add _new_datasets (#2)
Browse files- git lfs track new datasets (6f33aef1b1084c2f366ab6fcde05c403511f1ab5)
- add new datasets (e5de966305a3236ebc83263aa73141d98a23209e)
- refactor vep causal eqtl name (fb5e83ea8c8da8784c60c3466547b6947f473443)
- refactor folder name (0e903895e3f050c79d2d7ac3844a2d7e17781219)
- update files to be lfs tracked (98eadaf1a715eed8381c32f3c30e9a5d6899c7f8)
- update main loader script for new datasets (ca412e99e53c186014c69a30e05756f35c4d4024)
- fix file path for causal eqtl data (561af90663da0da6aaee642622e0b661744e742a)
- fix file names for pathogenic datasets (cc38ba3856a08d6401eeff1a36fe5b8dafc1cfe1)
- fix label naming chromatin features (461969927800e16441b1362f60613ed4cb74f12f)
- fix cage file path naming (07eece405aaeb544ff18813d84f9374152352ea8)
- update loading script (1575e22e185371f31365424ed36ba54a547910ff)
- update readme for additional datasets (46d85ff2b9ed6819b26d06fc35d9651d60e51abc)
- update README (66099dcefd0a4c704f334718dafb33c23fefbf74)
- update the return values for cage and regulatory elements (634eabc0c55af9cfa443b4caea908949a20514e3)
- update readme for return values (2f79d04a93ddddeae89b3ad72c9f6c47fc8b5549)
- update the return values for cage (4504d2df698616dd2ed3f3300b7925e6c3036152)
- missing punctuation (ea6154d266f23abce923a09961af9cdc2164e41b)
- .gitattributes +10 -0
- README.md +215 -57
- chromatin_features/histones_and_dnase.csv +3 -0
- chromatin_features/histones_and_dnase_subset.csv +3 -0
- genomics-long-range-benchmark.py +422 -56
- regulatory_elements/enhancer_dataset.csv +3 -0
- regulatory_elements/enhancer_dataset_subset.csv +3 -0
- regulatory_elements/promoter_dataset.csv +3 -0
- regulatory_elements/promoter_dataset_subset.csv +3 -0
- variant_effect_causal_eqtl/All_Tissues.csv +3 -0
- variant_effect_gene_expression/All_Tissues.csv +0 -0
- variant_effect_pathogenic/vep_pathogenic_coding.csv +3 -0
- variant_effect_pathogenic/vep_pathogenic_non_coding.csv +3 -0
- variant_effect_pathogenic/vep_pathogenic_non_coding_subset.csv +3 -0
@@ -54,3 +54,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
rna_expression_values.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
rna_expression_values.csv filter=lfs diff=lfs merge=lfs -text
|
57 |
+
chromatin_features/histones_and_dnase_subset.csv filter=lfs diff=lfs merge=lfs -text
|
58 |
+
chromatin_features/histones_and_dnase.csv filter=lfs diff=lfs merge=lfs -text
|
59 |
+
regulatory_elements/enhancer_dataset.csv filter=lfs diff=lfs merge=lfs -text
|
60 |
+
regulatory_elements/enhancer_dataset_subset.csv filter=lfs diff=lfs merge=lfs -text
|
61 |
+
regulatory_elements/promoter_dataset.csv filter=lfs diff=lfs merge=lfs -text
|
62 |
+
regulatory_elements/promoter_dataset_subset.csv filter=lfs diff=lfs merge=lfs -text
|
63 |
+
variant_effect_pathogenic/vep_pathogenic_coding.csv filter=lfs diff=lfs merge=lfs -text
|
64 |
+
variant_effect_pathogenic/vep_pathogenic_non_coding.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
+
variant_effect_pathogenic/vep_pathogenic_non_coding_subset.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
+
variant_effect_causal_eqtl/All_Tissues.csv filter=lfs diff=lfs merge=lfs -text
|
@@ -3,30 +3,40 @@ license: cc-by-nc-sa-4.0
|
|
3 |
language:
|
4 |
- en
|
5 |
tags:
|
6 |
-
-
|
7 |
-
-
|
8 |
-
|
|
|
|
|
9 |
viewer: false
|
10 |
---
|
11 |
|
12 |
## Summary
|
13 |
-
The motivation of the genomics long
|
|
|
14 |
While serving as a strong basis of evaluation, the benchmark must also be efficient and user-friendly.
|
15 |
To achieve this we strike a balance between task complexity and computational cost through strategic decisions, such as down-sampling or combining datasets.
|
16 |
|
17 |
-
##
|
18 |
-
The Genomics LRB is a collection of tasks which can be loaded by passing in the
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
*Note that as you increase the context length to very large numbers you may start to reduce the size of the dataset since a large context size may
|
22 |
cause indexing outside the boundaries of chromosomes.
|
23 |
|
24 |
-
|
|
25 |
-
|
26 |
-
|
|
27 |
-
|
|
28 |
-
| Variant Effect
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Usage Example
|
32 |
```python
|
@@ -35,8 +45,13 @@ from datasets import load_dataset
|
|
35 |
# Use this parameter to download sequences of arbitrary length (see docs below for edge cases)
|
36 |
sequence_length=2048
|
37 |
|
38 |
-
# One of
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
dataset = load_dataset(
|
42 |
"InstaDeepAI/genomics-long-range-benchmark",
|
@@ -46,20 +61,128 @@ dataset = load_dataset(
|
|
46 |
|
47 |
```
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
#### Source
|
57 |
-
Original CAGE data comes from FANTOM5. We used processed labeled data obtained from
|
|
|
|
|
58 |
Sequence data originates from the GRCh38 genome assembly.
|
59 |
|
60 |
#### Data Processing
|
61 |
The original dataset from the Basenji paper includes labels for 638 CAGE total tracks over 896 bins (each bin corresponding to 128 base pairs)
|
62 |
-
totaling over ~70 GB. In the interest of dataset size and user
|
|
|
63 |
From the 638 CAGE tracks, 50 of these tracks are selected with the following criteria:
|
64 |
|
65 |
1. Only select one cell line
|
@@ -67,6 +190,7 @@ From the 638 CAGE tracks, 50 of these tracks are selected with the following cri
|
|
67 |
3. Only select one donor
|
68 |
|
69 |
The [896 bins, 50 tracks] labels total in at ~7 GB. A description of the 50 included CAGE tracks can be found here `cage_prediction/label_mapping.csv`.
|
|
|
70 |
|
71 |
#### Task Structure
|
72 |
|
@@ -75,7 +199,7 @@ Because this task involves predicting expression levels for 128bp bins and there
|
|
75 |
you request a sequence length smaller than 114,688 bps than the labels will be subsetted.
|
76 |
|
77 |
Task Args:<br>
|
78 |
-
`sequence_length`: an
|
79 |
|
80 |
Input: a genomic nucleotide sequence<br>
|
81 |
Output: a variable length vector depending on the requested sequence length [requested_sequence_length / 128, 50]
|
@@ -84,30 +208,36 @@ Output: a variable length vector depending on the requested sequence length [req
|
|
84 |
Train/Test splits were maintained from Basenji and Enformer where randomly sampling was used to generate the splits. Note that for this dataset a validation set is also returned. In practice we merged the validation
|
85 |
set with the train set and use cross validation to select a new train and validation set from this combined set.
|
86 |
|
87 |
-
#### Metrics
|
88 |
-
Mean Pearson correlation across tracks - compute Pearson correlation for a track using all positions for all genes in the test set, then mean over all tracks <br>
|
89 |
-
Mean Pearson correlation across genes - compute Pearson correlation for a gene using all positions and all tracks, then mean over all genes in the test set <br>
|
90 |
-
R<sup>2</sup>
|
91 |
-
|
92 |
|
93 |
---
|
94 |
|
95 |
-
###
|
96 |
-
|
|
|
|
|
97 |
|
98 |
#### Source
|
99 |
Original data comes from GTEx. We use processed data files from the [ExPecto paper](https://www.nature.com/articles/s41588-018-0160-6) found
|
100 |
[here](https://github.com/FunctionLab/ExPecto/tree/master/resources). Sequence data originates from the GRCh37/hg19 genome assembly.
|
101 |
|
102 |
#### Data Processing
|
103 |
-
The
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
#### Task Structure
|
106 |
|
107 |
Type: Multi-variable regression<br>
|
108 |
|
109 |
Task Args:<br>
|
110 |
-
`sequence_length`: an
|
111 |
|
112 |
Input: a genomic nucleotide sequence centered around the CAGE representative trancription start site<br>
|
113 |
Output: a 218 length vector of continuous values corresponding to the bulk RNA expression levels in 218 different tissue types
|
@@ -116,42 +246,70 @@ Output: a 218 length vector of continuous values corresponding to the bulk RNA e
|
|
116 |
Train: chromosomes 1-7,9-22,X,Y<br>
|
117 |
Test: chromosome 8
|
118 |
|
119 |
-
#### Metrics
|
120 |
-
Mean Spearman correlation across tissues <br>
|
121 |
-
Mean Spearman correlation across genes <br>
|
122 |
-
R<sup>2</sup>
|
123 |
-
|
124 |
---
|
125 |
-
|
126 |
-
|
127 |
-
In genomics, a key objective is to predict how genetic variants affect gene expression in specific cell types.
