Jingyuan-Zhu commited on
Commit
93783c6
·
verified ·
1 Parent(s): 4768edc

added test and lag

Browse files
kaggle_evaluation/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Module implementing generic communication patterns with Python in / Python out
3
+ supporting many (nested) primitives + special data science types like DataFrames
4
+ or np.ndarrays, with gRPC + protobuf as a backing implementation.
5
+ '''
6
+
7
+ import os
8
+ import sys
9
+
10
+ # Provide additional import management since grpc_tools.protoc doesn't support relative imports
11
+ module_dir = os.path.dirname(os.path.abspath(__file__))
12
+ gen_dir = os.path.join(module_dir, 'core', 'generated')
13
+
14
+ if not os.path.exists(os.path.join(gen_dir, 'kaggle_evaluation_pb2.py')):
15
+ print('kaggle evaluation proto and gRPC generated files are missing')
16
+ sys.exit(1)
17
+
18
+ sys.path.append(module_dir)
19
+ sys.path.append(gen_dir)
20
+
21
+
22
+ __version__ = '0.3.0'
kaggle_evaluation/core/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+
5
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
kaggle_evaluation/core/base_gateway.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Lower level implementation details of the gateway.
2
+ Hosts should not need to review this file before writing their competition specific gateway.
3
+ '''
4
+
5
+ import enum
6
+ import json
7
+ import os
8
+ import pathlib
9
+ import re
10
+ import subprocess
11
+
12
+ from socket import gaierror
13
+ from typing import List, Optional, Tuple, Union
14
+
15
+ import grpc
16
+ import pandas as pd
17
+ import polars as pl
18
+
19
+ import kaggle_evaluation.core.relay
20
+
21
+
22
+ _FILE_SHARE_DIR = '/kaggle/shared/'
23
+ IS_RERUN = os.getenv('KAGGLE_IS_COMPETITION_RERUN') is not None
24
+
25
+
26
+ class GatewayRuntimeErrorType(enum.Enum):
27
+ ''' Allow-listed error types that Gateways can raise, which map to canned error messages to show users.'''
28
+ UNSPECIFIED = 0
29
+ SERVER_NEVER_STARTED = 1
30
+ SERVER_CONNECTION_FAILED = 2
31
+ SERVER_RAISED_EXCEPTION = 3
32
+ SERVER_MISSING_ENDPOINT = 4
33
+ # Default error type if an exception was raised that was not explicitly handled by the Gateway
34
+ GATEWAY_RAISED_EXCEPTION = 5
35
+ INVALID_SUBMISSION = 6
36
+
37
+
38
+ class GatewayRuntimeError(Exception):
39
+ ''' Gateways can raise this error to capture a user-visible error enum from above and host-visible error details.'''
40
+ def __init__(self, error_type: GatewayRuntimeErrorType, error_details: Optional[str]=None):
41
+ self.error_type = error_type
42
+ self.error_details = error_details
43
+
44
+
45
+ class BaseGateway():
46
+ def __init__(self, data_paths: Tuple[str]=None, file_share_dir: str=_FILE_SHARE_DIR):
47
+ self.client = kaggle_evaluation.core.relay.Client('inference_server' if IS_RERUN else 'localhost')
48
+ self.server = None # The gateway can have a server but it isn't typically necessary.
49
+ self.file_share_dir = file_share_dir
50
+ self.data_paths = data_paths
51
+
52
+ def validate_prediction_batch(
53
+ self,
54
+ prediction_batch: Union[pd.DataFrame, pl.DataFrame],
55
+ sample_submission_batch: Union[pd.DataFrame, pl.DataFrame]):
56
+ ''' If competitors can submit fewer rows than expected they can save all predictions for the last batch and
57
+ bypass the benefits of the Kaggle evaluation service. This attack was seen in a real competition with the older time series API:
58
+ https://www.kaggle.com/competitions/riiid-test-answer-prediction/discussion/196066
59
+ It's critically important that this check be run every time predict() is called.
60
+ '''
61
+ if prediction_batch is None:
62
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.INVALID_SUBMISSION, 'No prediction received')
63
+ if len(prediction_batch) != len(sample_submission_batch):
64
+ raise GatewayRuntimeError(
65
+ GatewayRuntimeErrorType.INVALID_SUBMISSION,
66
+ f'Invalid predictions: expected {len(sample_submission_batch)} rows but received {len(prediction_batch)}'
67
+ )
68
+
69
+ ROW_ID_COLUMN_INDEX = 0
70
+ row_id_colname = sample_submission_batch.columns[ROW_ID_COLUMN_INDEX]
71
+ # Prevent frame shift attacks that could be performed if the IDs are predictable.
72
+ # Ensure both dataframes are in Polars for efficient comparison.
73
+ if row_id_colname not in prediction_batch.columns:
74
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.INVALID_SUBMISSION, f'Prediction missing column {row_id_colname}')
75
+ if not pl.Series(prediction_batch[row_id_colname]).equals(pl.Series(sample_submission_batch[row_id_colname])):
76
+ raise GatewayRuntimeError(
77
+ GatewayRuntimeErrorType.INVALID_SUBMISSION,
78
+ f'Invalid values for {row_id_colname} in batch of predictions.'
79
+ )
80
+
81
+ def _standardize_and_validate_paths(
82
+ self,
83
+ input_paths: List[Union[str, pathlib.Path]]
84
+ ) -> List[pathlib.Path]:
85
+ # Accept a list of str or pathlib.Path, but standardize on list of str
86
+ for path in input_paths:
87
+ if os.pardir in str(path):
88
+ raise ValueError(f'Send files path contains {os.pardir}: {path}')
89
+ if str(path) != str(os.path.normpath(path)):
90
+ # Raise an error rather than sending users unexpectedly altered paths
91
+ raise ValueError(f'Send files path {path} must be normalized. See `os.path.normpath`')
92
+ if type(path) not in (pathlib.Path, str):
93
+ raise ValueError('All paths must be of type str or pathlib.Path')
94
+ if not os.path.exists(path):
95
+ raise ValueError(f'Input path {path} does not exist')
96
+
97
+ input_paths = [os.path.abspath(path) for path in input_paths]
98
+ if len(set(input_paths)) != len(input_paths):
99
+ raise ValueError('Duplicate input paths found')
100
+
101
+ if not self.file_share_dir.endswith(os.path.sep):
102
+ # Ensure output dir is valid for later use
103
+ output_dir = self.file_share_dir + os.path.sep
104
+
105
+ if not os.path.exists(self.file_share_dir) or not os.path.isdir(self.file_share_dir):
106
+ raise ValueError(f'Invalid output directory {self.file_share_dir}')
107
+ # Can't use os.path.join for output_dir + path: os.path.join won't prepend to an abspath
108
+ output_paths = [output_dir + path for path in input_paths]
109
+ return input_paths, output_paths
110
+
111
+ def share_files(
112
+ self,
113
+ input_paths: List[Union[str, pathlib.Path]],
114
+ ) -> List[str]:
115
+ ''' Makes files and/or directories available to the user's inference_server. They will be mirrored under the
116
+ self.file_share_dir directory, using the full absolute path. An input like:
117
+ /kaggle/input/mycomp/test.csv
118
+ Would be written to:
119
+ /kaggle/shared/kaggle/input/mycomp/test.csv
120
+
121
+ Args:
122
+ input_paths: List of paths to files and/or directories that should be shared.
