TID2008 / TID2008.py
Jorgvt's picture
rollback
27ae164
raw
history blame
2.7 kB
import os
import pandas as pd
import datasets
_CITATION = """\
@article{ponomarenko_tid2008_2009,
author = {Ponomarenko, Nikolay and Lukin, Vladimir and Zelensky, Alexander and Egiazarian, Karen and Astola, Jaakko and Carli, Marco and Battisti, Federica},
title = {{TID2008} -- {A} {Database} for {Evaluation} of {Full}- {Reference} {Visual} {Quality} {Assessment} {Metrics}},
year = {2009}
}
"""
_DESCRIPTION = """\
Image Quality Assessment Dataset consisting of 25 reference images, 17 different distortions and 4 intensities per distortion.
In total there are 1700 (reference, distortion, MOS) tuples.
"""
_HOMEPAGE = "https://www.ponomarenko.info/tid2008.htm"
# _LICENSE = ""
class TID2008(datasets.GeneratorBasedBuilder):
"""TID2008 Image Quality Dataset"""
VERSION = datasets.Version("1.0.0")
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"reference": datasets.Image(),
"distorted": datasets.Image(),
"mos": datasets.Value("float"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
# supervised_keys=("reference", "distorted", "mos"),
homepage=_HOMEPAGE,
# license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_path = dl_manager.download("data.zip")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": dl_manager.download_and_extract(data_path),
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, data, split):
df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
reference_paths = (
df["Reference"]
.apply(lambda x: os.path.join(data, "reference_images", x))
.to_list()
)
distorted_paths = (
df["Distorted"]
.apply(lambda x: os.path.join(data, "distorted_images", x))
.to_list()
)
for key, (ref, dist, m) in enumerate(
zip(reference_paths, distorted_paths, df["MOS"])
):
yield (
key,
{
"reference": ref,
"distorted": dist,
"mos": m,
},
)