Josephgflowers commited on
Commit
68aa86a
1 Parent(s): dd65df2

Upload find-math-fine.py

Browse files
Files changed (1) hide show
  1. find-math-fine.py +200 -0
find-math-fine.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import re
3
+ from concurrent.futures import ProcessPoolExecutor
4
+ from tqdm import tqdm
5
+ import os
6
+ import glob
7
+
8
+ # Science keywords (formatted for regex word boundaries)
9
+ science_keywords_list = [
10
+
11
+ #logic_reasoning_problem_solving_keywords
12
+ "deductive reasoning", "inductive reasoning", "abductive reasoning", "logical fallacy",
13
+ "syllogism", "proposition", "premise", "conclusion",
14
+ "argument", "critical thinking", "analytical skills", "hypothesis testing",
15
+ "problem analysis", "brainstorming", "decision making", "creative thinking",
16
+ "heuristic", "algorithm", "data analysis", "causal reasoning",
17
+ "correlation", "evidence-based reasoning", "validity", "soundness",
18
+ "cognitive bias", "confirmation bias", "cognitive dissonance", "logical consistency",
19
+ "counterargument", "debate", "dialectic", "socratic questioning",
20
+ "root cause analysis", "SWOT analysis", "decision tree", "flow chart",
21
+ "mind mapping", "ideation", "brainwriting", "lateral thinking",
22
+ "problem decomposition", "synthesis", "pattern recognition", "inference",
23
+ "troubleshooting", "risk assessment", "scenario planning", "cost-benefit analysis",
24
+ "optimization", "simulation", "strategic planning", "logical operator", "chain of thought",
25
+ "step by step",
26
+
27
+ # Basic arithmetic
28
+ "addition", "subtraction", "multiplication", "division", "fraction",
29
+ "decimal", "percentage", "ratio", "proportion", "absolute value",
30
+
31
+ # Algebra
32
+ "algebra", "equation", "coefficient", "variable", "polynomial",
33
+ "quadratic", "exponential", "logarithm", "factorial", "sum",
34
+ "quotient",
35
+ "linear equation", "nonlinear equation", "system of equations",
36
+
37
+ # Data analysis and statistics
38
+ "data", "statistics", "analysis", "median",
39
+ "standard deviation", "probability",
40
+ "binomial", "normal distribution", "histogram",
41
+ "scatter plot", "correlation", "regression",
42
+
43
+ # Functions and calculus
44
+ "function", "linear function", "nonlinear function",
45
+ "intercept", "coordinate", "domain", "range", "limit",
46
+ "derivative", "integral", "differentiation",
47
+ "infinite series", "sequence", "convergence", "power series",
48
+
49
+ # Geometry and trigonometry
50
+ "geometry", "angle", "triangle", "rectangle", "square",
51
+ "circle", "polygon", "perimeter", "area", "circumference",
52
+ "diameter", "radius", "pythagorean theorem", "trigonometry",
53
+ "sine", "cosine", "tangent", "secant", "cosecant",
54
+ "cotangent", "arc", "parallelogram",
55
+ "rhombus", "trapezoid", "congruence",
56
+
57
+ # Advanced mathematics
58
+ "calculus", "differential equation", "partial derivative",
59
+ "vector", "matrix", "determinant", "eigenvalue", "eigenvector",
60
+ "linear transformation", "tensor", "multivariable calculus",
61
+
62
+ # Logic and set theory
63
+ "logic", "subset", "union", "intersection",
64
+ "element", "cardinality", "venn diagram", "truth table",
65
+ "proposition", "theorem", "proof", "induction",
66
+
67
+ # Discrete math and combinatorics
68
+ "combinatorics", "permutation", "combination", "graph theory",
69
+ "tree", "vertex",
70
+ "probability", "random variable", "expected value",
71
+
72
+ # Measurements and units
73
+ "computation", "measurement", "length", "width", "height",
74
+ "area", "volume", "density", "mass",
75
+ "velocity", "acceleration", "force",
76
+
77
+ # Additional concepts
78
+ "binary", "decimal", "octal", "hexadecimal", "modulus",
79
+ "prime number", "composite number", "greatest common divisor",
80
+ "least common multiple", "factorization", "irrational number",
81
+ "complex number", "imaginary unit", "real number",
82
+ "absolute value"
83
+ ]
84
+
85
+ # Escape special regex characters and add word boundaries
86
+ science_keywords = [
87
+ r"\b" + re.escape(keyword).replace(r'\ ', ' ') + r"\b" for keyword in science_keywords_list
88
+ ]
89
+
90
+ # Combine science keywords into a single regex pattern using non-capturing groups
91
+ science_regex = r'(?:' + r'|'.join(science_keywords) + r')'
92
+
93
+ # Function to process a chunk of the dataset
94