123
+
124
+ Returns:
125
+ The output paths that were shared.
126
+
127
+ Raises:
128
+ ValueError if any invalid paths are passed.
129
+ '''
130
+ input_paths, output_paths = self._standardize_and_validate_paths(input_paths)
131
+ for in_path, out_path in zip(input_paths, output_paths):
132
+ os.makedirs(os.path.dirname(out_path), exist_ok=True)
133
+
134
+ # This makes the files available to the InferenceServer as read-only. Only the Gateway can mount files.
135
+ # mount will only work in live kaggle evaluation rerun sessions. Otherwise use a symlink.
136
+ if IS_RERUN:
137
+ if not os.path.isdir(out_path):
138
+ pathlib.Path(out_path).touch()
139
+ subprocess.run(f'mount --bind {in_path} {out_path}', shell=True, check=True)
140
+ else:
141
+ subprocess.run(f'ln -s {in_path} {out_path}', shell=True, check=True)
142
+
143
+ return output_paths
144
+
145
+ def write_submission(self, predictions):
146
+ ''' Export the predictions to a submission.parquet.'''
147
+ if isinstance(predictions, list):
148
+ if isinstance(predictions[0], pd.DataFrame):
149
+ predictions = pd.concat(predictions, ignore_index=True)
150
+ elif isinstance(predictions[0], pl.DataFrame):
151
+ try:
152
+ predictions = pl.concat(predictions, how='vertical_relaxed')
153
+ except pl.exceptions.SchemaError:
154
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.INVALID_SUBMISSION, 'Inconsistent prediction types')
155
+ except pl.exceptions.ComputeError:
156
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.INVALID_SUBMISSION, 'Inconsistent prediction column counts')
157
+
158
+ if isinstance(predictions, pd.DataFrame):
159
+ predictions.to_parquet('submission.parquet', index=False)
160
+ elif isinstance(predictions, pl.DataFrame):
161
+ pl.DataFrame(predictions).write_parquet('submission.parquet')
162
+ else:
163
+ raise ValueError(f"Unsupported predictions type {type(predictions)}; can't write submission file")
164
+
165
+ def write_result(self, error: Optional[GatewayRuntimeError]=None):
166
+ ''' Export a result.json containing error details if applicable.'''
167
+ result = { 'Succeeded': error is None }
168
+
169
+ if error is not None:
170
+ result['ErrorType'] = error.error_type.value
171
+ result['ErrorName'] = error.error_type.name
172
+ # Max error detail length is 8000
173
+ result['ErrorDetails'] = str(error.error_details[:8000]) if error.error_details else None
174
+
175
+ with open('result.json', 'w') as f_open:
176
+ json.dump(result, f_open)
177
+
178
+ def handle_server_error(self, exception: Exception, endpoint: str):
179
+ ''' Determine how to handle an exception raised when calling the inference server. Typically just format the
180
+ error into a GatewayRuntimeError and raise.
181
+ '''
182
+ exception_str = str(exception)
183
+ if isinstance(exception, gaierror) or (isinstance(exception, RuntimeError) and 'Failed to connect to server after waiting' in exception_str):
184
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.SERVER_NEVER_STARTED) from None
185
+ if f'No listener for {endpoint} was registered' in exception_str:
186
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.SERVER_MISSING_ENDPOINT, f'Server did not register a listener for {endpoint}') from None
187
+ if 'Exception calling application' in exception_str:
188
+ # Extract just the exception message raised by the inference server
189
+ message_match = re.search('"Exception calling application: (.*)"', exception_str, re.IGNORECASE)
190
+ message = message_match.group(1) if message_match else exception_str
191
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.SERVER_RAISED_EXCEPTION, message) from None
192
+ if isinstance(exception, grpc._channel._InactiveRpcError):
193
+ raise GatewayRuntimeError(GatewayRuntimeErrorType.SERVER_CONNECTION_FAILED, exception_str) from None
194
+
195
+ raise exception
kaggle_evaluation/core/generated/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+
5
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
kaggle_evaluation/core/generated/kaggle_evaluation_pb2.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # Generated by the protocol buffer compiler. DO NOT EDIT!
3
+ # source: kaggle_evaluation.proto
4
+ # Protobuf Python Version: 4.25.1
5
+ """Generated protocol buffer code."""
