponding labels. The sequences are padded to the correct |
|
sequence length and standardized before returning. |
|
""" |
|
|
|
target_files = self.target_files_by_split[split] |
|
|
|
key = 0 |
|
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file) |
|
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split] |
|
for sequential_idx, row in filtered.iterrows(): |
|
start, stop = int(row["start"]) - 1, int( |
|
row["stop"]) - 1 |
|
|
|
chromosome = row['chrom'] |
|
|
|
padded_sequence = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
end=stop, |
|
) |
|
|
|
|
|
npz_file = np.load( |
|
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)] |
|
) |
|
|
|
if ( |
|
split == "validation" |
|
): |
|
split = "valid" |
|
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][ |
|
0] |
|
|
|
|
|
|
|
if self.sequence_length < self.DEFAULT_LENGTH: |
|
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128 |
|
targets = targets[idx_diff:-idx_diff] |
|
|
|
if padded_sequence: |
|
yield key, { |
|
"labels": targets, |
|
"sequence": standardize_sequence(padded_sequence), |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"start": int(row["start"]), |
|
"stop": int(row["stop"]) |
|
} |
|
key += 1 |
|
|
|
@staticmethod |
|
def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT): |
|
""" |
|
Generates a list of filenames for the npz files stored in the dataset. |
|
Yields a tuple of floored multiple of 1000, filename |
|
Args: |
|
split: split to generate filenames for. Must be in ['train', 'test', 'valid'] |
|
due to the naming of the files. |
|
total: total number of npy targets for given split |
|
folder: folder where data is stored. |
|
npz_size: number of npy files per npz. Defaults to 1000 because |
|
this is the number currently used in the dataset. |
|
""" |
|
|
|
for i in range(total // npz_size): |
|
yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz" |
|
if total % npz_size != 0: |
|
yield ( |
|
npz_size * (total // npz_size), |
|
f"{folder}/targets-{split}-" |
|
f"{npz_size * (total // npz_size)}-" |
|
f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz", |
|
) |
|
|
|
|
|
class BulkRnaExpressionHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the Bulk RNA Expression task. |
|
""" |
|
|
|
DEFAULT_LENGTH = 100000 |
|
|
|
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs): |
|
""" |
|
Creates a new handler for the Bulk RNA Expression Prediction Task. |
|
Args: |
|
sequence_length: Length of the sequence around the TSS_CAGE start site |
|
|
|
""" |
|
self.reference_genome = None |
|
self.coordinate_csv_file = None |
|
self.labels_csv_file = None |
|
self.sequence_length = sequence_length |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example |
|
includes a genomic sequence and a list of label values. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"sequence": datasets.Value("string"), |
|
|
|
"labels": datasets.Sequence(datasets.Value("float32")), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"position": datasets.Value(dtype="int32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
|
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate |
|
csv file,and label csv file to be saved. |
|
""" |
|
|
|
reference_genome_file = self.download_and_extract_gz( |
|
H19_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
|
|
self.coordinate_csv_file = dl_manager.download_and_extract( |
|
"bulk_rna_expression/gene_coordinates.csv" |
|
) |
|
|
|
self.labels_csv_file = dl_manager.download_and_extract( |
|
"bulk_rna_expression/rna_expression_values.csv" |
|
) |
|
|
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples for the given split, each with a sequence |
|
and the corresponding labels. The sequences are padded to the correct sequence |
|
length and standardized before returning. |
|
""" |
|
coordinates_df = pd.read_csv(self.coordinate_csv_file) |
|
labels_df = pd.read_csv(self.labels_csv_file) |
|
|
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for idx, coordinates_row in coordinates_split_df.iterrows(): |
|
start = coordinates_row[ |
|
"CAGE_representative_TSS"] - 1 |
|
|
|
chromosome = coordinates_row["chrom"] |
|
labels_row = labels_df.loc[idx].values |
|
padded_sequence = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
negative_strand=coordinates_row["strand"] == "-", |
|
) |
|
if padded_sequence: |
|
yield key, { |
|
"labels": labels_row, |
|
"sequence": standardize_sequence(padded_sequence), |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"position": coordinates_row["CAGE_representative_TSS"] |
|
} |
|
key += 1 |
|
|
|
|
|
class VariantEffectCausalEqtl(GenomicLRATaskHandler): |
|
""" |
|
Handler for the Variant Effect Causal eQTL task. |
|
""" |
|
|
|
DEFAULT_LENGTH = 100000 |
|
|
|
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs): |
|
""" |
|
Creates a new handler for the Variant Effect Causal eQTL Task. |
|
Args: |
