rollback
Browse files- TID2008.py +18 -17
TID2008.py
CHANGED
@@ -47,34 +47,34 @@ class TID2008(datasets.GeneratorBasedBuilder):
|
|
47 |
|
48 |
def _split_generators(self, dl_manager):
|
49 |
data_path = dl_manager.download("data.zip")
|
50 |
-
data_path = dl_manager.download_and_extract(data_path)
|
51 |
-
df = pd.read_csv(os.path.join(data_path, "image_pairs_mos.csv"), index_col=0)
|
52 |
-
reference_paths = (
|
53 |
-
df["Reference"]
|
54 |
-
.apply(lambda x: os.path.join(data_path, "reference_images", x))
|
55 |
-
.to_list()
|
56 |
-
)
|
57 |
-
distorted_paths = (
|
58 |
-
df["Distorted"]
|
59 |
-
.apply(lambda x: os.path.join(data_path, "distorted_images", x))
|
60 |
-
.to_list()
|
61 |
-
)
|
62 |
|
63 |
return [
|
64 |
datasets.SplitGenerator(
|
65 |
name=datasets.Split.TRAIN,
|
66 |
gen_kwargs={
|
67 |
-
"
|
68 |
-
"distorted": distorted_paths,
|
69 |
-
"mos": df["MOS"],
|
70 |
"split": "train",
|
71 |
},
|
72 |
)
|
73 |
]
|
74 |
|
75 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
76 |
-
def _generate_examples(self,
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
yield (
|
79 |
key,
|
80 |
{
|
@@ -83,3 +83,4 @@ class TID2008(datasets.GeneratorBasedBuilder):
|
|
83 |
"mos": m,
|
84 |
},
|
85 |
)
|
|
|
|
47 |
|
48 |
def _split_generators(self, dl_manager):
|
49 |
data_path = dl_manager.download("data.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
return [
|
52 |
datasets.SplitGenerator(
|
53 |
name=datasets.Split.TRAIN,
|
54 |
gen_kwargs={
|
55 |
+
"data": dl_manager.download_and_extract(data_path),
|
|
|
|
|
56 |
"split": "train",
|
57 |
},
|
58 |
)
|
59 |
]
|
60 |
|
61 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
62 |
+
def _generate_examples(self, data, split):
|
63 |
+
df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
|
64 |
+
reference_paths = (
|
65 |
+
df["Reference"]
|
66 |
+
.apply(lambda x: os.path.join(data, "reference_images", x))
|
67 |
+
.to_list()
|
68 |
+
)
|
69 |
+
distorted_paths = (
|
70 |
+
df["Distorted"]
|
71 |
+
.apply(lambda x: os.path.join(data, "distorted_images", x))
|
72 |
+
.to_list()
|
73 |
+
)
|
74 |
+
|
75 |
+
for key, (ref, dist, m) in enumerate(
|
76 |
+
zip(reference_paths, distorted_paths, df["MOS"])
|
77 |
+
):
|
78 |
yield (
|
79 |
key,
|
80 |
{
|
|
|
83 |
"mos": m,
|
84 |
},
|
85 |
)
|
86 |
+
|