|
128 |
|
129 |
#### Source
|
130 |
-
Original data comes from
|
131 |
-
Sequence data originates from the
|
132 |
|
133 |
#### Data Processing
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
|
140 |
#### Task Structure
|
141 |
|
142 |
-
Type:
|
143 |
|
144 |
Task Args:<br>
|
145 |
-
`sequence_length`: an
|
|
|
146 |
|
147 |
-
Input: a genomic nucleotide sequence centered on the
|
148 |
-
Output: a
|
149 |
|
150 |
#### Splits
|
151 |
-
Train: chromosomes 1-
|
152 |
-
Test: chromosomes 9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
####
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
language:
|
4 |
- en
|
5 |
tags:
|
6 |
+
- Genomics
|
7 |
+
- Benchmarks
|
8 |
+
- Language Models
|
9 |
+
- DNA
|
10 |
+
pretty_name: Genomics Long-Range Benchmark
|
11 |
viewer: false
|
12 |
---
|
13 |
|
14 |
## Summary
|
15 |
+
The motivation of the genomics long-range benchmark (LRB) is to compile a set of
|
16 |
+
biologically relevant genomic tasks requiring long-range dependencies which will act as a robust evaluation tool for genomic language models.
|
17 |
While serving as a strong basis of evaluation, the benchmark must also be efficient and user-friendly.
|
18 |
To achieve this we strike a balance between task complexity and computational cost through strategic decisions, such as down-sampling or combining datasets.
|
19 |
|
20 |
+
## Benchmark Tasks
|
21 |
+
The Genomics LRB is a collection of nine tasks which can be loaded by passing in the
|
22 |
+
corresponding `task_name` into the `load_dataset` function. All of the following datasets
|
23 |
+
allow the user to specify an arbitrarily long sequence length, giving more context
|
24 |
+
to the task, by passing the `sequence_length` kwarg to `load_dataset`. Additional task
|
25 |
+
specific kwargs, if applicable, are mentioned in the sections below.<br>
|
26 |
*Note that as you increase the context length to very large numbers you may start to reduce the size of the dataset since a large context size may
|
27 |
cause indexing outside the boundaries of chromosomes.
|
28 |
|
29 |
+
| Task | `task_name` | Sample Output | ML Task Type | # Outputs | # Train Seqs | # Test Seqs | Data Source |
|
30 |
+
|-------|-------------|-------------------------------------------------------------------------------------------|-------------------------|-------------|--------------|----------- |----------- |
|
31 |
+
| Variant Effect Causal eQTL | `variant_effect_causal_eqtl` | {ref sequence, alt sequence, label, tissue, chromosome,position, distance to nearest TSS} | SNP Classification | 1 | 88717 | 8846 | GTEx (via [Enformer](https://www.nature.com/articles/s41592-021-01252-x)) |
|
32 |
+
| Variant Effect Pathogenic ClinVar | `variant_effect_pathogenic_clinvar` | {ref sequence, alt sequence, label, chromosome, position} | SNP Classification | 1 | 38634 | 1018 | ClinVar, gnomAD (via [GPN-MSA](https://www.biorxiv.org/content/10.1101/2023.10.10.561776v1)) |
|
33 |
+
| Variant Effect Pathogenic OMIM | `variant_effect_pathogenic_omim` | {ref sequence, alt sequence, label,chromosome, position} | SNP Classification | 1 | - | 2321473 |OMIM, gnomAD (via [GPN-MSA](https://www.biorxiv.org/content/10.1101/2023.10.10.561776v1)) |
|
34 |
+
| CAGE Prediction | `cage_prediction` | {sequence, labels, chromosome,label_start_position,label_stop_position} | Binned Regression | 50 per bin | 33891 | 1922 | FANTOM5 (via [Basenji](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008050)) |
|
35 |
+
| Bulk RNA Expression | `bulk_rna_expression` | {sequence, labels, chromosome,position} | Seq-wise Regression | 218 | 22827 | 990 | GTEx, FANTOM5 (via [ExPecto](https://www.nature.com/articles/s41588-018-0160-6)) |
|
36 |
+
| Chromatin Features Histone_Marks | `chromatin_features_histone_marks` | {sequence, labels,chromosome, position, label_start_position,label_stop_position} | Seq-wise Classification | 20 | 2203689 | 227456 | ENCODE, Roadmap Epigenomics (via [DeepSea](https://pubmed.ncbi.nlm.nih.gov/30013180/) |
|
37 |
+
| Chromatin Features DNA_Accessibility | `chromatin_features_dna_accessibility` | {sequence, labels,chromosome, position, label_start_position,label_stop_position} | Seq-wise Classification | 20 | 2203689 | 227456 | ENCODE, Roadmap Epigenomics (via [DeepSea](https://pubmed.ncbi.nlm.nih.gov/30013180/)) |
|
38 |
+
| Regulatory Elements Promoter | `regulatory_element_promoter` | {sequence, label,chromosome, start, stop, label_start_position,label_stop_position} | Seq-wise Classification | 1| 953376 | 96240 | SCREEN |
|
39 |
+
| Regulatory Elements Enhancer | `regulatory_element_enhancer` | {sequence, label,chromosome, start, stop, label_start_position,label_stop_position} | Seq-wise Classification | 1| 1914575 | 192201 | SCREEN |
|
40 |
|
41 |
## Usage Example
|
42 |
```python
|
|
|
45 |
# Use this parameter to download sequences of arbitrary length (see docs below for edge cases)
|
46 |
sequence_length=2048
|
47 |
|
48 |
+
# One of:
|
49 |
+
# ["variant_effect_causal_eqtl","variant_effect_pathogenic_clinvar",
|
50 |
+
# "variant_effect_pathogenic_omim","cage_prediction", "bulk_rna_expression",
|
51 |
+
# "chromatin_features_histone_marks","chromatin_features_dna_accessibility",
|
52 |
+
# "regulatory_element_promoter","regulatory_element_enhancer"]
|
53 |
+
|
54 |
+
task_name = "variant_effect_causal_eqtl"
|
55 |
|
56 |
dataset = load_dataset(
|
57 |
"InstaDeepAI/genomics-long-range-benchmark",
|
|
|
61 |
|
62 |
```
|
63 |
|
64 |
+
### 1. Variant Effect Causal eQTL
|
65 |
+
Predicting the effects of genetic variants, particularly expression quantitative trait loci (eQTLs), is essential for understanding the molecular basis of several diseases.
|
66 |
+
eQTLs are genomic loci that are associated with variations in mRNA expression levels among individuals.
|
67 |
+
By linking genetic variants to causal changes in mRNA expression, researchers can
|
68 |
+
uncover how certain variants contribute to disease development.
|
69 |
+
|
70 |
+
#### Source
|
71 |
+
Original data comes from GTEx. Processed data in the form of vcf files for positive
|
72 |
+
and negative variants across 49 different tissue types were obtained from the
|
73 |
+
[Enformer paper](https://www.nature.com/articles/s41592-021-01252-x) located [here](https://console.cloud.google.com/storage/browser/dm-enformer/data/gtex_fine/vcf?pageState=%28%22StorageObjectListTable%22:%28%22f%22:%22%255B%255D%22%29%29&prefix=&forceOnObjectsSortingFiltering=false).
|
74 |
+
Sequence data originates from the GRCh38 genome assembly.
|
75 |
+
|
76 |
+
#### Data Processing
|
77 |
+
Fine-mapped GTEx eQTLs originate from [Wang et al](https://www.nature.com/articles/s41467-021-23134-8), while the negative matched set of
|
78 |
+
variants comes from [Avsec et al](https://www.nature.com/articles/s41592-021-01252-x)
|
79 |
+
. The statistical fine-mapping tool SuSiE was used to label variants.
|
80 |
+
Variants from the fine-mapped eQTL set were selected and given positive labels if
|
81 |
+
their posterior inclusion probability was > 0.9,
|
82 |
+
as assigned by SuSiE. Variants from the matched negative set were given negative labels if their
|
83 |
+
posterior inclusion probability was < 0.01.