6
+ from google.protobuf import descriptor as _descriptor
7
+ from google.protobuf import descriptor_pool as _descriptor_pool
8
+ from google.protobuf import symbol_database as _symbol_database
9
+ from google.protobuf.internal import builder as _builder
10
+ # @@protoc_insertion_point(imports)
11
+
12
+ _sym_db = _symbol_database.Default()
13
+
14
+
15
+
16
+
17
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x17kaggle_evaluation.proto\x12\x18kaggle_evaluation_client\"\xf9\x01\n\x17KaggleEvaluationRequest\x12\x0c\n\x04name\x18\x01 \x01(\t\x12/\n\x04\x61rgs\x18\x02 \x03(\x0b\x32!.kaggle_evaluation_client.Payload\x12M\n\x06kwargs\x18\x03 \x03(\x0b\x32=.kaggle_evaluation_client.KaggleEvaluationRequest.KwargsEntry\x1aP\n\x0bKwargsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x30\n\x05value\x18\x02 \x01(\x0b\x32!.kaggle_evaluation_client.Payload:\x02\x38\x01\"N\n\x18KaggleEvaluationResponse\x12\x32\n\x07payload\x18\x01 \x01(\x0b\x32!.kaggle_evaluation_client.Payload\"\x8d\x04\n\x07Payload\x12\x13\n\tstr_value\x18\x01 \x01(\tH\x00\x12\x14\n\nbool_value\x18\x02 \x01(\x08H\x00\x12\x13\n\tint_value\x18\x03 \x01(\x12H\x00\x12\x15\n\x0b\x66loat_value\x18\x04 \x01(\x02H\x00\x12\x14\n\nnone_value\x18\x05 \x01(\x08H\x00\x12;\n\nlist_value\x18\x06 \x01(\x0b\x32%.kaggle_evaluation_client.PayloadListH\x00\x12<\n\x0btuple_value\x18\x07 \x01(\x0b\x32%.kaggle_evaluation_client.PayloadListH\x00\x12:\n\ndict_value\x18\x08 \x01(\x0b\x32$.kaggle_evaluation_client.PayloadMapH\x00\x12 \n\x16pandas_dataframe_value\x18\t \x01(\x0cH\x00\x12 \n\x16polars_dataframe_value\x18\n \x01(\x0cH\x00\x12\x1d\n\x13pandas_series_value\x18\x0b \x01(\x0cH\x00\x12\x1d\n\x13polars_series_value\x18\x0c \x01(\x0cH\x00\x12\x1b\n\x11numpy_array_value\x18\r \x01(\x0cH\x00\x12\x1c\n\x12numpy_scalar_value\x18\x0e \x01(\x0cH\x00\x12\x18\n\x0e\x62ytes_io_value\x18\x0f \x01(\x0cH\x00\x42\x07\n\x05value\"B\n\x0bPayloadList\x12\x33\n\x08payloads\x18\x01 \x03(\x0b\x32!.kaggle_evaluation_client.Payload\"\xad\x01\n\nPayloadMap\x12I\n\x0bpayload_map\x18\x01 \x03(\x0b\x32\x34.kaggle_evaluation_client.PayloadMap.PayloadMapEntry\x1aT\n\x0fPayloadMapEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x30\n\x05value\x18\x02 \x01(\x0b\x32!.kaggle_evaluation_client.Payload:\x02\x38\x01\x32\x8a\x01\n\x17KaggleEvaluationService\x12o\n\x04Send\x12\x31.kaggle_evaluation_client.KaggleEvaluationRequest\x1a\x32.kaggle_evaluation_client.KaggleEvaluationResponse\"\x00\x62\x06proto3')
18
+
19
+ _globals = globals()
20
+ _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
21
+ _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'kaggle_evaluation_pb2', _globals)
22
+ if _descriptor._USE_C_DESCRIPTORS == False:
23
+ DESCRIPTOR._options = None
24
+ _globals['_KAGGLEEVALUATIONREQUEST_KWARGSENTRY']._options = None
25
+ _globals['_KAGGLEEVALUATIONREQUEST_KWARGSENTRY']._serialized_options = b'8\001'
26
+ _globals['_PAYLOADMAP_PAYLOADMAPENTRY']._options = None
27
+ _globals['_PAYLOADMAP_PAYLOADMAPENTRY']._serialized_options = b'8\001'
28
+ _globals['_KAGGLEEVALUATIONREQUEST']._serialized_start=54
29
+ _globals['_KAGGLEEVALUATIONREQUEST']._serialized_end=303
30
+ _globals['_KAGGLEEVALUATIONREQUEST_KWARGSENTRY']._serialized_start=223
31
+ _globals['_KAGGLEEVALUATIONREQUEST_KWARGSENTRY']._serialized_end=303
32
+ _globals['_KAGGLEEVALUATIONRESPONSE']._serialized_start=305
33
+ _globals['_KAGGLEEVALUATIONRESPONSE']._serialized_end=383
34
+ _globals['_PAYLOAD']._serialized_start=386
35
+ _globals['_PAYLOAD']._serialized_end=911
36
+ _globals['_PAYLOADLIST']._serialized_start=913
37
+ _globals['_PAYLOADLIST']._serialized_end=979
38
+ _globals['_PAYLOADMAP']._serialized_start=982
39
+ _globals['_PAYLOADMAP']._serialized_end=1155
40
+ _globals['_PAYLOADMAP_PAYLOADMAPENTRY']._serialized_start=1071
41
+ _globals['_PAYLOADMAP_PAYLOADMAPENTRY']._serialized_end=1155
42
+ _globals['_KAGGLEEVALUATIONSERVICE']._serialized_start=1158
43
+ _globals['_KAGGLEEVALUATIONSERVICE']._serialized_end=1296
44
+ # @@protoc_insertion_point(module_scope)
kaggle_evaluation/core/generated/kaggle_evaluation_pb2_grpc.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
2
+ """Client and server classes corresponding to protobuf-defined services."""
3
+ import grpc
4
+
5
+ import kaggle_evaluation_pb2 as kaggle__evaluation__pb2
6
+
7
+
8
+ class KaggleEvaluationServiceStub(object):
9
+ """Missing associated documentation comment in .proto file."""
10
+
11
+ def __init__(self, channel):
12
+ """Constructor.
13
+
14
+ Args:
15
+ channel: A grpc.Channel.
16
+ """
17
+ self.Send = channel.unary_unary(
18
+ '/kaggle_evaluation_client.KaggleEvaluationService/Send',
19
+ request_serializer=kaggle__evaluation__pb2.KaggleEvaluationRequest.SerializeToString,
20
+ response_deserializer=kaggle__evaluation__pb2.KaggleEvaluationResponse.FromString,
21
+ )
22
+
23
+
24
+ class KaggleEvaluationServiceServicer(object):
25
+ """Missing associated documentation comment in .proto file."""
26
+
27
+ def Send(self, request, context):
28
+ """Missing associated documentation comment in .proto file."""
29
+ context.set_code(grpc.StatusCode.UNIMPLEMENTED)
30
+ context.set_details('Method not implemented!')
31
+ raise NotImplementedError('Method not implemented!')
