Josephgflowers
commited on
Commit
•
073b267
1
Parent(s):
8016326
Upload find-reason-fine.py
Browse files- find-reason-fine.py +191 -0
find-reason-fine.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import re
|
3 |
+
from concurrent.futures import ProcessPoolExecutor
|
4 |
+
from tqdm import tqdm
|
5 |
+
import os
|
6 |
+
import glob
|
7 |
+
|
8 |
+
# Science keywords (formatted for regex word boundaries)
|
9 |
+
science_keywords_list = [
|
10 |
+
|
11 |
+
|
12 |
+
# Core Types of Reasoning
|
13 |
+
"deductive reasoning", "inductive reasoning", "abductive reasoning",
|
14 |
+
"deductive logic", "inductive logic", "probabilistic reasoning",
|
15 |
+
"hypothetical reasoning", "falsifiability", "meta-cognition",
|
16 |
+
|
17 |
+
# Logic Structures and Components
|
18 |
+
"syllogism", "proposition", "premise", "conclusion", "logical fallacy",
|
19 |
+
"argument", "logical consistency", "logical operator", "step by step",
|
20 |
+
|
21 |
+
# Analytical and Critical Thinking
|
22 |
+
"critical thinking", "analytical skills", "creative thinking",
|
23 |
+
"convergent thinking", "divergent thinking", "contextual analysis",
|
24 |
+
"pattern recognition", "structured reflection", "reasoned judgment",
|
25 |
+
"cognitive load", "counterfactual thinking", "comparative reasoning",
|
26 |
+
"subjective reasoning", "objective reasoning", "systematic approach",
|
27 |
+
|
28 |
+
# Hypothesis and Evidence Analysis
|
29 |
+
"hypothesis testing", "hypothesis generation", "evidence-based reasoning",
|
30 |
+
"empirical reasoning", "evidence synthesis", "confirmation bias",
|
31 |
+
"cognitive bias", "causation vs correlation", "construct validity",
|
32 |
+
|
33 |
+
# Problem Solving and Decision Making
|
34 |
+
"problem analysis", "brainstorming", "decision making", "decision fatigue",
|
35 |
+
"satisficing", "bounded rationality", "opportunity cost",
|
36 |
+
"cost-benefit analysis", "optimization", "strategic planning",
|
37 |
+
"trade-off analysis", "prioritization matrix", "value prioritization",
|
38 |
+
|
39 |
+
# Heuristics and Algorithms
|
40 |
+
"heuristic", "heuristic reasoning", "algorithm", "recursive thinking",
|
41 |
+
"pattern matching", "dynamic programming", "systematic approach",
|
42 |
+
|
43 |
+
# Data Analysis and Modeling
|
44 |
+
"data analysis", "causal reasoning", "correlation", "probabilistic inference",
|
45 |
+
"qualitative analysis", "quantitative analysis", "predictive modeling",
|
46 |
+
"belief revision", "mental modeling", "proportional reasoning",
|
47 |
+
|
48 |
+
# Cognitive Processes and Biases
|
49 |
+
"cognitive dissonance", "framing effect", "bias mitigation",
|
50 |
+
"normative reasoning", "intuitive thinking", "belief bias",
|
51 |
+
|
52 |
+
# Argumentation and Discourse
|
53 |
+
"counterargument", "debate", "dialectic", "socratic questioning",
|
54 |
+
"disjunctive reasoning", "conjunctive reasoning", "chain of thought",
|
55 |
+
|
56 |
+
# Problem Decomposition and Structuring
|
57 |
+
"root cause analysis", "5 whys", "decision tree", "flow chart",
|
58 |
+
"process mapping", "mind mapping", "ideation", "brainwriting",
|
59 |
+
"problem decomposition", "value chain analysis",
|
60 |
+
|
61 |
+
# Analytical Frameworks and Techniques
|
62 |
+
"SWOT analysis", "gap analysis", "risk assessment", "scenario planning",
|
63 |
+
"simulation", "backcasting", "game theory", "decision matrix",
|
64 |
+
"opportunity analysis", "knowledge representation",
|
65 |
+
|
66 |
+
# Creative Thinking and Synthesis
|
67 |
+
"lateral thinking", "synergistic thinking", "brainstorming",
|
68 |
+
"synthesis", "ideation", "hypothetical deduction",
|
69 |
+
|
70 |
+
# Additional Analytical Techniques
|
71 |
+
"comparative analysis", "analytical hierarchy process", "multicriteria decision analysis",
|
72 |
+
"trade-off analysis", "constraint analysis", "thought experiment",
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
# Escape special regex characters and add word boundaries
|
77 |
+
science_keywords = [
|
78 |
+
r"\b" + re.escape(keyword).replace(r'\ ', ' ') + r"\b" for keyword in science_keywords_list
|
79 |
+
]
|
80 |
+
|
81 |
+
# Combine science keywords into a single regex pattern using non-capturing groups
|
82 |
+
science_regex = r'(?:' + r'|'.join(science_keywords) + r')'
|
83 |
+
|
84 |
+
# Function to process a chunk of the dataset
|
85 |
+
def process_chunk(chunk):
|
86 |
+
# Assign column names if they are not already set
|
87 |
+
if list(chunk.columns) != ['score', 'text', 'url']:
|
88 |
+
chunk.columns = ['score', 'text', 'url']
|
89 |
+
|
90 |
+