|
84 |
+
|
85 |
+
#### Task Structure
|
86 |
+
|
87 |
+
Type: Binary classification<br>
|
88 |
+
|
89 |
+
Task Args:<br>
|
90 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
91 |
+
|
92 |
+
Input: a genomic nucleotide sequence centered on the SNP with the reference allele at the SNP location, a genomic nucleotide sequence centered on the SNP with the alternative allele at the SNP location, and tissue type<br>
|
93 |
+
Output: a binary value referring to whether the variant has a causal effect on gene
|
94 |
+
expression
|
95 |
+
|
96 |
+
#### Splits
|
97 |
+
Train: chromosomes 1-8, 11-22, X, Y<br>
|
98 |
+
Test: chromosomes 9,10
|
99 |
+
|
100 |
+
---
|
101 |
+
|
102 |
+
### 2. Variant Effect Pathogenic ClinVar
|
103 |
+
A coding variant refers to a genetic alteration that occurs within the protein-coding regions of the genome, also known as exons.
|
104 |
+
Such alterations can impact protein structure, function, stability, and interactions
|
105 |
+
with other molecules, ultimately influencing cellular processes and potentially contributing to the development of genetic diseases.
|
106 |
+
Predicting variant pathogenicity is crucial for guiding research into disease mechanisms and personalized treatment strategies, enhancing our ability to understand and manage genetic disorders effectively.
|
107 |
+
|
108 |
+
#### Source
|
109 |
+
Original data comes from ClinVar and gnomAD. However, we use processed data files
|
110 |
+
from the [GPN-MSA paper](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592768/)
|
111 |
+
located [here](https://huggingface.co/datasets/songlab/human_variants/blob/main/test.parquet).
|
112 |
+
Sequence data originates from the GRCh38 genome assembly.
|
113 |
+
|
114 |
+
#### Data Processing
|
115 |
+
Positive labels correspond to pathogenic variants originating from ClinVar whose review status was
|
116 |
+
described as having at least a single submitted record with a classification but without assertion criteria.
|
117 |
+
The negative set are variants that are defined as common from gnomAD. gnomAD version 3.1.2 was downloaded and filtered to variants with allele number of at least 25,000. Common
|
118 |
+
variants were defined as those with MAF > 5%.
|
119 |
+
|
120 |
+
#### Task Structure
|
121 |
+
|
122 |
+
Type: Binary classification<br>
|
123 |
+
|
124 |
+
Task Args:<br>
|
125 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
126 |
+
|
127 |
+
Input: a genomic nucleotide sequence centered on the SNP with the reference allele at the SNP location, a genomic nucleotide sequence centered on the SNP with the alternative allele at the SNP location<br>
|
128 |
+
Output: a binary value referring to whether the variant is pathogenic or not
|
129 |
+
|
130 |
+
#### Splits
|
131 |
+
Train: chromosomes 1-7, 9-22, X, Y<br>
|
132 |
+
Test: chromosomes 8
|
133 |
+
|
134 |
+
---
|
135 |
+
|
136 |
+
### 3. Variant Effect Pathogenic OMIM
|
137 |
+
Predicting the effects of regulatory variants on pathogenicity is crucial for understanding disease mechanisms.
|
138 |
+
Elements that regulate gene expression are often located in non-coding regions, and variants in these areas can disrupt normal cellular function, leading to disease.
|
139 |
+
Accurate predictions can identify biomarkers and therapeutic targets, enhancing personalized medicine and genetic risk assessment.
|
140 |
+
|
141 |
+
#### Source
|
142 |
+
Original data comes from the Online Mendelian Inheritance in Man (OMIM) and gnomAD
|
143 |
+
databases.
|
144 |
+
However, we use processed data files from the
|
145 |
+
[GPN-MSA paper](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592768/) located [here](
|
146 |
+
https://huggingface.co/datasets/songlab/omim/blob/main/test.parquet).
|
147 |
+
Sequence data originates from the GRCh38 genome assembly.
|
148 |
+
|
149 |
+
#### Data Processing
|
150 |
+
Positive labeled data originates from a curated set of pathogenic variants located
|
151 |
+
in the Online Mendelian Inheritance in Man (OMIM) catalog. The negative set is
|
152 |
+
composed of variants that are defined as common from gnomAD. gnomAD version 3.1.2 was downloaded and filtered to variants with
|
153 |
+
allele number of at least 25,000. Common variants were defined as those with minor allele frequency
|
154 |
+
(MAF) > 5%.
|
155 |
|
156 |
+
#### Task Structure
|
157 |
|
158 |
+
Type: Binary classification<br>
|
159 |
+
|
160 |
+
Task Args:<br>
|
161 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
162 |
+
`subset`: a boolean type, whether to use the full dataset or a subset of the dataset (we provide this option as the full dataset has millions of samples)
|
163 |
+
|
164 |
+
Input: a genomic nucleotide sequence centered on the SNP with the reference allele at the SNP location, a genomic nucleotide sequence centered on the SNP with the alternative allele at the SNP location<br>
|
165 |
+
Output: a binary value referring to whether the variant is pathogenic or not
|
166 |
+
|
167 |
+
#### Splits
|
168 |
+
Test: all chromosomes
|
169 |
+
|
170 |
+
---
|
171 |
+
|
172 |
+
### 4. CAGE Prediction
|
173 |
+
CAGE provides accurate high-throughput measurements of RNA expression by mapping TSSs at a nucleotide-level resolution.
|
174 |
+
This is vital for detailed mapping of TSSs, understanding gene regulation mechanisms, and obtaining quantitative expression data to study gene activity comprehensively.
|
175 |
|
176 |
#### Source
|
177 |
+
Original CAGE data comes from FANTOM5. We used processed labeled data obtained from
|
178 |
+
the [Basenji paper](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932613/) which
|
179 |
+
also used to train Enformer and is located [here](https://console.cloud.google.com/storage/browser/basenji_barnyard/data/human?pageState=%28%22StorageObjectListTable%22:%28%22f%22:%22%255B%255D%22%29%29&prefix=&forceOnObjectsSortingFiltering=false).
|
180 |
Sequence data originates from the GRCh38 genome assembly.
|
181 |
|
182 |
#### Data Processing
|
183 |
The original dataset from the Basenji paper includes labels for 638 CAGE total tracks over 896 bins (each bin corresponding to 128 base pairs)
|
184 |
+
totaling over ~70 GB. In the interest of dataset size and user-friendliness, only a
|
185 |
+
subset of the labels are selected.
|
186 |
From the 638 CAGE tracks, 50 of these tracks are selected with the following criteria:
|
187 |
|
188 |
1. Only select one cell line
|
|
|
190 |
3. Only select one donor
|
191 |
|
192 |
The [896 bins, 50 tracks] labels total in at ~7 GB. A description of the 50 included CAGE tracks can be found here `cage_prediction/label_mapping.csv`.
|
193 |
+
*Note the data in this repository for this task has not already been log(1+x) normalized.
|
194 |
|
195 |
#### Task Structure
|
196 |
|
|
|
199 |
you request a sequence length smaller than 114,688 bps than the labels will be subsetted.
|
200 |
|
201 |
Task Args:<br>
|
202 |
+
`sequence_length`: an integer type, the desired final sequence length, *must be a multiple of 128 given the binned nature of labels<br>
|
203 |
|
204 |
Input: a genomic nucleotide sequence<br>
|
205 |
Output: a variable length vector depending on the requested sequence length [requested_sequence_length / 128, 50]
|
|
|
208 |
Train/Test splits were maintained from Basenji and Enformer where randomly sampling was used to generate the splits. Note that for this dataset a validation set is also returned. In practice we merged the validation
|
209 |
set with the train set and use cross validation to select a new train and validation set from this combined set.
|
210 |
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
---
|
213 |
|
214 |
+
### 5. Bulk RNA Expression
|
215 |
+
Gene expression involves the process by which information encoded in a gene directs the synthesis of a functional gene product, typically a protein, through transcription and translation.
|
216 |
+
Transcriptional regulation determines the amount of mRNA produced, which is then translated into proteins. Developing a model that can predict RNA expression levels solely from sequence
|
217 |
+
data is crucial for advancing our understanding of gene regulation, elucidating disease mechanisms, and identifying functional sequence variants.
|
218 |
|
219 |
#### Source
|
220 |
Original data comes from GTEx. We use processed data files from the [ExPecto paper](https://www.nature.com/articles/s41588-018-0160-6) found
|
221 |
[here](https://github.com/FunctionLab/ExPecto/tree/master/resources). Sequence data originates from the GRCh37/hg19 genome assembly.
|
222 |
|
223 |
#### Data Processing
|
224 |
+
The authors of ExPecto determined representative TSS for Pol II transcribed genes
|
225 |
+
based on quantification of CAGE reads from the FANTOM5 project. The specific procedure they used is as
|
226 |
+
follows, a CAGE peak was associated to a GENCODE gene if it was withing 1000 bps from a
|
227 |
+
GENCODE v24 annotated TSS. The most abundant CAGE peak for each gene was then selected
|
228 |
+
as the representative TSS. When no CAGE peak could be assigned to a gene, the annotated gene
|
229 |
+
start position was used as the representative TSS. We log(1 + x) normalized then standardized the
|
230 |
+
RNA-seq counts before training models. A list of names of tissues corresponding to
|
231 |
+
the labels can be found here: `bulk_rna_expression/label_mapping.csv`. *Note the
|
232 |
+
data in this repository for this task has already been log(1+x) normalized and
|
233 |
+
standardized to mean 0 and unit variance.