32
+
33
+
34
+ def add_KaggleEvaluationServiceServicer_to_server(servicer, server):
35
+ rpc_method_handlers = {
36
+ 'Send': grpc.unary_unary_rpc_method_handler(
37
+ servicer.Send,
38
+ request_deserializer=kaggle__evaluation__pb2.KaggleEvaluationRequest.FromString,
39
+ response_serializer=kaggle__evaluation__pb2.KaggleEvaluationResponse.SerializeToString,
40
+ ),
41
+ }
42
+ generic_handler = grpc.method_handlers_generic_handler(
43
+ 'kaggle_evaluation_client.KaggleEvaluationService', rpc_method_handlers)
44
+ server.add_generic_rpc_handlers((generic_handler,))
45
+
46
+
47
+ # This class is part of an EXPERIMENTAL API.
48
+ class KaggleEvaluationService(object):
49
+ """Missing associated documentation comment in .proto file."""
50
+
51
+ @staticmethod
52
+ def Send(request,
53
+ target,
54
+ options=(),
55
+ channel_credentials=None,
56
+ call_credentials=None,
57
+ insecure=False,
58
+ compression=None,
59
+ wait_for_ready=None,
60
+ timeout=None,
61
+ metadata=None):
62
+ return grpc.experimental.unary_unary(request, target, '/kaggle_evaluation_client.KaggleEvaluationService/Send',
63
+ kaggle__evaluation__pb2.KaggleEvaluationRequest.SerializeToString,
64
+ kaggle__evaluation__pb2.KaggleEvaluationResponse.FromString,
65
+ options, channel_credentials,
66
+ insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
kaggle_evaluation/core/kaggle_evaluation.proto ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Defines the proto service for KaggleEvaluation communication, aiming to provide native
2
+ // support for passing a variety of python primitives + common data science
3
+ // objects, and nested objects thereof.
4
+
5
+ syntax = "proto3";
6
+
7
+ package kaggle_evaluation_client;
8
+
9
+ service KaggleEvaluationService {
10
+ rpc Send(KaggleEvaluationRequest) returns (KaggleEvaluationResponse) {};
11
+ }
12
+
13
+ message KaggleEvaluationRequest {
14
+ string name = 1;
15
+ // Support generic python method calls using standard args / kwargs format.
16
+ repeated Payload args = 2;
17
+ map<string, Payload> kwargs = 3;
18
+ }
19
+
20
+ message KaggleEvaluationResponse {
21
+ Payload payload = 1;
22
+ }
23
+
24
+ // Core object representing a python value.
25
+ message Payload {
26
+ oneof value {
27
+ // Primitives
28
+ string str_value = 1;
29
+ bool bool_value = 2;
30
+ sint64 int_value = 3;
31
+ float float_value = 4;
32
+ // Value is ignored, being set at all means `None`
33
+ bool none_value = 5;
34
+
35
+ // Iterables for nested types
36
+ PayloadList list_value = 6;
37
+ PayloadList tuple_value = 7;
38
+ // Only supports dict with keys of type str and values that are serializable
39
+ // to Payload as well.
40
+ PayloadMap dict_value = 8;
41
+
42
+ // Allowlisted special types
43
+ // pandas.DataFrame
44
+ bytes pandas_dataframe_value = 9;
45
+ // polars.DataFrame
46
+ bytes polars_dataframe_value = 10;
47
+ // pandas.Series
48
+ bytes pandas_series_value = 11;
49
+ // polars.Series
50
+ bytes polars_series_value = 12;
51
+ // numpy.ndarray
52
+ bytes numpy_array_value = 13;
53
+ // numpy.scalar. Distinct from numpy.ndarray to avoid issues with dimensionless numpy arrays
54
+ bytes numpy_scalar_value = 14;
55
+ // io.BytesIO
56
+ bytes bytes_io_value = 15;
57
+ }
58
+ }
59
+
60
+ message PayloadList {
61
+ repeated Payload payloads = 1;
62
+ }
63
+
64
+ message PayloadMap {
65
+ map<string, Payload> payload_map = 1;
66
+ }
kaggle_evaluation/core/relay.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Core implementation of the client module, implementing generic communication
3
+ patterns with Python in / Python out supporting many (nested) primitives +
4
+ special data science types like DataFrames or np.ndarrays, with gRPC + protobuf
5
+ as a backing implementation.
6
+ '''
7
+
8
+ import grpc
9
+ import io
10
+ import json
11
+ import socket
12
+ import time
13
+
14
+ from concurrent import futures
15
+ from typing import Callable, List, Tuple
16
+
17
+ import numpy as np
18
+ import pandas as pd
19
+ import polars as pl
20
+ import pyarrow
21
+
22
+ import kaggle_evaluation.core.generated.kaggle_evaluation_pb2 as kaggle_evaluation_proto
23
+ import kaggle_evaluation.core.generated.kaggle_evaluation_pb2_grpc as kaggle_evaluation_grpc
24
+
25
+
26
+ _SERVICE_CONFIG = {
27
+ # Service config proto: https://github.com/grpc/grpc-proto/blob/ec886024c2f7b7f597ba89d5b7d60c3f94627b17/grpc/service_config/service_config.proto#L377
28
+ 'methodConfig': [
29
+ {
30
+ 'name': [{}], # Applies to all methods
31
+ # See retry policy docs: https://grpc.io/docs/guides/retry/
32
+ 'retryPolicy': {
33
+ 'maxAttempts': 5,
34
+ 'initialBackoff': '0.1s',
35
+ 'maxBackoff': '1s',
36
+ 'backoffMultiplier': 1, # Ensure relatively rapid feedback in the event of a crash
37
+ 'retryableStatusCodes': ['UNAVAILABLE'],
38
+ },
39
+ }
40
+ ]
41
+ }
42
+ _GRPC_PORT = 50051
43
+ _GRPC_CHANNEL_OPTIONS = [
44
+ # -1 for unlimited message send/receive size
45
+ # https://github.com/grpc/grpc/blob/v1.64.x/include/grpc/impl/channel_arg_names.h#L39
46
+ ('grpc.max_send_message_length', -1),
47
+ ('grpc.max_receive_message_length', -1),
48
+ # https://github.com/grpc/grpc/blob/master/doc/keepalive.md
49
+ ('grpc.keepalive_time_ms', 60_000), # Time between heartbeat pings
50
+ ('grpc.keepalive_timeout_ms', 5_000), # Time allowed to respond to pings
51
+ ('grpc.http2.max_pings_without_data', 0), # Remove another cap on pings
52
+ ('grpc.keepalive_permit_without_calls', 1), # Allow heartbeat pings at any time
53
+ ('grpc.http2.min_ping_interval_without_data_ms', 1_000),
54
+ ('grpc.service_config', json.dumps(_SERVICE_CONFIG)),
55
+ ]
56
+
57
+
58
+ DEFAULT_DEADLINE_SECONDS = 60 * 60
59
+ _RETRY_SLEEP_SECONDS = 1
60
+ # Enforce a relatively strict server startup time so users can get feedback quickly if they're not
61
+ # configuring KaggleEvaluation correctly. We really don't want notebooks timing out after nine hours
62
+ # somebody forgot to start their inference_server. Slow steps like loading models
63
+ # can happen during the first inference call if necessary.
