File size: 4,747 Bytes
b47b74e
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ef047
 
b47b74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ef047
b47b74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script
# contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for the dataset containing the "promoter_all" and "enhancers" downstream tasks from the Nucleotide
Transformer paper."""

from typing import List
import datasets
from Bio import SeqIO

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{dalla2023nucleotide,
  title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
  author={Dalla-Torre, Hugo and Gonzalez, Liam and Mendoza-Revilla, Javier and Carranza, Nicolas Lopez and Grzywaczewski, Adam Henryk and Oteri, Francesco and Dallago, Christian and Trop, Evan and Sirelkhatim, Hassan and Richard, Guillaume and others},
  journal={bioRxiv},
  pages={2023--01},
  year={2023},
  publisher={Cold Spring Harbor Laboratory}
}
"""

# You can copy an official description
_DESCRIPTION = """\
2 of the 18 classification downstream tasks from the Nucleotide Transformer paper. Each task
corresponds to a dataset configuration.
"""

_HOMEPAGE = "https://github.com/instadeepai/nucleotide-transformer"

_LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"

_TASKS = [
    'enhancers',
    'promoter_all'
]


class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
    """BuilderConfig for The Nucleotide Transformer downstream taks dataset."""

    def __init__(self, *args, task: str, **kwargs):
        """BuilderConfig downstream tasks dataset.
        Args:
            task (:obj:`str`): Task name.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name=f'{task}',
            **kwargs,
        )
        self.task = task


class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig
    BUILDER_CONFIGS = [
        NucleotideTransformerDownstreamTasksConfig(task=task) for task in _TASKS
    ]
    DEFAULT_CONFIG_NAME = "enhancers"

    def _info(self):

        features = datasets.Features(
            {
                "sequence": datasets.Value("string"),
                "name": datasets.Value("string"),
                "label": datasets.Value("int32"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:

        train_file = dl_manager.download_and_extract(self.config.task + '/train.fna')
        test_file = dl_manager.download_and_extract(self.config.task + '/test.fna')

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={"file": train_file}
                                    ),
            datasets.SplitGenerator(name=datasets.Split.TEST,
                                    gen_kwargs={"file": test_file}
                                    ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, file):
        key = 0
        with open(file, 'rt') as f:
            fasta_sequences = SeqIO.parse(f, 'fasta')

            for record in fasta_sequences:

                # parse descriptions in the fasta file
                sequence, name = str(record.seq), str(record.name)
                label = int(name.split("|")[-1])

                # yield example
                yield key, {
                    'sequence': sequence,
                    'name': name,
                    'label': label,
                }
                key += 1