|
234 |
|
235 |
#### Task Structure
|
236 |
|
237 |
Type: Multi-variable regression<br>
|
238 |
|
239 |
Task Args:<br>
|
240 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
241 |
|
242 |
Input: a genomic nucleotide sequence centered around the CAGE representative trancription start site<br>
|
243 |
Output: a 218 length vector of continuous values corresponding to the bulk RNA expression levels in 218 different tissue types
|
|
|
246 |
Train: chromosomes 1-7,9-22,X,Y<br>
|
247 |
Test: chromosome 8
|
248 |
|
|
|
|
|
|
|
|
|
|
|
249 |
---
|
250 |
+
### 6. Chromatin Features
|
251 |
+
Predicting chromatin features, such as histone marks and DNA accessibility, is crucial for understanding gene regulation, as these features indicate chromatin state and are essential for transcription activation.
|
|
|
252 |
|
253 |
#### Source
|
254 |
+
Original data used to generate labels for histone marks and DNase profiles comes from the ENCODE and Roadmap Epigenomics project. We used processed data files from the [Deep Sea paper](https://www.nature.com/articles/nmeth.3547) to build this dataset.
|
255 |
+
Sequence data originates from the GRCh37/hg19 genome assembly.
|
256 |
|
257 |
#### Data Processing
|
258 |
+
The authors of DeepSea processed the data by chunking the human genome
|
259 |
+
into 200 bp bins where for each bin labels were determined for hundreds of different chromatin
|
260 |
+
features. Only bins with at least one transcription factor binding event were
|
261 |
+
considered for the dataset. If the bin overlapped with a peak region of the specific
|
262 |
+
chromatin profile by more than half of the
|
263 |
+
sequence, a positive label was assigned. DNA sequences were obtained from the human reference
|
264 |
+
genome assembly GRCh37. To make the dataset more accessible, we randomly sub-sampled the
|
265 |
+
chromatin profiles from 125 to 20 tracks for the histones dataset and from 104 to 20 tracks for the
|
266 |
+
DNA accessibility dataset.
|
267 |
|
268 |
#### Task Structure
|
269 |
|
270 |
+
Type: Multi-label binary classification
|
271 |
|
272 |
Task Args:<br>
|
273 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
274 |
+
`subset`: a boolean type, whether to use the full dataset or a subset of the dataset (we provide this option as the full dataset has millions of samples)
|
275 |
|
276 |
+
Input: a genomic nucleotide sequence centered on the 200 base pair bin that is associated with the labels<br>
|
277 |
+
Output: a vector of length 20 with binary entries
|
278 |
|
279 |
#### Splits
|
280 |
+
Train set: chromosomes 1-7,10-22<br>
|
281 |
+
Test set: chromosomes 8,9
|
282 |
+
|
283 |
+
---
|
284 |
+
### 7. Regulatory Elements
|
285 |
+
Cis-regulatory elements, such as promoters and enhancers, control the spatial and temporal expression of genes.
|
286 |
+
These elements are essential for understanding gene regulation mechanisms and how genetic variations can lead to differences in gene expression.
|
287 |
+
|
288 |
+
#### Source
|
289 |
+
Original data annotations to build labels came from the Search Candidate cis-Regulatory Elements by ENCODE project. Sequence data originates from the GRCh38
|
290 |
+
genome assembly.
|
291 |
|
292 |
+
#### Data Processing
|
293 |
+
The data is processed as follows, we break the human
|
294 |
+
reference genome into 200 bp non-overlapping chunks. If the 200 bp chunk overlaps by at least 50%
|
295 |
+
or more with a contiguous region from the set of annotated cis-regulatory elements (promoters or
|
296 |
+
enhancers), we label them as positive, else the chunk is labeled as negative. The resulting dataset
|
297 |
+
was composed of ∼15M negative samples and ∼50k positive promoter samples and ∼1M positive
|
298 |
+
enhancer samples. We randomly sub-sampled the negative set to 1M samples, and kept
|
299 |
+
all positive
|
300 |
+
samples, to make this dataset more manageable in size.
|
301 |
+
|
302 |
+
#### Task Structure
|
303 |
+
|
304 |
+
Type: Binary classification
|
305 |
+
|
306 |
+
Task Args:<br>
|
307 |
+
`sequence_length`: an integer type, the desired final sequence length<br>
|
308 |
+
`subset`: a boolean type, whether to use the full dataset or a subset of the dataset (we provide this option as the full dataset has millions of samples)
|
309 |
+
|
310 |
+
Input: a genomic nucleotide sequence centered on the 200 base pair bin that is associated with the label<br>
|
311 |
+
Output: a single binary value
|
312 |
+
|
313 |
+
#### Splits
|
314 |
+
Train set: chromosomes 1-7,10-22<br>
|
315 |
+
Test set: chromosomes 8,9
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6cc04691aca70c876018f15463ba697ddd790af8acda7bbdf14417a3032d153
|
3 |
+
size 356382794
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5a63d4067cd0f1da65aecb6b1ed0a2e1beb19a104f61bfc06ca401b0c14dc14
|
3 |
+
size 47732536
|
@@ -14,14 +14,12 @@ import pandas as pd
|
|
14 |
from datasets import DatasetInfo
|
15 |
from pyfaidx import Fasta
|
16 |
from abc import ABC, abstractmethod
|
17 |
-
|
18 |
-
from Bio import SeqIO
|
19 |
-
import pysam
|
20 |
|
21 |
"""
|
22 |
-
|
23 |
Reference Genome URLS:
|
24 |
-
|
25 |
"""
|
26 |
H38_REFERENCE_GENOME_URL = (
|
27 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
@@ -31,9 +29,9 @@ H19_REFERENCE_GENOME_URL = (
|
|
31 |
)
|
32 |
|
33 |
"""
|
34 |
-
|
35 |
Task Specific Handlers:
|
36 |
-
|
37 |
"""
|
38 |
|
39 |
class GenomicLRATaskHandler(ABC):
|
@@ -97,8 +95,8 @@ class GenomicLRATaskHandler(ABC):
|
|
97 |
|
98 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
99 |
"""
|
100 |
-
Downloads and extracts a gz file into the given cache directory. Returns the
|
101 |
-
of the extracted gz file.
|
102 |
Args:
|
103 |
file_url: url of the gz file to be downloaded and extracted.
|
104 |
cache_dir_root: Directory to extract file into.
|
@@ -138,29 +136,30 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
138 |
50,
|
139 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
140 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
141 |
-
NUM_BP_PER_BIN = 128
|
142 |
|
143 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
144 |
"""
|
145 |
Creates a new handler for the CAGE task.
|
146 |
Args:
|
147 |
-
sequence_length: allows for increasing sequence context. Sequence length
|
148 |
-
|
|
|
149 |
"""
|
150 |
self.reference_genome = None
|
151 |
self.coordinate_csv_file = None
|
152 |
self.target_files_by_split = {}
|
153 |
|
|
|
154 |
assert (sequence_length // 128) % 2 == 0, (
|
155 |
-
f"Requested sequence length must be an even multuple of 128 to align
|
|
|
156 |
)
|
157 |
|
158 |
self.sequence_length = sequence_length
|
159 |
|
160 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
161 |
-
|
162 |
-
self.TARGET_SHAPE = (self.sequence_length//128,50)
|
163 |
-
|
164 |
|
165 |
def get_info(self, description: str) -> DatasetInfo:
|
166 |
"""
|
@@ -174,7 +173,11 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
174 |
# array of sequence length x num_labels
|
175 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
176 |
# chromosome number
|
177 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
)
|
180 |
return datasets.DatasetInfo(
|
@@ -192,7 +195,7 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
192 |
"""
|
193 |
|
194 |
# Manually download the reference genome since there are difficulties when
|
195 |
-
# streaming
|
196 |
reference_genome_file = self.download_and_extract_gz(
|
197 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
198 |
)
|
@@ -225,7 +228,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
225 |
self.target_files_by_split["test"] = test_file_dict
|
226 |
self.target_files_by_split["validation"] = valid_file_dict
|
227 |
|
228 |
-
|
229 |
return [
|
230 |
datasets.SplitGenerator(
|
231 |
name=datasets.Split.TRAIN,
|
@@ -241,7 +243,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
241 |
),
|
242 |
]
|
243 |
|
244 |
-
|
245 |
def generate_examples(self, split):
|
246 |
"""
|
247 |
A generator which produces examples for the given split, each with a sequence
|
@@ -250,24 +251,28 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
250 |
"""
|
251 |
|
252 |
target_files = self.target_files_by_split[split]
|
253 |
-
sequence_length = self.sequence_length
|
254 |
|
255 |
key = 0
|
256 |
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
|
257 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
258 |
for sequential_idx, row in filtered.iterrows():
|
259 |
start, stop = int(row["start"]) - 1, int(
|
260 |
-
row["stop"]) - 1 # -1 since
|
261 |
|
262 |
chromosome = row['chrom']
|
263 |
-
|
264 |
-
padded_sequence = pad_sequence(
|
265 |
chromosome=self.reference_genome[chromosome],
|
266 |
start=start,
|
267 |
-
sequence_length=sequence_length,
|
268 |
end=stop,
|
|
|
269 |
)
|
270 |
|
|
|
|
|
|
|
|
|
271 |
# floor npy_idx to the nearest 1000
|
272 |
npz_file = np.load(
|
273 |
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
|
@@ -277,21 +282,22 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
277 |
split == "validation"
|
278 |
): # npy files are keyed by ["train", "test", "valid"]
|
279 |
split = "valid"
|
280 |
-
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
281 |
-
|
282 |
-
|
283 |
# subset the targets if sequence length is smaller than 114688 (
|
284 |
# DEFAULT_LENGTH)
|
285 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
286 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
287 |
targets = targets[idx_diff:-idx_diff]
|
288 |
|
289 |
-
|
290 |
if padded_sequence:
|
291 |
yield key, {
|
292 |
"labels": targets,
|
293 |
"sequence": standardize_sequence(padded_sequence),
|
294 |
-
"chromosome": re.sub("chr","",chromosome)
|
|
|
|
|
295 |
}
|
296 |
key += 1
|
297 |
|
@@ -325,7 +331,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
325 |
Handler for the Bulk RNA Expression task.