64
+ STARTUP_LIMIT_SECONDS = 60 * 15
65
+
66
+ ### Utils shared by client and server for data transfer
67
+
68
+ # pl.Enum is currently unstable, but we should eventually consider supporting it.
69
+ # https://docs.pola.rs/api/python/stable/reference/api/polars.datatypes.Enum.html#polars.datatypes.Enum
70
+ _POLARS_TYPE_DENYLIST = set([pl.Enum, pl.Object, pl.Unknown])
71
+
72
+ def _serialize(data) -> kaggle_evaluation_proto.Payload:
73
+ '''Maps input data of one of several allow-listed types to a protobuf message to be sent over gRPC.
74
+
75
+ Args:
76
+ data: The input data to be mapped. Any of the types listed below are accepted.
77
+
78
+ Returns:
79
+ The Payload protobuf message.
80
+
81
+ Raises:
82
+ TypeError if data is of an unsupported type.
83
+ '''
84
+ # Python primitives and Numpy scalars
85
+ if isinstance(data, np.generic):
86
+ # Numpy functions that return a single number return numpy scalars instead of python primitives.
87
+ # In some cases this difference matters: https://numpy.org/devdocs/release/2.0.0-notes.html#representation-of-numpy-scalars-changed
88
+ # Ex: np.mean(1,2) yields np.float64(1.5) instead of 1.5.
89
+ # Check for numpy scalars first since most of them also inherit from python primitives.
90
+ # For example, `np.float64(1.5)` is an instance of `float` among many other things.
91
+ # https://numpy.org/doc/stable/reference/arrays.scalars.html
92
+ assert data.shape == () # Additional validation that the np.generic type remains solely for scalars
93
+ assert isinstance(data, np.number) or isinstance(data, np.bool_) # No support for bytes, strings, objects, etc
94
+ buffer = io.BytesIO()
95
+ np.save(buffer, data, allow_pickle=False)
96
+ return kaggle_evaluation_proto.Payload(numpy_scalar_value=buffer.getvalue())
97
+ elif isinstance(data, str):
98
+ return kaggle_evaluation_proto.Payload(str_value=data)
99
+ elif isinstance(data, bool): # bool is a subclass of int, so check that first
100
+ return kaggle_evaluation_proto.Payload(bool_value=data)
101
+ elif isinstance(data, int):
102
+ return kaggle_evaluation_proto.Payload(int_value=data)
103
+ elif isinstance(data, float):
104
+ return kaggle_evaluation_proto.Payload(float_value=data)
105
+ elif data is None:
106
+ return kaggle_evaluation_proto.Payload(none_value=True)
107
+ # Iterables for nested types
108
+ if isinstance(data, list):
109
+ return kaggle_evaluation_proto.Payload(list_value=kaggle_evaluation_proto.PayloadList(payloads=map(_serialize, data)))
110
+ elif isinstance(data, tuple):
111
+ return kaggle_evaluation_proto.Payload(tuple_value=kaggle_evaluation_proto.PayloadList(payloads=map(_serialize, data)))
112
+ elif isinstance(data, dict):
113
+ serialized_dict = {}
114
+ for key, value in data.items():
115
+ if not isinstance(key, str):
116
+ raise TypeError(f'KaggleEvaluation only supports dicts with keys of type str, found {type(key)}.')
117
+ serialized_dict[key] = _serialize(value)
118
+ return kaggle_evaluation_proto.Payload(dict_value=kaggle_evaluation_proto.PayloadMap(payload_map=serialized_dict))
119
+ # Allowlisted special types
120
+ if isinstance(data, pd.DataFrame):
121
+ buffer = io.BytesIO()
122
+ data.to_parquet(buffer, index=False, compression='lz4')
123
+ return kaggle_evaluation_proto.Payload(pandas_dataframe_value=buffer.getvalue())
124
+ elif isinstance(data, pl.DataFrame):
125
+ data_types = set(i.base_type() for i in data.dtypes)
126
+ banned_types = _POLARS_TYPE_DENYLIST.intersection(data_types)
127
+ if len(banned_types) > 0:
128
+ raise TypeError(f'Unsupported Polars data type(s): {banned_types}')
129
+
130
+ table = data.to_arrow()
131
+ buffer = io.BytesIO()
132
+ with pyarrow.ipc.new_stream(buffer, table.schema, options=pyarrow.ipc.IpcWriteOptions(compression='lz4')) as writer:
133
+ writer.write_table(table)
134
+ return kaggle_evaluation_proto.Payload(polars_dataframe_value=buffer.getvalue())
135
+ elif isinstance(data, pd.Series):
136
+ buffer = io.BytesIO()
137
+ # Can't serialize a pd.Series directly to parquet, must use intermediate DataFrame
138
+ pd.DataFrame(data).to_parquet(buffer, index=False, compression='lz4')
139
+ return kaggle_evaluation_proto.Payload(pandas_series_value=buffer.getvalue())
140
+ elif isinstance(data, pl.Series):
141
+ buffer = io.BytesIO()
142
+ # Can't serialize a pl.Series directly to parquet, must use intermediate DataFrame
143
+ pl.DataFrame(data).write_parquet(buffer, compression='lz4', statistics=False)
144
+ return kaggle_evaluation_proto.Payload(polars_series_value=buffer.getvalue())
145
+ elif isinstance(data, np.ndarray):
146
+ buffer = io.BytesIO()
147
+ np.save(buffer, data, allow_pickle=False)
148
+ return kaggle_evaluation_proto.Payload(numpy_array_value=buffer.getvalue())
149
+ elif isinstance(data, io.BytesIO):
150
+ return kaggle_evaluation_proto.Payload(bytes_io_value=data.getvalue())
151
+
152
+ raise TypeError(f'Type {type(data)} not supported for KaggleEvaluation.')