|
sequence_length: Length of the sequence to pad around the SNP position |
|
|
|
""" |
|
self.reference_genome = None |
|
self.sequence_length = sequence_length |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example |
|
includes a genomic sequence with the reference allele as well as the genomic |
|
sequence with the alternative allele, and a binary label. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"ref_forward_sequence": datasets.Value("string"), |
|
"alt_forward_sequence": datasets.Value("string"), |
|
|
|
"label": datasets.Value(dtype="int8"), |
|
|
|
"tissue": datasets.Value(dtype="string"), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"position": datasets.Value(dtype="int32"), |
|
|
|
"distance_to_nearest_tss": datasets.Value(dtype="int32") |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The variant effect prediction dataset requires the reference hg38 genome and |
|
coordinates_labels_csv_file to be saved. |
|
""" |
|
|
|
|
|
|
|
reference_genome_file = self.download_and_extract_gz( |
|
H38_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
|
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
self.coordinates_labels_csv_file = dl_manager.download_and_extract( |
|
f"variant_effect_causal_eqtl/All_Tissues.csv" |
|
) |
|
|
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples each with ref/alt allele |
|
and corresponding binary label. The sequences are extended to |
|
the desired sequence length and standardized before returning. |
|
""" |
|
|
|
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file) |
|
|
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for idx, row in coordinates_split_df.iterrows(): |
|
start = row["POS"] - 1 |
|
alt_allele = row["ALT"] |
|
label = row["label"] |
|
tissue = row['tissue'] |
|
chromosome = row["CHROM"] |
|
distance = int(row["distance_to_nearest_TSS"]) |
|
|
|
|
|
ref_forward = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
negative_strand=False, |
|
) |
|
|
|
|
|
if ref_forward: |
|
|
|
|
|
alt_forward = list(ref_forward) |
|
alt_forward[self.sequence_length // 2] = alt_allele |
|
alt_forward = "".join(alt_forward) |
|
|
|
yield key, { |
|
"label": label, |
|
"tissue": tissue, |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"ref_forward_sequence": standardize_sequence(ref_forward), |
|
"alt_forward_sequence": standardize_sequence(alt_forward), |
|
"distance_to_nearest_tss": distance, |
|
"position": row["POS"] |
|
} |
|
key += 1 |
|
|
|
|
|
class VariantEffectPathogenicHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the Variant Effect Pathogenic Prediction tasks. |
|
""" |
|
|
|
DEFAULT_LENGTH = 100000 |
|
|
|
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False, |
|
**kwargs): |
|
""" |
|
Creates a new handler for the Variant Effect Pathogenic Tasks. |
|
Args: |
|
sequence_length: Length of the sequence to pad around the SNP position |
|
subset: Whether to return a pre-determined subset of the data. |
|
|
|
""" |
|
self.sequence_length = sequence_length |
|
|
|
if task_name == 'variant_effect_pathogenic_clinvar': |
|
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv" |
|
elif task_name == 'variant_effect_pathogenic_omim': |
|
self.data_file_name = "variant_effect_pathogenic/" \ |
|
"vep_pathogenic_non_coding_subset.csv" \ |
|
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv" |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example |
|
includes a genomic sequence with the reference allele as well as the genomic |
|
sequence with the alternative allele, and a binary label. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"ref_forward_sequence": datasets.Value("string"), |
|
"alt_forward_sequence": datasets.Value("string"), |
|
|
|
"label": datasets.Value(dtype="int8"), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"position": datasets.Value(dtype="int32") |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The variant effect prediction datasets require the reference hg38 genome and |
|
coordinates_labels_csv_file to be saved. |
|
""" |
|
|
|
reference_genome_file = self.download_and_extract_gz( |
|
H38_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
|
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
self.coordinates_labels_csv_file = dl_manager.download_and_extract( |
|
self.data_file_name) |
|
|
|
if 'non_coding' in self.data_file_name: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"handler": self, "split": "test"} |
|
), ] |
|
else: |
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples each with ref/alt allele |
|
and corresponding binary label. The sequences are extended to |
|
the desired sequence length and standardized before returning. |
|
""" |
|
|
|
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file) |
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for idx, row in coordinates_split_df.iterrows(): |
|
start = row["POS"] - 1 |
