JeremyAlain
commited on
Commit
•
af33748
1
Parent(s):
f1c9d6f
loading script created
Browse files- data/dataset_infos.json +1 -0
- fewshot_pretraining_loading_script.py +143 -0
data/dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"data": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"task": {"dtype": "string", "id": null, "_type": "Value"}, "input": {"dtype": "string", "id": null, "_type": "Value"}, "output": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pageTitle": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "outputColName": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "wdcFile": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "json", "config_name": "data", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 31800, "num_examples": 600, "dataset_name": "json"}}, "download_checksums": {"/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_0.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_1.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_10.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_11.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_12.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_13.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_14.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_15.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_16.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_17.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_18.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_19.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_2.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_3.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_4.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_5.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_6.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_7.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_8.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/0/file_9.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_0.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_1.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_10.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_11.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_12.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_13.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_14.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_15.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_16.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_17.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_18.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_19.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_2.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_3.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_4.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_5.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_6.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_7.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_8.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/1/file_9.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_0.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_1.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_10.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_11.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_12.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_13.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_14.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_15.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_16.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_17.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_18.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_19.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_2.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_3.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_4.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_5.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_6.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_7.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_8.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}, "/Users/jeremyscheurer/Code/fewshot_pretraining/fewshot-pretrainin-repo/data/2/file_9.jsonl": {"num_bytes": 1289, "checksum": "5deba816488c07f199593deb6d7a8cf0f37982df2d5218676f3b5c0d66abbe43"}}, "download_size": 77340, "post_processing_size": null, "dataset_size": 31800, "size_in_bytes": 109140}}
|
fewshot_pretraining_loading_script.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""This loads the fewshot-pretraining dataset."""
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: Add BibTeX citation
|
24 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
+
_CITATION = """\
|
26 |
+
@InProceedings{huggingface:dataset,
|
27 |
+
title = {A great new dataset},
|
28 |
+
author={huggingface, Inc.
|
29 |
+
},
|
30 |
+
year={2020}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
# You can copy an official description
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
The Fewshot Table dataset consists of tables that naturally occur on the web, that are formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. The dataset consists of approximately 413K tables that are extracted from the WDC Web Table Corpora 2015, which is released under the Apache-2.0 license. The WDC Web Table Corpora "contains vast amounts of HTML tables. [...] The Web Data Commons project extracts relational Web tables from the Common Crawl, the largest and most up-to-date Web corpus that is currently available to the public."
|
37 |
+
"""
|
38 |
+
|
39 |
+
# TODO: Add a link to an official homepage for the dataset here
|
40 |
+
_HOMEPAGE = ""
|
41 |
+
|
42 |
+
_LICENSE = "Apache 2.0"
|
43 |
+
|
44 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
45 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
46 |
+
_URLS = {
|
47 |
+
"data_1": "https://huggingface.co/datasets/JeremyAlain/fewshot-ptretraining/data/1",
|
48 |
+
"data_2": "https://huggingface.co/datasets/JeremyAlain/fewshot-ptretraining/data/2",
|
49 |
+
"data_3": "https://huggingface.co/datasets/JeremyAlain/fewshot-ptretraining/data/3",
|
50 |
+
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
class FewshotPretraining(datasets.GeneratorBasedBuilder):
|
55 |
+
"""The Fewshot Table dataset consists of tables that naturally occur on the web, that are formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. The dataset consists of approximately 413K tables that are extracted from the WDC Web Table Corpora 2015, which is released under the Apache-2.0 license. The WDC Web Table Corpora "contains vast amounts of HTML tables. [...] The Web Data Commons project extracts relational Web tables from the Common Crawl, the largest and most up-to-date Web corpus that is currently available to the public."
|
56 |
+
"""
|
57 |
+
|
58 |
+
VERSION = datasets.Version("1.1.0")
|
59 |
+
|
60 |
+
# This is an example of a dataset with multiple configurations.
|
61 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
62 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
63 |
+
|
64 |
+
# You will be able to load one or the other configurations in the following list with
|
65 |
+
# data = datasets.load_dataset('my_dataset', '1')
|
66 |
+
# data = datasets.load_dataset('my_dataset', '2')
|
67 |
+
BUILDER_CONFIGS = [
|
68 |
+
datasets.BuilderConfig(name="data_1", version=VERSION, description="This part of my dataset covers data_1"),
|
69 |
+
datasets.BuilderConfig(name="data_2", version=VERSION, description="This part of my dataset covers data_2"),
|
70 |
+
datasets.BuilderConfig(name="data_3", version=VERSION, description="This part of my dataset covers data_3"),
|
71 |
+
]
|
72 |
+
|
73 |
+
DEFAULT_CONFIG_NAME = "data_1" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
|
79 |
+
"task": datasets.Value("string"),
|
80 |
+
"input": datasets.Value("string"),
|
81 |
+
"output": datasets.Value("string"),
|
82 |
+
"options": datasets.Sequence([datasets.Value("string")]),
|
83 |
+
"pageTitle": datasets.Value("string"),
|
84 |
+
"outputColName": datasets.Value("string"),
|
85 |
+
"url": datasets.Value("string"),
|
86 |
+
"wdcFile": datasets.Value("string")
|
87 |
+
}
|
88 |
+
)
|
89 |
+
return datasets.DatasetInfo(
|
90 |
+
# This is the description that will appear on the datasets page.
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
# This defines the different columns of the dataset and their types
|
93 |
+
features=features, # Here we define them above because they are different between the two configurations
|
94 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
95 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
96 |
+
# supervised_keys=("sentence", "label"),
|
97 |
+
# Homepage of the dataset for documentation
|
98 |
+
# TODO ACTIVATE IF WE HAVE HOMEPAGE homepage=_HOMEPAGE,
|
99 |
+
# License for the dataset if available
|
100 |
+
license=_LICENSE,
|
101 |
+
# Citation for the dataset
|
102 |
+
citation=_CITATION,
|
103 |
+
)
|
104 |
+
|
105 |
+
def _split_generators(self, dl_manager):
|
106 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
107 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
108 |
+
|
109 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
110 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
111 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
112 |
+
urls = _URLS[self.config.name]
|
113 |
+
data_dir = dl_manager.download_and_extract(urls)
|
114 |
+
return datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.TRAIN,
|
116 |
+
# These kwargs will be passed to _generate_examples
|
117 |
+
gen_kwargs={
|
118 |
+
"folder_path": data_dir,
|
119 |
+
"split": "train",
|
120 |
+
},
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
125 |
+
def _generate_examples(self, folder_path, split):
|
126 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
127 |
+
for filepath in os.listdir(folder_path):
|
128 |
+
with open(filepath, encoding="utf-8") as f:
|
129 |
+
data = pd.read_json(filepath, orient="records", lines=True)
|
130 |
+
for i in range(data.shape[0]):
|
131 |
+
row = data.iloc[i]
|
132 |
+
# Yields examples as (key, example) tuples
|
133 |
+
key = row["task"] + "_i"
|
134 |
+
yield key, {
|
135 |
+
"task": data["task"],
|
136 |
+
"input": data["input"],
|
137 |
+
"output": data["output"],
|
138 |
+
"options": data["options"],
|
139 |
+
"pageTitle": data["pageTitle"],
|
140 |
+
"outputColName": data["outputColName"],
|
141 |
+
"url": data["url"],
|
142 |
+
"wdcFile": data["wdcFile"],
|
143 |
+
}
|