153
+
154
+
155
+ def _deserialize(payload: kaggle_evaluation_proto.Payload):
156
+ '''Maps a Payload protobuf message to a value of whichever type was set on the message.
157
+
158
+ Args:
159
+ payload: The message to be mapped.
160
+
161
+ Returns:
162
+ A value of one of several allow-listed types.
163
+
164
+ Raises:
165
+ TypeError if an unexpected value data type is found.
166
+ '''
167
+ # Primitives
168
+ if payload.WhichOneof('value') == 'str_value':
169
+ return payload.str_value
170
+ elif payload.WhichOneof('value') == 'bool_value':
171
+ return payload.bool_value
172
+ elif payload.WhichOneof('value') == 'int_value':
173
+ return payload.int_value
174
+ elif payload.WhichOneof('value') == 'float_value':
175
+ return payload.float_value
176
+ elif payload.WhichOneof('value') == 'none_value':
177
+ return None
178
+ # Iterables for nested types
179
+ elif payload.WhichOneof('value') == 'list_value':
180
+ return list(map(_deserialize, payload.list_value.payloads))
181
+ elif payload.WhichOneof('value') == 'tuple_value':
182
+ return tuple(map(_deserialize, payload.tuple_value.payloads))
183
+ elif payload.WhichOneof('value') == 'dict_value':
184
+ return {key: _deserialize(value) for key, value in payload.dict_value.payload_map.items()}
185
+ # Allowlisted special types
186
+ elif payload.WhichOneof('value') == 'pandas_dataframe_value':
187
+ return pd.read_parquet(io.BytesIO(payload.pandas_dataframe_value))
188
+ elif payload.WhichOneof('value') == 'polars_dataframe_value':
189
+ with pyarrow.ipc.open_stream(payload.polars_dataframe_value) as reader:
190
+ table = reader.read_all()
191
+ return pl.from_arrow(table)
192
+ elif payload.WhichOneof('value') == 'pandas_series_value':
193
+ # Pandas will still read a single column csv as a DataFrame.
194
+ df = pd.read_parquet(io.BytesIO(payload.pandas_series_value))
195
+ return pd.Series(df[df.columns[0]])
196
+ elif payload.WhichOneof('value') == 'polars_series_value':
197
+ return pl.Series(pl.read_parquet(io.BytesIO(payload.polars_series_value)))
198
+ elif payload.WhichOneof('value') == 'numpy_array_value':
199
+ return np.load(io.BytesIO(payload.numpy_array_value), allow_pickle=False)
200
+ elif payload.WhichOneof('value') == 'numpy_scalar_value':
201
+ data = np.load(io.BytesIO(payload.numpy_scalar_value), allow_pickle=False)
202
+ # As of Numpy 2.0.2, np.load for a numpy scalar yields a dimensionless array instead of a scalar
203
+ data = data.dtype.type(data) # Restore the expected numpy scalar type.
204
+ assert data.shape == () # Additional validation that the np.generic type remains solely for scalars
205
+ assert isinstance(data, np.number) or isinstance(data, np.bool_) # No support for bytes, strings, objects, etc
206
+ return data
207
+ elif payload.WhichOneof('value') == 'bytes_io_value':
208
+ return io.BytesIO(payload.bytes_io_value)
209
+
210
+ raise TypeError(f'Found unknown Payload case {payload.WhichOneof("value")}')
211
+
212
+ ### Client code
213
+
214
+ class Client():
215
+ '''
216
+ Class which allows callers to make KaggleEvaluation requests.
217
+ '''
218
+ def __init__(self, channel_address: str='localhost'):
219
+ self.channel_address = channel_address
220
+ self.channel = grpc.insecure_channel(f'{channel_address}:{_GRPC_PORT}', options=_GRPC_CHANNEL_OPTIONS)
221
+ self._made_first_connection = False
222
+ self.endpoint_deadline_seconds = DEFAULT_DEADLINE_SECONDS
223
+ self.stub = kaggle_evaluation_grpc.KaggleEvaluationServiceStub(self.channel)
224
+
225
+ def _send_with_deadline(self, request):
226
+ ''' Sends a message to the server while also:
227
+ - Throwing an error as soon as the inference_server container has been shut down.
228
+ - Setting a deadline of STARTUP_LIMIT_SECONDS for the inference_server to startup.
229
+ '''
230
+ if self._made_first_connection:
231
+ return self.stub.Send(request, wait_for_ready=False, timeout=self.endpoint_deadline_seconds)
232
+
233
+ first_call_time = time.time()
234
+ # Allow time for the server to start as long as its container is running
235
+ while time.time() - first_call_time < STARTUP_LIMIT_SECONDS:
236
+ try:
237
+ response = self.stub.Send(request, wait_for_ready=False)
238
+ self._made_first_connection = True
239
+ break
240
+ except grpc._channel._InactiveRpcError as err:
241
+ if 'StatusCode.UNAVAILABLE' not in str(err):
242
+ raise err
243
+ # Confirm the inference_server container is still alive & it's worth waiting on the server.
244
+ # If the inference_server container is no longer running this will throw a socket.gaierror.
245
+ socket.gethostbyname(self.channel_address)
246
+ time.sleep(_RETRY_SLEEP_SECONDS)
247
+
248
+ if not self._made_first_connection:
249
+ raise RuntimeError(f'Failed to connect to server after waiting {STARTUP_LIMIT_SECONDS} seconds')
250
+ return response
251
+
252
+ def send(self, name: str, *args, **kwargs):
253
+ '''Sends a single KaggleEvaluation request.
254
+
255
+ Args:
256
+ name: The endpoint name for the request.
257
+ *args: Variable-length/type arguments to be supplied on the request.
258
+ **kwargs: Key-value arguments to be supplied on the request.
259
+
260
+ Returns:
261
+ The response, which is of one of several allow-listed data types.
262
+ '''
263
+ request = kaggle_evaluation_proto.KaggleEvaluationRequest(
264
+ name=name,
265
+ args=map(_serialize, args),
266
+ kwargs={key: _serialize(value) for key, value in kwargs.items()}
267
+ )
268
+ response = self._send_with_deadline(request)
269
+
270
+ return _deserialize(response.payload)
271
+
272
+ def close(self):
273
+ self.channel.close()
274
+
275
+
276
+ ### Server code
277
+
278
+ class KaggleEvaluationServiceServicer(kaggle_evaluation_grpc.KaggleEvaluationServiceServicer):
279
+ '''
280
+ Class which allows serving responses to KaggleEvaluation requests. The inference_server will run this service to listen for and respond
281
+ to requests from the Gateway. The Gateway may also listen for requests from the inference_server in some cases.