|
alt_allele = row["ALT"] |
|
label = row["INT_LABEL"] |
|
chromosome = row["CHROM"] |
|
|
|
|
|
ref_forward = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
negative_strand=False, |
|
) |
|
|
|
|
|
if ref_forward: |
|
|
|
|
|
alt_forward = list(ref_forward) |
|
alt_forward[self.sequence_length // 2] = alt_allele |
|
alt_forward = "".join(alt_forward) |
|
|
|
yield key, { |
|
"label": label, |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"ref_forward_sequence": standardize_sequence(ref_forward), |
|
"alt_forward_sequence": standardize_sequence(alt_forward), |
|
"position": row['POS'] |
|
} |
|
key += 1 |
|
|
|
|
|
class ChromatinFeaturesHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the histone marks and DNA accessibility tasks also referred to |
|
collectively as Chromatin features. |
|
""" |
|
|
|
DEFAULT_LENGTH = 100000 |
|
|
|
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False, |
|
**kwargs): |
|
""" |
|
Creates a new handler for the Deep Sea Histone and DNase tasks. |
|
Args: |
|
sequence_length: Length of the sequence around and including the |
|
annotated 200bp bin |
|
subset: Whether to return a pre-determined subset of the entire dataset. |
|
|
|
""" |
|
self.sequence_length = sequence_length |
|
|
|
if sequence_length < 200: |
|
raise ValueError( |
|
'Sequence length for this task must be greater or equal to 200 bp') |
|
|
|
if 'histone' in task_name: |
|
self.label_name = 'HISTONES' |
|
elif 'dna' in task_name: |
|
self.label_name = 'DNASE' |
|
|
|
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \ |
|
subset else "chromatin_features/histones_and_dnase.csv" |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the histone marks and dna accessibility datasets. |
|
Each example includes a genomic sequence and a list of label values. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"sequence": datasets.Value("string"), |
|
|
|
"labels": datasets.Sequence(datasets.Value("int8")), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"position": datasets.Value(dtype="int32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
|
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The histone marks and dna accessibility datasets require the reference hg19 |
|
genome and coordinate csv file to be saved. |
|
""" |
|
reference_genome_file = self.download_and_extract_gz( |
|
H19_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
|
|
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name) |
|
|
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples for the given split, each with a sequence |
|
and the corresponding labels. The sequences are padded to the correct sequence |
|
length and standardized before returning. |
|
""" |
|
coordinates_df = pd.read_csv(self.coordinate_csv_file) |
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for idx, coordinates_row in coordinates_split_df.iterrows(): |
|
start = coordinates_row['POS'] - 1 |
|
chromosome = coordinates_row["CHROM"] |
|
|
|
|
|
labels_row = literal_eval(coordinates_row[self.label_name]) |
|
|
|
padded_sequence = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
) |
|
if padded_sequence: |
|
yield key, { |
|
"labels": labels_row, |
|
"sequence": standardize_sequence(padded_sequence), |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"position": coordinates_row['POS'] |
|
} |
|
key += 1 |
|
|
|
|
|
class RegulatoryElementHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the Regulatory Element Prediction tasks. |
|
""" |
|
DEFAULT_LENGTH = 100000 |
|
|
|
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False, |
|
**kwargs): |
|
""" |
|
Creates a new handler for the Regulatory Element Prediction tasks. |
|
Args: |
|
sequence_length: Length of the sequence around the element/non-element |
|
subset: Whether to return a pre-determined subset of the entire dataset. |
|
|
|
""" |
|
|
|
if sequence_length < 200: |
|
raise ValueError( |
|
'Sequence length for this task must be greater or equal to 200 bp') |
|
|
|
self.sequence_length = sequence_length |
|
|
|
if 'promoter' in task_name: |
|
self.data_file_name = 'regulatory_elements/promoter_dataset' |
|
|
|
elif 'enhancer' in task_name: |
|
self.data_file_name = 'regulatory_elements/enhancer_dataset' |
|
|
|
if subset: |
|
self.data_file_name += '_subset.csv' |
|
else: |
|
self.data_file_name += '.csv' |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the Regulatory Element Prediction Tasks. |
|
Each example includes a genomic sequence and a label. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"sequence": datasets.Value("string"), |
|
|
|
|
|
"labels": datasets.Value("int8"), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
|
|
"start": datasets.Value(dtype="int32"), |
|
|
|
"stop": datasets.Value(dtype="int32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
|
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
""" |