# Use vectorized string operations for efficiency
|
91 |
+
# Count the number of matches in each column
|
92 |
+
score_counts = chunk['score'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
|
93 |
+
url_counts = chunk['url'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
|
94 |
+
text_counts = chunk['text'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
|
95 |
+
|
96 |
+
# Handle NaN values by filling them with zero
|
97 |
+
score_counts = score_counts.fillna(0)
|
98 |
+
url_counts = url_counts.fillna(0)
|
99 |
+
text_counts = text_counts.fillna(0)
|
100 |
+
|
101 |
+
# Sum the counts to get the science score
|
102 |
+
match_counts = score_counts + url_counts + text_counts
|
103 |
+
match_counts = match_counts.astype(int)
|
104 |
+
|
105 |
+
#
|
106 |
+
#
|
107 |
+
# Set a threshold for the minimum science score
|
108 |
+
threshold = 15 # Adjust this value as needed
|
109 |
+
#
|
110 |
+
#
|
111 |
+
|
112 |
+
# Filter rows that meet the threshold
|
113 |
+
filtered_chunk = chunk[match_counts >= threshold].copy()
|
114 |
+
filtered_chunk['science_score'] = match_counts[match_counts >= threshold]
|
115 |
+
|
116 |
+
# Replace the original 'score' with 'science_score'
|
117 |
+
filtered_chunk['score'] = filtered_chunk['science_score']
|
118 |
+
filtered_chunk = filtered_chunk.drop(columns=['science_score'])
|
119 |
+
|
120 |
+
return filtered_chunk
|
121 |
+
|
122 |
+
# Function to process a single CSV file
|
123 |
+
def process_file(input_file, output_file):
|
124 |
+
# Read the CSV file in chunks, assuming no header in the CSV file
|
125 |
+
chunk_size = 10000 # Adjust this value based on your memory constraints
|
126 |
+
reader = pd.read_csv(input_file, chunksize=chunk_size, header=None)
|
127 |
+
|
128 |
+
# Prepare the output file
|
129 |
+
first_chunk = True
|
130 |
+
|
131 |
+
# Number of worker processes
|
132 |
+
num_workers = 8 # Adjust based on your CPU cores
|
133 |
+
|
134 |
+
# Batch size for chunks to process in parallel
|
135 |
+
batch_size = num_workers * 4 # Adjust based on memory constraints
|
136 |
+
|
137 |
+
chunk_list = []
|
138 |
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
139 |
+
for chunk in tqdm(reader, desc=f'Reading chunks from {os.path.basename(input_file)}'):
|
140 |
+
chunk_list.append(chunk)
|
141 |
+
if len(chunk_list) == batch_size:
|
142 |
+
# Process batch of chunks in parallel
|
143 |
+
futures = [executor.submit(process_chunk, c) for c in chunk_list]
|
144 |
+
for future in tqdm(futures, desc='Processing batch', leave=False):
|
145 |
+
filtered_chunk = future.result()
|
146 |
+
if not filtered_chunk.empty:
|
147 |
+
if first_chunk:
|
148 |
+
filtered_chunk.to_csv(output_file, mode='w', index=False, header=False)
|
149 |
+
first_chunk = False
|
150 |
+
else:
|
151 |
+
filtered_chunk.to_csv(output_file, mode='a', index=False, header=False)
|
152 |
+
chunk_list = []
|
153 |
+
# Process any remaining chunks
|
154 |
+
if chunk_list:
|
155 |
+
futures = [executor.submit(process_chunk, c) for c in chunk_list]
|
156 |
+
for future in tqdm(futures, desc='Processing last batch', leave=False):
|
157 |
+
filtered_chunk = future.result()
|
158 |
+
if not filtered_chunk.empty:
|
159 |
+
if first_chunk:
|
160 |
+
filtered_chunk.to_csv(output_file, mode='w', index=False, header=False)
|
161 |
+
first_chunk = False
|
162 |
+
else:
|
163 |
+
filtered_chunk.to_csv(output_file, mode='a', index=False, header=False)
|
164 |
+
print(f'Finished processing {input_file}')
|
165 |
+
|
166 |
+
# List of directories to process
|
167 |
+
data_dir = '/media/joe/512-3/csv'
|
168 |
+
years = [f'CC-MAIN-{year}' for year in range(2013, 2025)] # Adjust years as needed
|
169 |
+
directories = [os.path.join(data_dir, year) for year in years]
|
170 |
+
|
171 |
+
# Process each CSV file in each directory
|
172 |
+
for dir_path in directories:
|
173 |
+
if not os.path.isdir(dir_path):
|
174 |
+
print(f'Directory not found: {dir_path}')
|
175 |
+
continue
|
176 |
+
csv_files = glob.glob(os.path.join(dir_path, '*.csv'))
|
177 |
+
print(f'Found {len(csv_files)} CSV files in {dir_path}')
|
178 |
+
for input_file in csv_files:
|
179 |
+
# Construct output file name
|
180 |
+
base_name = os.path.basename(input_file)
|
181 |
+
output_file = os.path.join(
|
182 |
+
dir_path, 'reason_' + base_name
|
183 |
+
)
|
184 |
+
|
185 |
+
# Check if output file already exists to avoid reprocessing
|
186 |
+
if os.path.exists(output_file):
|
187 |
+
print(f'Output file already exists. Skipping: {output_file}')
|
188 |
+
continue
|
189 |
+
|
190 |
+
process_file(input_file, output_file)
|
191 |
+
|