|
326 |
"""
|
327 |
|
328 |
-
DEFAULT_LENGTH =
|
329 |
|
330 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
331 |
"""
|
@@ -351,7 +357,9 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
351 |
# list of expression values in each tissue
|
352 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
353 |
# chromosome number
|
354 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
355 |
}
|
356 |
)
|
357 |
return datasets.DatasetInfo(
|
@@ -368,7 +376,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
368 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
369 |
csv file,and label csv file to be saved.
|
370 |
"""
|
371 |
-
|
372 |
reference_genome_file = self.download_and_extract_gz(
|
373 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
374 |
)
|
@@ -398,7 +406,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
398 |
key = 0
|
399 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
400 |
start = coordinates_row[
|
401 |
-
"CAGE_representative_TSS"] - 1 # -1 since
|
402 |
|
403 |
chromosome = coordinates_row["chrom"]
|
404 |
labels_row = labels_df.loc[idx].values
|
@@ -412,21 +420,22 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
412 |
yield key, {
|
413 |
"labels": labels_row,
|
414 |
"sequence": standardize_sequence(padded_sequence),
|
415 |
-
"chromosome":re.sub("chr","",chromosome)
|
|
|
416 |
}
|
417 |
key += 1
|
418 |
|
419 |
|
420 |
-
class
|
421 |
"""
|
422 |
-
Handler for the Variant Effect
|
423 |
"""
|
424 |
|
425 |
-
DEFAULT_LENGTH =
|
426 |
|
427 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
428 |
"""
|
429 |
-
Creates a new handler for the Variant Effect
|
430 |
Args:
|
431 |
sequence_length: Length of the sequence to pad around the SNP position
|
432 |
|
@@ -436,9 +445,9 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
436 |
|
437 |
def get_info(self, description: str) -> DatasetInfo:
|
438 |
"""
|
439 |
-
Returns the DatasetInfo for the Variant Effect
|
440 |
-
includes a genomic sequence with the reference allele as well as the genomic
|
441 |
-
and a binary label.
|
442 |
"""
|
443 |
features = datasets.Features(
|
444 |
{
|
@@ -451,8 +460,10 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
451 |
"tissue": datasets.Value(dtype="string"),
|
452 |
# chromosome number
|
453 |
"chromosome": datasets.Value(dtype="string"),
|
|
|
|
|
454 |
# distance to nearest tss
|
455 |
-
"distance_to_nearest_tss":datasets.Value(dtype="int32")
|
456 |
}
|
457 |
)
|
458 |
|
@@ -478,7 +489,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
478 |
|
479 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
480 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
481 |
-
f"
|
482 |
)
|
483 |
|
484 |
return super().split_generators(dl_manager, cache_dir_root)
|
@@ -496,7 +507,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
496 |
|
497 |
key = 0
|
498 |
for idx, row in coordinates_split_df.iterrows():
|
499 |
-
start = row["POS"] - 1 # sub 1 to create idx since
|
500 |
alt_allele = row["ALT"]
|
501 |
label = row["label"]
|
502 |
tissue = row['tissue']
|
@@ -513,8 +524,8 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
513 |
|
514 |
# only if a valid sequence returned
|
515 |
if ref_forward:
|
516 |
-
# Mutate sequence with the alt allele at the SNP position,
|
517 |
-
# centered in the string returned from pad_sequence
|
518 |
alt_forward = list(ref_forward)
|
519 |
alt_forward[self.sequence_length // 2] = alt_allele
|
520 |
alt_forward = "".join(alt_forward)
|
@@ -525,14 +536,354 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
525 |
"chromosome": re.sub("chr", "", chromosome),
|
526 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
527 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
528 |
-
"distance_to_nearest_tss": distance
|
|
|
529 |
}
|
530 |
key += 1
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
"""
|
533 |
-
|
534 |
Dataset loader:
|
535 |
-
|
536 |
"""
|
537 |
|
538 |
_DESCRIPTION = """
|
@@ -542,7 +893,13 @@ Dataset for benchmark of genomic deep learning models.
|
|
542 |
_TASK_HANDLERS = {
|
543 |
"cage_prediction": CagePredictionHandler,
|
544 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
545 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
}
|
547 |
|
548 |
|
@@ -558,7 +915,7 @@ class GenomicsLRAConfig(datasets.BuilderConfig):
|
|
558 |
**kwargs: keyword arguments forwarded to super.
|
559 |
"""
|
560 |
super().__init__()
|
561 |
-
self.handler = _TASK_HANDLERS[task_name](task_name=task_name
|
562 |
|
563 |
|
564 |
# DatasetBuilder
|
@@ -592,9 +949,9 @@ class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
|
|
592 |
|
593 |
|
594 |
"""
|
595 |
-
|
596 |
Global Utils:
|
597 |
-
|
598 |
"""
|
599 |
|
600 |
|
@@ -613,7 +970,8 @@ def standardize_sequence(sequence: str):
|
|
613 |
return sequence
|
614 |
|
615 |
|
616 |
-
def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False
|
|
|
617 |
"""
|
618 |
Extends a given sequence to length sequence_length. If
|
619 |
padding to the given length is outside the gene, returns
|
@@ -625,7 +983,8 @@ def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=F
|
|
625 |
remainder is added to the end of the sequence.
|
626 |
end: End index of original sequence. If no end is specified, it creates a
|
627 |
centered sequence around the start index.
|
628 |
-
negative_strand: If negative_strand, returns the reverse compliment of the
|
|
|
629 |
"""
|
630 |
if end:
|
631 |
pad = (sequence_length - (end - start)) // 2
|
@@ -639,5 +998,12 @@ def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=F
|
|
639 |
if start < 0 or end >= len(chromosome):
|
640 |
return
|
641 |
if negative_strand:
|
|
|
|
|
|
|
642 |
return chromosome[start:end].reverse.complement.seq
|
|
|
|
|
|
|
|
|
643 |
return chromosome[start:end].seq
|
|
|
14 |
from datasets import DatasetInfo
|
15 |
from pyfaidx import Fasta
|
16 |
from abc import ABC, abstractmethod
|
17 |
+
|
|
|
|
|
18 |
|
19 |
"""
|
20 |
+
----------------------------------------------------------------------------------------
|
21 |
Reference Genome URLS:
|
22 |
+
----------------------------------------------------------------------------------------
|
23 |
"""
|
24 |
H38_REFERENCE_GENOME_URL = (
|
25 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
|
|
29 |
)
|
30 |
|
31 |
"""
|
32 |
+
----------------------------------------------------------------------------------------
|
33 |
Task Specific Handlers:
|
34 |
+
----------------------------------------------------------------------------------------
|
35 |
"""
|
36 |
|
37 |
class GenomicLRATaskHandler(ABC):
|
|
|
95 |
|
96 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
97 |
"""
|
98 |
+
Downloads and extracts a gz file into the given cache directory. Returns the
|
99 |
+
full file path of the extracted gz file.
|
100 |
Args:
|
101 |
file_url: url of the gz file to be downloaded and extracted.
|
102 |
cache_dir_root: Directory to extract file into.