282
+ '''
283
+ def __init__(self, listeners: List[callable]):
284
+ self.listeners_map = dict((func.__name__, func) for func in listeners)
285
+
286
+ # pylint: disable=unused-argument
287
+ def Send(self, request: kaggle_evaluation_proto.KaggleEvaluationRequest, context: grpc.ServicerContext) -> kaggle_evaluation_proto.KaggleEvaluationResponse:
288
+ '''Handler for gRPC requests that deserializes arguments, calls a user-registered function for handling the
289
+ requested endpoint, then serializes and returns the response.
290
+
291
+ Args:
292
+ request: The KaggleEvaluationRequest protobuf message.
293
+ context: (Unused) gRPC context.
294
+
295
+ Returns:
296
+ The KaggleEvaluationResponse protobuf message.
297
+
298
+ Raises:
299
+ NotImplementedError if the caller has not registered a handler for the requested endpoint.
300
+ '''
301
+ if request.name not in self.listeners_map:
302
+ raise NotImplementedError(f'No listener for {request.name} was registered.')
303
+
304
+ args = map(_deserialize, request.args)
305
+ kwargs = {key: _deserialize(value) for key, value in request.kwargs.items()}
306
+ response_function = self.listeners_map[request.name]
307
+ response_payload = _serialize(response_function(*args, **kwargs))
308
+ return kaggle_evaluation_proto.KaggleEvaluationResponse(payload=response_payload)
309
+
310
+ def define_server(*endpoint_listeners: Tuple[Callable]) -> grpc.server:
311
+ '''Registers the endpoints that the container is able to respond to, then starts a server which listens for
312
+ those endpoints. The endpoints that need to be implemented will depend on the specific competition.
313
+
314
+ Args:
315
+ endpoint_listeners: Tuple of functions that define how requests to the endpoint of the function name should be
316
+ handled.
317
+
318
+ Returns:
319
+ The gRPC server object, which has been started. It should be stopped at exit time.
320
+
321
+ Raises:
322
+ ValueError if parameter values are invalid.
323
+ '''
324
+ if not endpoint_listeners:
325
+ raise ValueError('Must pass at least one endpoint listener, e.g. `predict`')
326
+ for func in endpoint_listeners:
327
+ if not isinstance(func, Callable):
328
+ raise ValueError('Endpoint listeners passed to `serve` must be functions')
329
+ if func.__name__ == '<lambda>':
330
+ raise ValueError('Functions passed as endpoint listeners must be named')
331
+
332
+ server = grpc.server(futures.ThreadPoolExecutor(max_workers=1), options=_GRPC_CHANNEL_OPTIONS)
333
+ kaggle_evaluation_grpc.add_KaggleEvaluationServiceServicer_to_server(KaggleEvaluationServiceServicer(endpoint_listeners), server)
334
+ server.add_insecure_port(f'[::]:{_GRPC_PORT}')
335
+ return server
kaggle_evaluation/core/templates.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''Template for the two classes hosts should customize for each competition.'''
2
+
3
+ import abc
4
+ import os
5
+ import time
6
+ import sys
7
+ import traceback
8
+ import warnings
9
+
10
+ from typing import Callable, Generator, Tuple
11
+
12
+ import kaggle_evaluation.core.base_gateway
13
+ import kaggle_evaluation.core.relay
14
+
15
+ _initial_import_time = time.time()
16
+ _issued_startup_time_warning = False
17
+
18
+
19
+ class Gateway(kaggle_evaluation.core.base_gateway.BaseGateway, abc.ABC):
20
+ '''
21
+ Template to start with when writing a new gateway.
22
+ In most cases, hosts should only need to write get_all_predictions.
23
+ There are two main methods for sending data to the inference_server hosts should understand:
24
+ - Small datasets: use `self.predict`. Competitors will receive the data passed to self.predict as
25
+ Python objects in memory. This is just a wrapper for self.client.send(); you can write additional
26
+ wrappers if necessary.
27
+ - Large datasets: it's much faster to send data via self.share_files, which is equivalent to making
28
+ files available via symlink. See base_gateway.BaseGateway.share_files for the full details.
29
+ '''
30
+ @abc.abstractmethod
31
+ def unpack_data_paths(self):
32
+ ''' Map the contents of self.data_paths to the competition-specific entries
33
+ Each competition should respect these paths to make it easy for competitors to
34
+ run tests on their local machines or with custom files.
35
+
36
+ Should include default paths to support data_paths = None.
37
+ '''
38
+ raise NotImplementedError
39
+
40
+ @abc.abstractmethod
41
+ def generate_data_batches(self) -> Generator:
42
+ ''' Used by the default implementation of `get_all_predictions` so we can
43
+ ensure `validate_prediction_batch` is run every time `predict` is called.
44
+
45
+ This method must yield both the batch of data to be sent to `predict` and the validation
46
+ data sent to `validate_prediction_batch`.
47
+ '''
48
+ raise NotImplementedError
49
+
50
+ def get_all_predictions(self):
51
+ all_predictions = []
52
+ for data_batch, validation_batch in self.generate_data_batches():
53
+ predictions = self.predict(*data_batch)
54
+ self.validate_prediction_batch(predictions, validation_batch)
55
+ all_predictions.append(predictions)
56
+ return all_predictions
57
+
58
+ def predict(self, *args, **kwargs):
59
+ ''' self.predict will send all data in args and kwargs to the user container, and
60
+ instruct the user container to generate a `predict` response.
