import datasets from description import description _DESCRIPTION ="""Fetus Brain Abnormalities Images dataset""" _CITATION = """ @misc{ fetal-brain-abnormalities-ultrasound_dataset, title = { Fetal Brain Abnormalities Ultrasound Dataset }, type = { Open Source Dataset }, author = { Hritwik Trivedi }, howpublished = { \url{ https://universe.roboflow.com/hritwik-trivedi-gkgrv/fetal-brain-abnormalities-ultrasound } }, url = { https://universe.roboflow.com/hritwik-trivedi-gkgrv/fetal-brain-abnormalities-ultrasound }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2023 }, month = { oct }, note = { visited on 2024-03-12 }, } """ _URL = "https://huggingface.co/datasets/KBayoud/roboflow-fetus-head-abnormalities/resolve/main/images.tar.gz" class FetusBrain(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value('string'), 'image': datasets.Image(), } ), supervised_keys=None, homepage='https://huggingface.co/datasets/KBayoud/roboflow-fetus-head-abnormalities', citation=_CITATION, ) def _split_generators(self, dl_manager): path = dl_manager.download_and_extract(_URL) image_iters = dl_manager.iter_archive(path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters } ), ] def _generate_examples(self, images): idx = 0 # iterate over the images for filepath, image in images: yield idx, { 'image': {'path': filepath, 'bytes': image.read()}, 'text': description[idx] } idx += 1