:sparkles: added support for zip file
Browse files- TID2013.py +28 -19
TID2013.py
CHANGED
@@ -33,6 +33,7 @@ _HOMEPAGE = "https://www.ponomarenko.info/tid2013.htm"
|
|
33 |
|
34 |
# _LICENSE = ""
|
35 |
|
|
|
36 |
class TID2013(datasets.GeneratorBasedBuilder):
|
37 |
"""TID2013 Image Quality Dataset"""
|
38 |
|
@@ -44,7 +45,7 @@ class TID2013(datasets.GeneratorBasedBuilder):
|
|
44 |
{
|
45 |
"reference": datasets.Image(),
|
46 |
"distorted": datasets.Image(),
|
47 |
-
"mos": datasets.Value("float")
|
48 |
}
|
49 |
)
|
50 |
return datasets.DatasetInfo(
|
@@ -57,32 +58,40 @@ class TID2013(datasets.GeneratorBasedBuilder):
|
|
57 |
)
|
58 |
|
59 |
def _split_generators(self, dl_manager):
|
60 |
-
data_path = dl_manager.download("
|
61 |
-
data = pd.read_csv(data_path, index_col=0)
|
62 |
-
|
63 |
-
reference_paths = data["Reference"].apply(lambda x: os.path.join("reference_images", x)).to_list()
|
64 |
-
distorted_paths = data["Distorted"].apply(lambda x: os.path.join("distorted_images", x)).to_list()
|
65 |
-
|
66 |
-
reference_paths = dl_manager.download(reference_paths)
|
67 |
-
distorted_paths = dl_manager.download(distorted_paths)
|
68 |
|
69 |
return [
|
70 |
datasets.SplitGenerator(
|
71 |
name=datasets.Split.TRAIN,
|
72 |
gen_kwargs={
|
73 |
-
"
|
74 |
-
"distorted": distorted_paths,
|
75 |
-
"mos": data["MOS"],
|
76 |
"split": "train",
|
77 |
},
|
78 |
)
|
79 |
]
|
80 |
|
81 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
82 |
-
def _generate_examples(self,
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# _LICENSE = ""
|
35 |
|
36 |
+
|
37 |
class TID2013(datasets.GeneratorBasedBuilder):
|
38 |
"""TID2013 Image Quality Dataset"""
|
39 |
|
|
|
45 |
{
|
46 |
"reference": datasets.Image(),
|
47 |
"distorted": datasets.Image(),
|
48 |
+
"mos": datasets.Value("float"),
|
49 |
}
|
50 |
)
|
51 |
return datasets.DatasetInfo(
|
|
|
58 |
)
|
59 |
|
60 |
def _split_generators(self, dl_manager):
|
61 |
+
data_path = dl_manager.download("data.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
return [
|
64 |
datasets.SplitGenerator(
|
65 |
name=datasets.Split.TRAIN,
|
66 |
gen_kwargs={
|
67 |
+
"data": dl_manager.download_and_extract(data_path),
|
|
|
|
|
68 |
"split": "train",
|
69 |
},
|
70 |
)
|
71 |
]
|
72 |
|
73 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
74 |
+
def _generate_examples(self, data, split):
|
75 |
+
df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
|
76 |
+
reference_paths = (
|
77 |
+
df["Reference"]
|
78 |
+
.apply(lambda x: os.path.join(data, "reference_images", x))
|
79 |
+
.to_list()
|
80 |
+
)
|
81 |
+
distorted_paths = (
|
82 |
+
df["Distorted"]
|
83 |
+
.apply(lambda x: os.path.join(data, "distorted_images", x))
|
84 |
+
.to_list()
|
85 |
+
)
|
86 |
+
|
87 |
+
for key, (ref, dist, m) in enumerate(
|
88 |
+
zip(reference_paths, distorted_paths, df["MOS"])
|
89 |
+
):
|
90 |
+
yield (
|
91 |
+
key,
|
92 |
+
{
|
93 |
+
"reference": ref,
|
94 |
+
"distorted": dist,
|
95 |
+
"mos": m,
|
96 |
+
},
|
97 |
+
)
|