|
reference_genome_file = self.download_and_extract_gz( |
|
H38_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
|
|
self.coordinate_csv_file = dl_manager.download_and_extract( |
|
self.data_file_name |
|
) |
|
|
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples for the given split, each with a sequence |
|
and the corresponding label. The sequences are padded to the correct sequence |
|
length and standardized before returning. |
|
""" |
|
coordinates_df = pd.read_csv(self.coordinate_csv_file) |
|
|
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for _, coordinates_row in coordinates_split_df.iterrows(): |
|
start = coordinates_row["START"] - 1 |
|
end = coordinates_row["STOP"] - 1 |
|
chromosome = coordinates_row["CHROM"] |
|
|
|
label = coordinates_row['label'] |
|
|
|
padded_sequence = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
end=end, |
|
sequence_length=self.sequence_length, |
|
) |
|
|
|
if padded_sequence: |
|
yield key, { |
|
"labels": label, |
|
"sequence": standardize_sequence(padded_sequence), |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"start": coordinates_row["START"], |
|
"stop": coordinates_row["STOP"] |
|
} |
|
key += 1 |
|
|
|
|
|
""" |
|
---------------------------------------------------------------------------------------- |
|
Dataset loader: |
|
---------------------------------------------------------------------------------------- |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Dataset for benchmark of genomic deep learning models. |
|
""" |
|
|
|
_TASK_HANDLERS = { |
|
"cage_prediction": CagePredictionHandler, |
|
"bulk_rna_expression": BulkRnaExpressionHandler, |
|
"variant_effect_causal_eqtl": VariantEffectCausalEqtl, |
|
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler, |
|
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler, |
|
"chromatin_features_histone_marks": ChromatinFeaturesHandler, |
|
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler, |
|
"regulatory_element_promoter": RegulatoryElementHandler, |
|
"regulatory_element_enhancer": RegulatoryElementHandler, |
|
} |
|
|
|
|
|
|
|
class GenomicsLRAConfig(datasets.BuilderConfig): |
|
""" |
|
BuilderConfig. |
|
""" |
|
|
|
def __init__(self, *args, task_name: str, **kwargs): |
|
"""BuilderConfig for the location tasks dataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__() |
|
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs) |
|
|
|
|
|
|
|
class GenomicsLRATasks(datasets.GeneratorBasedBuilder): |
|
""" |
|
Tasks to annotate human genome. |
|
""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = GenomicsLRAConfig |
|
|
|
def _info(self) -> DatasetInfo: |
|
return self.config.handler.get_info(description=_DESCRIPTION) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads data files and organizes it into train/test/val splits |
|
""" |
|
return self.config.handler.split_generators(dl_manager, self._cache_dir_root) |
|
|
|
def _generate_examples(self, handler, split): |
|
""" |
|
Read data files and create examples(yield) |
|
Args: |
|
handler: The handler for the current task |
|
split: A string in ['train', 'test', 'valid'] |
|
""" |
|
yield from handler.generate_examples(split) |
|
|
|
|
|
""" |
|
---------------------------------------------------------------------------------------- |
|
Global Utils: |
|
---------------------------------------------------------------------------------------- |
|
""" |
|
|
|
|
|
def standardize_sequence(sequence: str): |
|
""" |
|
Standardizes the sequence by replacing all unknown characters with N and |
|
converting to all uppercase. |
|
Args: |
|
sequence: genomic sequence to standardize |
|
""" |
|
pattern = "[^ATCG]" |
|
|
|
sequence = sequence.upper() |
|
|
|
sequence = re.sub(pattern, "N", sequence) |
|
return sequence |
|
|
|
|
|
def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False): |
|
""" |
|
Extends a given sequence to length sequence_length. If |
|
padding to the given length is outside the gene, returns |
|
None. |
|
Args: |
|
chromosome: Chromosome from pyfaidx extracted Fasta. |
|
start: Start index of original sequence. |
|
sequence_length: Desired sequence length. If sequence length is odd, the |
|
remainder is added to the end of the sequence. |
|
end: End index of original sequence. If no end is specified, it creates a |
|
centered sequence around the start index. |
|
negative_strand: If negative_strand, returns the reverse compliment of the |
|
sequence |
|
""" |
|
if end: |
|
pad = (sequence_length - (end - start)) // 2 |
|
start = start - pad |
|
end = end + pad + (sequence_length % 2) |
|
else: |
|
pad = sequence_length // 2 |
|
end = start + pad + (sequence_length % 2) |
|
start = start - pad |
|
|
|
if start < 0 or end >= len(chromosome): |
|
return |
|
if negative_strand: |
|
return chromosome[start:end].reverse.complement.seq |
|
return chromosome[start:end].seq |