Jorgvt commited on
Commit
e6d5ade
1 Parent(s): 617a266

turn_into_zip (#1)

Browse files

- :sparkles: Added zip file support for faster download and errorless csv reading (0674e0e203226d313757af0ddadc011f324fbe76)

Files changed (2) hide show
  1. TID2008.py +29 -19
  2. data.zip +3 -0
TID2008.py CHANGED
@@ -21,6 +21,7 @@ _HOMEPAGE = "https://www.ponomarenko.info/tid2008.htm"
21
 
22
  # _LICENSE = ""
23
 
 
24
  class TID2008(datasets.GeneratorBasedBuilder):
25
  """TID2008 Image Quality Dataset"""
26
 
@@ -32,7 +33,7 @@ class TID2008(datasets.GeneratorBasedBuilder):
32
  {
33
  "reference": datasets.Image(),
34
  "distorted": datasets.Image(),
35
- "mos": datasets.Value("float")
36
  }
37
  )
38
  return datasets.DatasetInfo(
@@ -45,32 +46,41 @@ class TID2008(datasets.GeneratorBasedBuilder):
45
  )
46
 
47
  def _split_generators(self, dl_manager):
48
- data_path = dl_manager.download("image_pairs_mos.csv")
49
- data = pd.read_csv(data_path, index_col=0)
50
-
51
- reference_paths = data["Reference"].apply(lambda x: os.path.join("reference_images", x)).to_list()
52
- distorted_paths = data["Distorted"].apply(lambda x: os.path.join("distorted_images", x)).to_list()
53
-
54
- reference_paths = dl_manager.download(reference_paths)
55
- distorted_paths = dl_manager.download(distorted_paths)
56
 
57
  return [
58
  datasets.SplitGenerator(
59
  name=datasets.Split.TRAIN,
60
  gen_kwargs={
61
- "reference": reference_paths,
62
- "distorted": distorted_paths,
63
- "mos": data["MOS"],
64
  "split": "train",
65
  },
66
  )
67
  ]
68
 
69
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
70
- def _generate_examples(self, reference, distorted, mos, split):
71
- for key, (ref, dist, m) in enumerate(zip(reference, distorted, mos)):
72
- yield key, {
73
- "reference": ref,
74
- "distorted": dist,
75
- "mos": m,
76
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  # _LICENSE = ""
23
 
24
+
25
  class TID2008(datasets.GeneratorBasedBuilder):
26
  """TID2008 Image Quality Dataset"""
27
 
 
33
  {
34
  "reference": datasets.Image(),
35
  "distorted": datasets.Image(),
36
+ "mos": datasets.Value("float"),
37
  }
38
  )
39
  return datasets.DatasetInfo(
 
46
  )
47
 
48
  def _split_generators(self, dl_manager):
49
+ data_path = dl_manager.download("data.zip")
 
 
 
 
 
 
 
50
 
51
  return [
52
  datasets.SplitGenerator(
53
  name=datasets.Split.TRAIN,
54
  gen_kwargs={
55
+ "data": dl_manager.download_and_extract(data_path),
 
 
56
  "split": "train",
57
  },
58
  )
59
  ]
60
 
61
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
62
+ def _generate_examples(self, data, split):
63
+ df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
64
+ reference_paths = (
65
+ df["Reference"]
66
+ .apply(lambda x: os.path.join(data, "reference_images", x))
67
+ .to_list()
68
+ )
69
+ distorted_paths = (
70
+ df["Distorted"]
71
+ .apply(lambda x: os.path.join(data, "distorted_images", x))
72
+ .to_list()
73
+ )
74
+
75
+ for key, (ref, dist, m) in enumerate(
76
+ zip(reference_paths, distorted_paths, df["MOS"])
77
+ ):
78
+ yield (
79
+ key,
80
+ {
81
+ "reference": ref,
82
+ "distorted": dist,
83
+ "mos": m,
84
+ },
85
+ )
86
+
data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c048c69418cb0146fe8363f637a35e16623ca6ce25a8b6bfcdd9fb47e85ecaf6
3
+ size 704640392