|
|
|
136 |
50,
|
137 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
138 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
139 |
+
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
|
140 |
|
141 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
142 |
"""
|
143 |
Creates a new handler for the CAGE task.
|
144 |
Args:
|
145 |
+
sequence_length: allows for increasing sequence context. Sequence length
|
146 |
+
must be an even multiple of 128 to align with binned labels. Note:
|
147 |
+
increasing sequence length may decrease the number of usable samples.
|
148 |
"""
|
149 |
self.reference_genome = None
|
150 |
self.coordinate_csv_file = None
|
151 |
self.target_files_by_split = {}
|
152 |
|
153 |
+
|
154 |
assert (sequence_length // 128) % 2 == 0, (
|
155 |
+
f"Requested sequence length must be an even multuple of 128 to align "
|
156 |
+
f"with the binned labels."
|
157 |
)
|
158 |
|
159 |
self.sequence_length = sequence_length
|
160 |
|
161 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
162 |
+
self.TARGET_SHAPE = (self.sequence_length // 128, 50)
|
|
|
|
|
163 |
|
164 |
def get_info(self, description: str) -> DatasetInfo:
|
165 |
"""
|
|
|
173 |
# array of sequence length x num_labels
|
174 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
175 |
# chromosome number
|
176 |
+
"chromosome": datasets.Value(dtype="string"),
|
177 |
+
# start
|
178 |
+
"labels_start": datasets.Value(dtype="int32"),
|
179 |
+
# stop
|
180 |
+
"labels_stop": datasets.Value(dtype="int32")
|
181 |
}
|
182 |
)
|
183 |
return datasets.DatasetInfo(
|
|
|
195 |
"""
|
196 |
|
197 |
# Manually download the reference genome since there are difficulties when
|
198 |
+
# streaming
|
199 |
reference_genome_file = self.download_and_extract_gz(
|
200 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
201 |
)
|
|
|
228 |
self.target_files_by_split["test"] = test_file_dict
|
229 |
self.target_files_by_split["validation"] = valid_file_dict
|
230 |
|
|
|
231 |
return [
|
232 |
datasets.SplitGenerator(
|
233 |
name=datasets.Split.TRAIN,
|
|
|
243 |
),
|
244 |
]
|
245 |
|
|
|
246 |
def generate_examples(self, split):
|
247 |
"""
|
248 |
A generator which produces examples for the given split, each with a sequence
|
|
|
251 |
"""
|
252 |
|
253 |
target_files = self.target_files_by_split[split]
|
|
|
254 |
|
255 |
key = 0
|
256 |
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
|
257 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
258 |
for sequential_idx, row in filtered.iterrows():
|
259 |
start, stop = int(row["start"]) - 1, int(
|
260 |
+
row["stop"]) - 1 # -1 since coords are 1-based
|
261 |
|
262 |
chromosome = row['chrom']
|
263 |
+
|
264 |
+
padded_sequence,new_start,new_stop = pad_sequence(
|
265 |
chromosome=self.reference_genome[chromosome],
|
266 |
start=start,
|
267 |
+
sequence_length=self.sequence_length,
|
268 |
end=stop,
|
269 |
+
return_new_start_stop=True
|
270 |
)
|
271 |
|
272 |
+
if self.sequence_length >= self.DEFAULT_LENGTH:
|
273 |
+
new_start = start
|
274 |
+
new_stop = stop
|
275 |
+
|
276 |
# floor npy_idx to the nearest 1000
|
277 |
npz_file = np.load(
|
278 |
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
|
|
|
282 |
split == "validation"
|
283 |
): # npy files are keyed by ["train", "test", "valid"]
|
284 |
split = "valid"
|
285 |
+
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
286 |
+
0] # select 0 since there is extra dimension
|
287 |
+
|
288 |
# subset the targets if sequence length is smaller than 114688 (
|
289 |
# DEFAULT_LENGTH)
|
290 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
291 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
292 |
targets = targets[idx_diff:-idx_diff]
|
293 |
|
|
|
294 |
if padded_sequence:
|
295 |
yield key, {
|
296 |
"labels": targets,
|
297 |
"sequence": standardize_sequence(padded_sequence),
|
298 |
+
"chromosome": re.sub("chr", "", chromosome),
|
299 |
+
"labels_start": new_start,
|
300 |
+
"labels_stop": new_stop
|
301 |
}
|
302 |
key += 1
|
303 |
|
|
|
331 |
Handler for the Bulk RNA Expression task.
|
332 |
"""
|
333 |
|
334 |
+
DEFAULT_LENGTH = 100000
|
335 |
|
336 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
337 |
"""
|
|
|
357 |
# list of expression values in each tissue
|
358 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
359 |
# chromosome number
|
360 |
+
"chromosome": datasets.Value(dtype="string"),
|
361 |
+
# position
|
362 |
+
"position": datasets.Value(dtype="int32"),
|
363 |
}
|
364 |
)
|
365 |
return datasets.DatasetInfo(
|
|
|
376 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
377 |
csv file,and label csv file to be saved.
|
378 |
"""
|
379 |
+
|
380 |
reference_genome_file = self.download_and_extract_gz(
|
381 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
382 |
)
|
|
|
406 |
key = 0
|
407 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
408 |
start = coordinates_row[
|
409 |
+
"CAGE_representative_TSS"] - 1 # -1 since coords are 1-based
|
410 |
|
411 |
chromosome = coordinates_row["chrom"]
|
412 |
labels_row = labels_df.loc[idx].values
|
|
|
420 |
yield key, {
|
421 |
"labels": labels_row,
|
422 |
"sequence": standardize_sequence(padded_sequence),
|
423 |
+
"chromosome": re.sub("chr", "", chromosome),
|
424 |
+
"position": coordinates_row["CAGE_representative_TSS"]
|
425 |
}
|
426 |
key += 1
|
427 |
|
428 |
|
429 |
+
class VariantEffectCausalEqtl(GenomicLRATaskHandler):
|
430 |
"""
|
431 |
+
Handler for the Variant Effect Causal eQTL task.
|
432 |
"""
|
433 |
|
434 |
+
DEFAULT_LENGTH = 100000
|
435 |
|
436 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
437 |
"""
|
438 |
+
Creates a new handler for the Variant Effect Causal eQTL Task.
|
439 |
Args:
|
440 |
sequence_length: Length of the sequence to pad around the SNP position
|
441 |
|
|
|
445 |
|
446 |
def get_info(self, description: str) -> DatasetInfo:
|
447 |
"""
|
448 |
+
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example
|
449 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
450 |
+
sequence with the alternative allele, and a binary label.
|
451 |
"""
|
452 |
features = datasets.Features(
|
453 |
{
|
|
|
460 |
"tissue": datasets.Value(dtype="string"),
|
461 |
# chromosome number
|
462 |
"chromosome": datasets.Value(dtype="string"),
|
463 |
+
# variant position
|
464 |
+
"position": datasets.Value(dtype="int32"),
|
465 |
# distance to nearest tss
|
466 |
+
"distance_to_nearest_tss": datasets.Value(dtype="int32")
|
467 |
}
|
468 |
)
|
469 |
|
|
|
489 |
|
490 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
491 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
492 |
+
f"variant_effect_causal_eqtl/All_Tissues.csv"
|
493 |
)
|
494 |
|
495 |
return super().split_generators(dl_manager, cache_dir_root)
|
|
|
507 |
|
508 |
key = 0
|
509 |
for idx, row in coordinates_split_df.iterrows():
|
510 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
511 |
alt_allele = row["ALT"]
|
512 |
label = row["label"]
|
513 |
tissue = row['tissue']
|
|
|
524 |
|
525 |
# only if a valid sequence returned
|
526 |
if ref_forward:
|
527 |
+
# Mutate sequence with the alt allele at the SNP position,
|
528 |
+
# which is always centered in the string returned from pad_sequence
|
529 |
alt_forward = list(ref_forward)
|
530 |
alt_forward[self.sequence_length // 2] = alt_allele
|
531 |
alt_forward = "".join(alt_forward)
|
|
|
536 |
"chromosome": re.sub("chr", "", chromosome),
|
537 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
538 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
539 |
+
"distance_to_nearest_tss": distance,
|
540 |
+
"position": row["POS"]
|
541 |
}
|
542 |
key += 1
|
543 |
|
544 |
+
|
545 |
+
class VariantEffectPathogenicHandler(GenomicLRATaskHandler):
|
546 |
+
"""
|
547 |
+
Handler for the Variant Effect Pathogenic Prediction tasks.
|
548 |
+
"""
|
549 |
+
|
550 |
+
DEFAULT_LENGTH = 100000
|
551 |
+
|
552 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False,
|
553 |
+
**kwargs):
|
554 |
+
"""
|
555 |
+
Creates a new handler for the Variant Effect Pathogenic Tasks.
