import os import pandas as pd import datasets _CITATION = """\ @article{ponomarenko_tid2008_2009, author = {Ponomarenko, Nikolay and Lukin, Vladimir and Zelensky, Alexander and Egiazarian, Karen and Astola, Jaakko and Carli, Marco and Battisti, Federica}, title = {{TID2008} -- {A} {Database} for {Evaluation} of {Full}- {Reference} {Visual} {Quality} {Assessment} {Metrics}}, year = {2009} } """ _DESCRIPTION = """\ Image Quality Assessment Dataset consisting of 25 reference images, 17 different distortions and 4 intensities per distortion. In total there are 1700 (reference, distortion, MOS) tuples. """ _HOMEPAGE = "https://www.ponomarenko.info/tid2008.htm" # _LICENSE = "" class TID2008(datasets.GeneratorBasedBuilder): """TID2008 Image Quality Dataset""" VERSION = datasets.Version("1.0.0") def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "reference": datasets.Image(), "distorted": datasets.Image(), "mos": datasets.Value("float"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # supervised_keys=("reference", "distorted", "mos"), homepage=_HOMEPAGE, # license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_path = dl_manager.download("data.zip") data_path = dl_manager.download_and_extract(data_path) df = pd.read_csv(os.path.join(data_path, "image_pairs_mos.csv"), index_col=0) reference_paths = ( df["Reference"] .apply(lambda x: os.path.join(data_path, "reference_images", x)) .to_list() ) distorted_paths = ( df["Distorted"] .apply(lambda x: os.path.join(data_path, "distorted_images", x)) .to_list() ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "reference": reference_paths, "distorted": distorted_paths, "mos": df["MOS"], "split": "train", }, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, reference, distorted, mos, split): for key, (ref, dist, m) in enumerate(zip(reference, distorted, mos)): yield ( key, { "reference": ref, "distorted": dist, "mos": m, }, )