File size: 9,496 Bytes
872030d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import csv
from datasets import load_dataset
import os
import time
import signal
import requests
from multiprocessing import Pool, Manager
from functools import partial

# Define parameters
score_threshold = 4
error_log_file = "error_log.txt"

# List of dataset folders to process
dataset_folders = [
    "CC-MAIN-2013-20", "CC-MAIN-2013-48", "CC-MAIN-2014-10", "CC-MAIN-2014-15",
    "CC-MAIN-2014-23", "CC-MAIN-2014-35", "CC-MAIN-2014-41", "CC-MAIN-2014-42",
    "CC-MAIN-2014-49", "CC-MAIN-2014-52", "CC-MAIN-2015-06", "CC-MAIN-2015-11",
    "CC-MAIN-2015-14", "CC-MAIN-2015-18", "CC-MAIN-2015-22", "CC-MAIN-2015-27",
    "CC-MAIN-2015-32", "CC-MAIN-2015-35", "CC-MAIN-2015-40", "CC-MAIN-2015-48",
    "CC-MAIN-2016-07", "CC-MAIN-2016-18", "CC-MAIN-2016-22", "CC-MAIN-2016-26",
    "CC-MAIN-2016-30", "CC-MAIN-2016-36", "CC-MAIN-2016-40", "CC-MAIN-2016-44",
    "CC-MAIN-2016-50", "CC-MAIN-2017-04", "CC-MAIN-2017-09", "CC-MAIN-2017-13",
    "CC-MAIN-2017-17", "CC-MAIN-2017-22", "CC-MAIN-2017-26", "CC-MAIN-2017-30",
    "CC-MAIN-2017-34", "CC-MAIN-2017-39", "CC-MAIN-2017-43", "CC-MAIN-2017-47",
    "CC-MAIN-2017-51", "CC-MAIN-2018-05", "CC-MAIN-2018-09", "CC-MAIN-2018-13",
    "CC-MAIN-2018-17", "CC-MAIN-2018-22", "CC-MAIN-2018-26", "CC-MAIN-2018-30",
    "CC-MAIN-2018-34", "CC-MAIN-2018-39", "CC-MAIN-2018-43", "CC-MAIN-2018-47",
    "CC-MAIN-2018-51", "CC-MAIN-2019-04", "CC-MAIN-2019-09", "CC-MAIN-2019-13",
    "CC-MAIN-2019-18", "CC-MAIN-2019-22", "CC-MAIN-2019-26", "CC-MAIN-2019-30",
    "CC-MAIN-2019-35", "CC-MAIN-2019-39", "CC-MAIN-2019-43", "CC-MAIN-2019-47",
    "CC-MAIN-2019-51", "CC-MAIN-2020-05", "CC-MAIN-2020-10", "CC-MAIN-2020-16",
    "CC-MAIN-2020-24", "CC-MAIN-2020-29", "CC-MAIN-2020-34", "CC-MAIN-2020-40",
    "CC-MAIN-2020-45", "CC-MAIN-2020-50", "CC-MAIN-2021-04", "CC-MAIN-2021-10",
    "CC-MAIN-2021-17", "CC-MAIN-2021-21", "CC-MAIN-2021-25", "CC-MAIN-2021-31",
    "CC-MAIN-2021-39", "CC-MAIN-2021-43", "CC-MAIN-2021-49", "CC-MAIN-2022-05",
    "CC-MAIN-2022-21", "CC-MAIN-2022-27", "CC-MAIN-2022-33", "CC-MAIN-2022-40",
    "CC-MAIN-2022-49", "CC-MAIN-2023-06", "CC-MAIN-2023-14", "CC-MAIN-2023-23",
    "CC-MAIN-2023-40", "CC-MAIN-2023-50", "CC-MAIN-2024-10"
]

# Global variable for interruption
interrupt_flag = Manager().Value('i', False)

# Function to log errors
def log_error(error_message):
    with open(error_log_file, "a") as error_log:
        error_log.write(f"{error_message}\n")

# Retry mechanism to handle connection errors when loading the dataset
def retry_request(load_dataset_function, max_retries=5, wait_time=5):
    retries = 0
    while retries < max_retries:
        try:
            dataset = load_dataset_function()
            return dataset
        except requests.exceptions.ConnectionError as e:
            log_error(f"Connection error: {e}. Retrying in {wait_time} seconds...")
            retries += 1
            time.sleep(wait_time)
        except Exception as e:
            log_error(f"Unexpected error: {e}. Retrying in {wait_time} seconds...")
            retries += 1
            time.sleep(wait_time)
    log_error("Max retries exceeded.")
    return None

# Function to save the text column to a file with start and stop tokens
def save_text_column(entry, output_text_file):
    try:
        text = entry["text"]
        with open(output_text_file, "a", encoding='utf-8') as f:
            f.write(f"<s>\n{text}</s>\n")
    except KeyError as e:
        log_error(f"Missing 'text' field: {e}")