|
556 |
+
Args:
|
557 |
+
sequence_length: Length of the sequence to pad around the SNP position
|
558 |
+
subset: Whether to return a pre-determined subset of the data.
|
559 |
+
|
560 |
+
"""
|
561 |
+
self.sequence_length = sequence_length
|
562 |
+
|
563 |
+
if task_name == 'variant_effect_pathogenic_clinvar':
|
564 |
+
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv"
|
565 |
+
elif task_name == 'variant_effect_pathogenic_omim':
|
566 |
+
self.data_file_name = "variant_effect_pathogenic/" \
|
567 |
+
"vep_pathogenic_non_coding_subset.csv" \
|
568 |
+
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv"
|
569 |
+
|
570 |
+
def get_info(self, description: str) -> DatasetInfo:
|
571 |
+
"""
|
572 |
+
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example
|
573 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
574 |
+
sequence with the alternative allele, and a binary label.
|
575 |
+
"""
|
576 |
+
features = datasets.Features(
|
577 |
+
{
|
578 |
+
# DNA sequence
|
579 |
+
"ref_forward_sequence": datasets.Value("string"),
|
580 |
+
"alt_forward_sequence": datasets.Value("string"),
|
581 |
+
# binary label
|
582 |
+
"label": datasets.Value(dtype="int8"),
|
583 |
+
# chromosome number
|
584 |
+
"chromosome": datasets.Value(dtype="string"),
|
585 |
+
# position
|
586 |
+
"position": datasets.Value(dtype="int32")
|
587 |
+
}
|
588 |
+
)
|
589 |
+
|
590 |
+
return datasets.DatasetInfo(
|
591 |
+
# This is the description that will appear on the datasets page.
|
592 |
+
description=description,
|
593 |
+
# This defines the different columns of the dataset and their types
|
594 |
+
features=features,
|
595 |
+
)
|
596 |
+
|
597 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
598 |
+
"""
|
599 |
+
Separates files by split and stores filenames in instance variables.
|
600 |
+
The variant effect prediction datasets require the reference hg38 genome and
|
601 |
+
coordinates_labels_csv_file to be saved.
|
602 |
+
"""
|
603 |
+
|
604 |
+
reference_genome_file = self.download_and_extract_gz(
|
605 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
606 |
+
)
|
607 |
+
|
608 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
609 |
+
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
610 |
+
self.data_file_name)
|
611 |
+
|
612 |
+
if 'non_coding' in self.data_file_name:
|
613 |
+
return [
|
614 |
+
datasets.SplitGenerator(
|
615 |
+
name=datasets.Split.TEST,
|
616 |
+
gen_kwargs={"handler": self, "split": "test"}
|
617 |
+
), ]
|
618 |
+
else:
|
619 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
620 |
+
|
621 |
+
def generate_examples(self, split):
|
622 |
+
"""
|
623 |
+
A generator which produces examples each with ref/alt allele
|
624 |
+
and corresponding binary label. The sequences are extended to
|
625 |
+
the desired sequence length and standardized before returning.
|
626 |
+
"""
|
627 |
+
|
628 |
+
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
|
629 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
630 |
+
|
631 |
+
key = 0
|
632 |
+
for idx, row in coordinates_split_df.iterrows():
|
633 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
634 |
+
alt_allele = row["ALT"]
|
635 |
+
label = row["INT_LABEL"]
|
636 |
+
chromosome = row["CHROM"]
|
637 |
+
|
638 |
+
# get reference forward sequence
|
639 |
+
ref_forward = pad_sequence(
|
640 |
+
chromosome=self.reference_genome[chromosome],
|
641 |
+
start=start,
|
642 |
+
sequence_length=self.sequence_length,
|
643 |
+
negative_strand=False,
|
644 |
+
)
|
645 |
+
|
646 |
+
# only if a valid sequence returned
|
647 |
+
if ref_forward:
|
648 |
+
# Mutate sequence with the alt allele at the SNP position,
|
649 |
+
# which is always centered in the string returned from pad_sequence
|
650 |
+
alt_forward = list(ref_forward)
|
651 |
+
alt_forward[self.sequence_length // 2] = alt_allele
|
652 |
+
alt_forward = "".join(alt_forward)
|
653 |
+
|
654 |
+
yield key, {
|
655 |
+
"label": label,
|
656 |
+
"chromosome": re.sub("chr", "", chromosome),
|
657 |
+
"ref_forward_sequence": standardize_sequence(ref_forward),
|
658 |
+
"alt_forward_sequence": standardize_sequence(alt_forward),
|
659 |
+
"position": row['POS']
|
660 |
+
}
|
661 |
+
key += 1
|
662 |
+
|
663 |
+
|
664 |
+
class ChromatinFeaturesHandler(GenomicLRATaskHandler):
|
665 |
+
"""
|
666 |
+
Handler for the histone marks and DNA accessibility tasks also referred to
|
667 |
+
collectively as Chromatin features.
|
668 |
+
"""
|
669 |
+
|
670 |
+
DEFAULT_LENGTH = 100000
|
671 |
+
|
672 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
673 |
+
**kwargs):
|
674 |
+
"""
|
675 |
+
Creates a new handler for the Deep Sea Histone and DNase tasks.
|
676 |
+
Args:
|
677 |
+
sequence_length: Length of the sequence around and including the
|
678 |
+
annotated 200bp bin
|
679 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
680 |
+
|
681 |
+
"""
|
682 |
+
self.sequence_length = sequence_length
|
683 |
+
|
684 |
+
if sequence_length < 200:
|
685 |
+
raise ValueError(
|
686 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
687 |
+
|
688 |
+
if 'histone' in task_name:
|
689 |
+
self.label_name = 'HISTONES'
|
690 |
+
elif 'dna' in task_name:
|
691 |
+
self.label_name = 'DNASE'
|
692 |
+
|
693 |
+
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \
|
694 |
+
subset else "chromatin_features/histones_and_dnase.csv"
|
695 |
+
|
696 |
+
def get_info(self, description: str) -> DatasetInfo:
|
697 |
+
"""
|
698 |
+
Returns the DatasetInfo for the histone marks and dna accessibility datasets.
|
699 |
+
Each example includes a genomic sequence and a list of label values.
|
700 |
+
"""
|
701 |
+
features = datasets.Features(
|
702 |
+
{
|
703 |
+
# DNA sequence
|
704 |
+
"sequence": datasets.Value("string"),
|
705 |
+
# list of binary chromatin marks
|
706 |
+
"labels": datasets.Sequence(datasets.Value("int8")),
|
707 |
+
# chromosome number
|
708 |
+
"chromosome": datasets.Value(dtype="string"),
|
709 |
+
# starting position in genome which corresponds to label
|
710 |
+
"label_start": datasets.Value(dtype="int32"),
|
711 |
+
# end position in genome which corresponds to label
|
712 |
+
"label_stop": datasets.Value(dtype="int32"),
|
713 |
+
}
|
714 |
+
)
|
715 |
+
return datasets.DatasetInfo(
|
716 |
+
# This is the description that will appear on the datasets page.
|
717 |
+
description=description,
|
718 |
+
# This defines the different columns of the dataset and their types
|
719 |
+
features=features,
|
720 |
+
|
721 |
+
)
|
722 |
+
|
723 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
724 |
+
"""
|
725 |
+
Separates files by split and stores filenames in instance variables.
|
726 |
+
The histone marks and dna accessibility datasets require the reference hg19
|
727 |
+
genome and coordinate csv file to be saved.
|
728 |
+
"""
|
729 |
+
reference_genome_file = self.download_and_extract_gz(
|
730 |
+
H19_REFERENCE_GENOME_URL, cache_dir_root
|
731 |
+
)
|
732 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
733 |
+
|
734 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name)
|
735 |
+
|
736 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
737 |
+
|
738 |
+
def generate_examples(self, split):
|
739 |
+
"""
|
740 |
+
A generator which produces examples for the given split, each with a sequence
|
741 |
+
and the corresponding labels. The sequences are padded to the correct sequence
|
742 |
+
length and standardized before returning.
|
743 |
+
"""
|
744 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
745 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
746 |
+
|
747 |
+
key = 0
|
748 |
+
for idx, coordinates_row in coordinates_split_df.iterrows():
|
749 |
+
start = coordinates_row['POS'] - 1 # -1 since saved coords are 1-based
|
750 |
+
chromosome = coordinates_row["CHROM"]
|
751 |
+
|
752 |
+
# literal eval used since lists are saved as strings in csv
|
753 |
+
labels_row = literal_eval(coordinates_row[self.label_name])
|
754 |
+
|
755 |
+
padded_sequence = pad_sequence(
|
756 |
+
chromosome=self.reference_genome[chromosome],
|
757 |
+
start=start,
|
758 |
+
sequence_length=self.sequence_length,
|
759 |
+
)
|
760 |
+
if padded_sequence:
|
761 |
+
yield key, {
|
762 |
+
"labels": labels_row,
|
763 |
+
"sequence": standardize_sequence(padded_sequence),
|
764 |
+
"chromosome": re.sub("chr", "", chromosome),
|
765 |
+
"label_start": coordinates_row['POS']-100,
|
766 |
+
"label_stop": coordinates_row['POS'] + 99,
|
767 |
+
}
|
768 |
+
key += 1
|
769 |
+
|
770 |
+
|
771 |
+
class RegulatoryElementHandler(GenomicLRATaskHandler):
|
772 |
+
"""
|
773 |
+
Handler for the Regulatory Element Prediction tasks.