+ def process_chunk(chunk):
95
+ # Assign column names if they are not already set
96
+ if list(chunk.columns) != ['score', 'text', 'url']:
97
+ chunk.columns = ['score', 'text', 'url']
98
+
99
+ # Use vectorized string operations for efficiency
100
+ # Count the number of matches in each column
101
+ score_counts = chunk['score'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
102
+ url_counts = chunk['url'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
103
+ text_counts = chunk['text'].astype(str).str.count(science_regex, flags=re.IGNORECASE)
104
+
105
+ # Handle NaN values by filling them with zero
106
+ score_counts = score_counts.fillna(0)
107
+ url_counts = url_counts.fillna(0)
108
+ text_counts = text_counts.fillna(0)
109
+
110
+ # Sum the counts to get the science score
111
+ match_counts = score_counts + url_counts + text_counts
112
+ match_counts = match_counts.astype(int)
113
+
114
+ #
115
+ #
116
+ # Set a threshold for the minimum science score
117
+ threshold = 50 # Adjust this value as needed
118
+ #
119
+ #
120
+
121
+ # Filter rows that meet the threshold
122
+ filtered_chunk = chunk[match_counts >= threshold].copy()
123
+ filtered_chunk['science_score'] = match_counts[match_counts >= threshold]
124
+
125
+ # Replace the original 'score' with 'science_score'
126
+ filtered_chunk['score'] = filtered_chunk['science_score']
127
+ filtered_chunk = filtered_chunk.drop(columns=['science_score'])
128
+
129
+ return filtered_chunk
130
+
131
+ # Function to process a single CSV file
132
+ def process_file(input_file, output_file):
133
+ # Read the CSV file in chunks, assuming no header in the CSV file
134
+ chunk_size = 10000 # Adjust this value based on your memory constraints
135
+ reader = pd.read_csv(input_file, chunksize=chunk_size, header=None)
136
+
137
+ # Prepare the output file
138
+ first_chunk = True
139
+
140
+ # Number of worker processes
141
+ num_workers = 20 # Adjust based on your CPU cores
142
+
143
+ # Batch size for chunks to process in parallel
144
+ batch_size = num_workers * 4 # Adjust based on memory constraints
145
+
146
+ chunk_list = []
147
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
148
+ for chunk in tqdm(reader, desc=f'Reading chunks from {os.path.basename(input_file)}'):
149
+ chunk_list.append(chunk)
150
+ if len(chunk_list) == batch_size:
151
+ # Process batch of chunks in parallel
152
+ futures = [executor.submit(process_chunk, c) for c in chunk_list]
153
+ for future in tqdm(futures, desc='Processing batch', leave=False):
154
+ filtered_chunk = future.result()
155
+ if not filtered_chunk.empty:
156
+ if first_chunk:
157
+ filtered_chunk.to_csv(output_file, mode='w', index=False, header=False)
158
+ first_chunk = False
159
+ else:
160
+ filtered_chunk.to_csv(output_file, mode='a', index=False, header=False)
161
+ chunk_list = []
162
+ # Process any remaining chunks
163
+ if chunk_list:
164
+ futures = [executor.submit(process_chunk, c) for c in chunk_list]
165
+ for future in tqdm(futures, desc='Processing last batch', leave=False):
166
+ filtered_chunk = future.result()
167
+ if not filtered_chunk.empty:
168
+ if first_chunk:
169
+ filtered_chunk.to_csv(output_file, mode='w', index=False, header=False)
170
+ first_chunk = False
171
+ else:
172
+ filtered_chunk.to_csv(output_file, mode='a', index=False, header=False)
173
+ print(f'Finished processing {input_file}')
174
+
175
+ # List of directories to process
176
+ data_dir = '/media/joe/512-3/csv'
177
+ years = [f'CC-MAIN-{year}' for year in range(2013, 2025)] # Adjust years as needed
178
+ directories = [os.path.join(data_dir, year) for year in years]
179
+
180
+ # Process each CSV file in each directory
181
+ for dir_path in directories:
182
+ if not os.path.isdir(dir_path):
183
+ print(f'Directory not found: {dir_path}')
184
+ continue
185
+ csv_files = glob.glob(os.path.join(dir_path, '*.csv'))
186
+ print(f'Found {len(csv_files)} CSV files in {dir_path}')
187
+ for input_file in csv_files:
188
+ # Construct output file name
189
+ base_name = os.path.basename(input_file)
190
+ output_file = os.path.join(
191
+ dir_path, 'math_' + base_name
192
+ )
193
+
194
+ # Check if output file already exists to avoid reprocessing
195
+ if os.path.exists(output_file):
196
+ print(f'Output file already exists. Skipping: {output_file}')
197
+ continue
198
+
199
+ process_file(input_file, output_file)
200
+