61
+
62
+ '''
63
+ try:
64
+ return self.client.send('predict', *args, **kwargs)
65
+ except Exception as e:
66
+ self.handle_server_error(e, 'predict')
67
+
68
+ def set_response_timeout_seconds(self, timeout_seconds: float=6_000):
69
+ # Set a response deadline that will apply after the very first repsonse
70
+ self.client.endpoint_deadline_seconds = timeout_seconds
71
+
72
+ def run(self):
73
+ error = None
74
+ try:
75
+ self.unpack_data_paths()
76
+ predictions = self.get_all_predictions()
77
+ self.write_submission(predictions)
78
+ except kaggle_evaluation.core.base_gateway.GatewayRuntimeError as gre:
79
+ error = gre
80
+ except Exception:
81
+ # Get the full stack trace
82
+ exc_type, exc_value, exc_traceback = sys.exc_info()
83
+ error_str = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback))
84
+
85
+ error = kaggle_evaluation.core.base_gateway.GatewayRuntimeError(
86
+ kaggle_evaluation.core.base_gateway.GatewayRuntimeErrorType.GATEWAY_RAISED_EXCEPTION,
87
+ error_str
88
+ )
89
+
90
+ self.client.close()
91
+ if self.server:
92
+ self.server.stop(0)
93
+
94
+ if kaggle_evaluation.core.base_gateway.IS_RERUN:
95
+ self.write_result(error)
96
+ elif error:
97
+ # For local testing
98
+ raise error
99
+
100
+
101
+ class InferenceServer(abc.ABC):
102
+ '''
103
+ Base class for competition participants to inherit from when writing their submission. In most cases, users should
104
+ only need to implement a `predict` function or other endpoints to pass to this class's constructor, and hosts will
105
+ provide a mock Gateway for testing.
106
+ '''
107
+ def __init__(self, endpoint_listeners: Tuple[Callable]):
108
+ self.server = kaggle_evaluation.core.relay.define_server(endpoint_listeners)
109
+ self.client = None # The inference_server can have a client but it isn't typically necessary.
110
+ self._issued_startup_time_warning = False
111
+ self._startup_limit_seconds = kaggle_evaluation.core.relay.STARTUP_LIMIT_SECONDS
112
+
113
+ def serve(self):
114
+ self.server.start()
115
+ if os.getenv('KAGGLE_IS_COMPETITION_RERUN') is not None:
116
+ self.server.wait_for_termination() # This will block all other code
117
+
118
+ @abc.abstractmethod
119
+ def _get_gateway_for_test(self, data_paths):
120
+ # TODO: This should return a version of the competition-specific gateway that's able to load
121
+ # data used for unit tests.
122
+ raise NotImplementedError
123
+
124
+ def run_local_gateway(self, data_paths=None):
125
+ global _issued_startup_time_warning
126
+ script_elapsed_seconds = time.time() - _initial_import_time
127
+ if script_elapsed_seconds > self._startup_limit_seconds and not _issued_startup_time_warning:
128
+ warnings.warn(
129
+ f'''{int(script_elapsed_seconds)} seconds elapsed before server startup.
130
+ This exceeds the startup time limit of {int(self._startup_limit_seconds)} seconds that the gateway will enforce
131
+ during the rerun on the hidden test set. Start the server before performing any time consuming steps.''',
132
+ category=RuntimeWarning
133
+ )
134
+ _issued_startup_time_warning = True
135
+
136
+ self.server.start()
137
+ try:
138
+ self.gateway = self._get_gateway_for_test(data_paths)
139
+ self.gateway.run()
140
+ except Exception as err:
141
+ raise err from None
142
+ finally:
143
+ self.server.stop(0)
kaggle_evaluation/jane_street_gateway.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Gateway notebook for https://www.kaggle.com/competitions/jane-street-real-time-market-data-forecasting"""
2
+
3
+ import os
4
+
5
+ import kaggle_evaluation.core.base_gateway
6
+ import kaggle_evaluation.core.templates
7
+ import polars as pl
8
+
9
+
10
+ class JSGateway(kaggle_evaluation.core.templates.Gateway):
11
+ def __init__(self, data_paths: tuple[str, str] | None = None):
12
+ super().__init__(data_paths, file_share_dir=None)
13
+ self.data_paths = data_paths
14
+ self.set_response_timeout_seconds(60)
15
+
16
+ def unpack_data_paths(self):
17
+ if not self.data_paths:
18
+ self.test_path = (
19
+ "/kaggle/input/jane-street-realtime-marketdata-forecasting/test.parquet"
20
+ )
21
+ self.lags_path = (
22
+ "/kaggle/input/jane-street-realtime-marketdata-forecasting/lags.parquet"
23
+ )
24
+ else:
25
+ self.test_path, self.lags_path = self.data_paths
26
+
27
+ def generate_data_batches(self):
28
+ date_ids = sorted(
29
+ pl.scan_parquet(self.test_path)
30
+ .select(pl.col("date_id").unique())
31
+ .collect()
32
+ .get_column("date_id")
33
+ )
34
+ assert date_ids[0] == 0
35
+
36
+ for date_id in date_ids:
37
+ test_batches = pl.read_parquet(
38
+ os.path.join(self.test_path, f"date_id={date_id}"),
39
+ ).group_by("time_id", maintain_order=True)
40
+
41
+ lags = pl.read_parquet(
42
+ os.path.join(self.lags_path, f"date_id={date_id}"),
43
+ )
44
+
45
+ for (time_id,), test in test_batches:
46
+ test_data = (test, lags if time_id == 0 else None)
47
+ validation_data = test.select('row_id')
48
+ yield test_data, validation_data
49
+
50
+
51
+ if __name__ == "__main__":
52
+ if os.getenv("KAGGLE_IS_COMPETITION_RERUN"):
53
+ gateway = JSGateway()
54
+ # Relies on valid default data paths
55
+ gateway.run()
56
+ else:
57
+ print("Skipping run for now")
kaggle_evaluation/jane_street_inference_server.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import kaggle_evaluation.core.templates
3
+
4
+ import jane_street_gateway
5
+
6
+
7
+ class JSInferenceServer(kaggle_evaluation.core.templates.InferenceServer):
8
+ def _get_gateway_for_test(self, data_paths=None):
9
+ return jane_street_gateway.JSGateway(data_paths)
lags.parquet/.DS_Store ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189f13537da47c0531de399d77a57f11df733d7fbef684d5b38f62918b03470e
3
+ size 6148
lags.parquet/date_id=0/part-0.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9492d4475c5d06725019fd037d0e61ab9cede5a4d49293bd874a95f3c7813bb
3
+ size 5752
test.parquet/.DS_Store ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d663248193e5b378048c20c00c5e1d480a9cf788a05fed70a2539e98b1d3a156
3
+ size 6148
test.parquet/date_id=0/part-0.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b73c5a30da6d6cd386c9d28cd7cb43b40a877ffdb7ab4420d7b0b8eac19c9b6
3
+ size 28165