|
774 |
+
"""
|
775 |
+
DEFAULT_LENGTH = 100000
|
776 |
+
|
777 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
778 |
+
**kwargs):
|
779 |
+
"""
|
780 |
+
Creates a new handler for the Regulatory Element Prediction tasks.
|
781 |
+
Args:
|
782 |
+
sequence_length: Length of the sequence around the element/non-element
|
783 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
784 |
+
|
785 |
+
"""
|
786 |
+
|
787 |
+
if sequence_length < 200:
|
788 |
+
raise ValueError(
|
789 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
790 |
+
|
791 |
+
self.sequence_length = sequence_length
|
792 |
+
|
793 |
+
if 'promoter' in task_name:
|
794 |
+
self.data_file_name = 'regulatory_elements/promoter_dataset'
|
795 |
+
|
796 |
+
elif 'enhancer' in task_name:
|
797 |
+
self.data_file_name = 'regulatory_elements/enhancer_dataset'
|
798 |
+
|
799 |
+
if subset:
|
800 |
+
self.data_file_name += '_subset.csv'
|
801 |
+
else:
|
802 |
+
self.data_file_name += '.csv'
|
803 |
+
|
804 |
+
def get_info(self, description: str) -> DatasetInfo:
|
805 |
+
"""
|
806 |
+
Returns the DatasetInfo for the Regulatory Element Prediction Tasks.
|
807 |
+
Each example includes a genomic sequence and a label.
|
808 |
+
"""
|
809 |
+
features = datasets.Features(
|
810 |
+
{
|
811 |
+
# DNA sequence
|
812 |
+
"sequence": datasets.Value("string"),
|
813 |
+
# label corresponding to whether the sequence has
|
814 |
+
# the regulatory element of interest or not
|
815 |
+
"labels": datasets.Value("int8"),
|
816 |
+
# chromosome number
|
817 |
+
"chromosome": datasets.Value(dtype="string"),
|
818 |
+
# start
|
819 |
+
"label_start": datasets.Value(dtype="int32"),
|
820 |
+
# stop
|
821 |
+
"label_stop": datasets.Value(dtype="int32"),
|
822 |
+
}
|
823 |
+
)
|
824 |
+
return datasets.DatasetInfo(
|
825 |
+
# This is the description that will appear on the datasets page.
|
826 |
+
description=description,
|
827 |
+
# This defines the different columns of the dataset and their types
|
828 |
+
features=features,
|
829 |
+
|
830 |
+
)
|
831 |
+
|
832 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
833 |
+
"""
|
834 |
+
Separates files by split and stores filenames in instance variables.
|
835 |
+
"""
|
836 |
+
reference_genome_file = self.download_and_extract_gz(
|
837 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
838 |
+
)
|
839 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
840 |
+
|
841 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
842 |
+
self.data_file_name
|
843 |
+
)
|
844 |
+
|
845 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
846 |
+
|
847 |
+
def generate_examples(self, split):
|
848 |
+
"""
|
849 |
+
A generator which produces examples for the given split, each with a sequence
|
850 |
+
and the corresponding label. The sequences are padded to the correct sequence
|
851 |
+
length and standardized before returning.
|
852 |
+
"""
|
853 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
854 |
+
|
855 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
856 |
+
|
857 |
+
key = 0
|
858 |
+
for _, coordinates_row in coordinates_split_df.iterrows():
|
859 |
+
start = coordinates_row["START"] - 1 # -1 since vcf coords are 1-based
|
860 |
+
end = coordinates_row["STOP"] - 1 # -1 since vcf coords are 1-based
|
861 |
+
chromosome = coordinates_row["CHROM"]
|
862 |
+
|
863 |
+
label = coordinates_row['label']
|
864 |
+
|
865 |
+
padded_sequence = pad_sequence(
|
866 |
+
chromosome=self.reference_genome[chromosome],
|
867 |
+
start=start,
|
868 |
+
end=end,
|
869 |
+
sequence_length=self.sequence_length,
|
870 |
+
)
|
871 |
+
|
872 |
+
if padded_sequence:
|
873 |
+
yield key, {
|
874 |
+
"labels": label,
|
875 |
+
"sequence": standardize_sequence(padded_sequence),
|
876 |
+
"chromosome": re.sub("chr", "", chromosome),
|
877 |
+
"label_start": coordinates_row["START"],
|
878 |
+
"label_stop": coordinates_row["STOP"]
|
879 |
+
}
|
880 |
+
key += 1
|
881 |
+
|
882 |
+
|
883 |
"""
|
884 |
+
----------------------------------------------------------------------------------------
|
885 |
Dataset loader:
|
886 |
+
----------------------------------------------------------------------------------------
|
887 |
"""
|
888 |
|
889 |
_DESCRIPTION = """
|
|
|
893 |
_TASK_HANDLERS = {
|
894 |
"cage_prediction": CagePredictionHandler,
|
895 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
896 |
+
"variant_effect_causal_eqtl": VariantEffectCausalEqtl,
|
897 |
+
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler,
|
898 |
+
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler,
|
899 |
+
"chromatin_features_histone_marks": ChromatinFeaturesHandler,
|
900 |
+
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler,
|
901 |
+
"regulatory_element_promoter": RegulatoryElementHandler,
|
902 |
+
"regulatory_element_enhancer": RegulatoryElementHandler,
|
903 |
}
|
904 |
|
905 |
|
|
|
915 |
**kwargs: keyword arguments forwarded to super.
|
916 |
"""
|
917 |
super().__init__()
|
918 |
+
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs)
|
919 |
|
920 |
|
921 |
# DatasetBuilder
|
|
|
949 |
|
950 |
|
951 |
"""
|
952 |
+
----------------------------------------------------------------------------------------
|
953 |
Global Utils:
|
954 |
+
----------------------------------------------------------------------------------------
|
955 |
"""
|
956 |
|
957 |
|
|
|
970 |
return sequence
|
971 |
|
972 |
|
973 |
+
def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False,
|
974 |
+
return_new_start_stop=False):
|
975 |
"""
|
976 |
Extends a given sequence to length sequence_length. If
|
977 |
padding to the given length is outside the gene, returns
|
|
|
983 |
remainder is added to the end of the sequence.
|
984 |
end: End index of original sequence. If no end is specified, it creates a
|
985 |
centered sequence around the start index.
|
986 |
+
negative_strand: If negative_strand, returns the reverse compliment of the
|
987 |
+
sequence
|
988 |
"""
|
989 |
if end:
|
990 |
pad = (sequence_length - (end - start)) // 2
|
|
|
998 |
if start < 0 or end >= len(chromosome):
|
999 |
return
|
1000 |
if negative_strand:
|
1001 |
+
if return_new_start_stop:
|
1002 |
+
return chromosome[start:end].reverse.complement.seq ,start, end
|
1003 |
+
|
1004 |
return chromosome[start:end].reverse.complement.seq
|
1005 |
+
|
1006 |
+
if return_new_start_stop:
|
1007 |
+
return chromosome[start:end].seq , start, end
|
1008 |
+
|
1009 |
return chromosome[start:end].seq
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a511212c76aba8c25ecd372531fe78767cbd4065ce72d4899dcb4ba1429750c
|
3 |
+
size 66953920
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7af8aef4a6c15a4be5d752f8a638f2ab88be42476f9da59732f892273d58078f
|
3 |
+
size 11241394
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ddaaa24bee906885033fb4f75097797c3aed3557b3fb09a202f50d4e99e3a2b
|
3 |
+
size 33319573
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a5ccb2bf002dc504f6c40550acd5a99d2edfa587403d7cf23a1b965df74c51b
|
3 |
+
size 7479637
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d85df2b982e57866fb6efcd78dd0316c4005a0fea72322c3fe6c3188772558ae
|
3 |
+
size 7081158
|
The diff for this file is too large to render.
See raw diff
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e75b0b9c374e2cea972cb2c6246c7cc21c1c92e6b97cc597baf20b8d9462acb9
|
3 |
+
size 6576847
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ab457120792566dcfaeeaf06c9af32c19ddcff4d2f62fb034b95450622f9966
|
3 |
+
size 369157498
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24127410937b99d41d0ad0b3b1e2e260b27ee20d00695caf6cbb48842a411a1f
|
3 |
+
size 33142664
|