# Function to save score, text, and URL to a CSV file, with error handling
def save_to_csv(entry, output_csv_file, write_header=False):
    try:
        with open(output_csv_file, mode='a', newline='', encoding='utf-8') as file:
            writer = csv.writer(file)
            if write_header:
                writer.writerow(["score", "text", "url"])  # CSV headers
            score = entry["score"]
            text = entry["text"]
            url = entry.get("url", "N/A")  # Ensure 'url' is included
            writer.writerow([score, text, url])
    except KeyError as e:
        log_error(f"Missing field in entry: {e}")

# Graceful exit handling
def signal_handler(sig, frame):
    global interrupt_flag
    print("Interrupt received, saving progress and exiting...")
    interrupt_flag.value = True  # Set the flag to stop processing
    exit(0)

signal.signal(signal.SIGINT, signal_handler)

# Function to process a single folder
def process_folder(folder, score_threshold):
    global interrupt_flag

    # Define per-folder log file
    log_file = f"processing_log_{folder}.txt"

    # Function to log progress to a file
    def log_progress(last_id):
        with open(log_file, "w") as log:
            log.write(f"{last_id}")

    # Function to resume from a specific point by reading the log file
    def resume_progress():
        if os.path.exists(log_file):
            with open(log_file, "r") as log:
                last_id = log.read().strip()
                if last_id == 'None' or last_id == '':
                    last_id = None
                return last_id
        return None

    print(f"Processing dataset folder: {folder}")

    # Define per-folder output files
    output_text_file = f"forti-sampled_text_dataset_{folder}.txt"
    output_csv_file = f"forti-sampled_dataset_{folder}.csv"

    # Load dataset with retry mechanism
    dataset = retry_request(lambda: load_dataset(
        "airtrain-ai/fineweb-edu-fortified",
        folder,
        split="train",
        streaming=True
    ))
    if not dataset:
        log_error(f"Failed to load dataset {folder}. Skipping.")
        return

    # Retrieve last processed ID for resuming
    last_processed_id = resume_progress()

    # Initialize variables
    found_last_id = last_processed_id is None
    processed_entries = 0  # Reset processed_entries for the new folder

    # Process entries
    while True:
        try:
            for entry in dataset:
                if interrupt_flag.value:
                    break  # Exit loop if interrupt flag is set

                # Skip entries until we reach the last processed ID
                entry_id = entry.get('id')
                if not found_last_id:
                    if entry_id == last_processed_id:
                        found_last_id = True
                    continue

                # Update last_processed_id
                last_processed_id = entry_id

                # Check if entry meets the score threshold
                if entry.get('score', 0) >= score_threshold:
                    # Save entry to text file and CSV
                    # Write headers if files are new
                    if processed_entries == 0:
                        write_header = True
                    else:
                        write_header = False
                    save_to_csv(entry, output_csv_file, write_header=write_header)
                    save_text_column(entry, output_text_file)

                processed_entries += 1

                if processed_entries % 100 == 0:
                    log_progress(last_processed_id)
                    print(f"Processed {processed_entries} entries from {folder}...")  # Terminal output

            break  # Exit while loop when dataset iteration is complete

        except requests.exceptions.ConnectionError as e:
            # Handle connection error during iteration
            log_error(f"Connection error during iteration in {folder}: {e}")
            print(f"Connection error during iteration in {folder}: {e}. Retrying in 5 seconds...")
            time.sleep(5)
            # Re-initialize dataset streaming from the point after last_processed_id
            dataset = retry_request(lambda: load_dataset(
                "airtrain-ai/fineweb-edu-fortified",
                folder,
                split="train",
                streaming=True
            ))
            if not dataset:
                log_error(f"Failed to reload dataset {folder} after connection error. Skipping.")
                break
            # Reset found_last_id to False to skip entries up to last_processed_id
            found_last_id = False

        except Exception as e:
            log_error(f"Error during processing in {folder}: {e}")
            print(f"Error during processing in {folder}: {e}. Skipping entry.")
            continue

    # After processing all entries in the folder, log progress
    log_progress(last_processed_id)
    print(f"Completed processing folder: {folder}")

    if interrupt_flag.value:
        print(f"Processing interrupted in folder: {folder}")

# Main process function to process multiple folders in parallel
def process_all_folders_parallel(dataset_folders, score_threshold):
    global interrupt_flag

    # Use a multiprocessing Pool to process folders in parallel
    with Pool(processes=os.cpu_count()) as pool:
        try:
            # Partial function to fix the score_threshold parameter
            func = partial(process_folder, score_threshold=score_threshold)
            pool.map(func, dataset_folders)
        except KeyboardInterrupt:
            print("KeyboardInterrupt received, terminating pool...")
            pool.terminate()
            pool.join()
            print("Pool terminated.")
            interrupt_flag.value = True

    print("Processing complete.")

# Start processing all folders in parallel
process_all_folders_parallel(dataset_folders, score_threshold)

print("Filtered datasets saved to individual files per folder.")