|
from builtins import isinstance |
|
import os |
|
import glob |
|
import json |
|
import logging |
|
import zipfile |
|
import functools |
|
import collections |
|
|
|
import datasets |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
_VERSION = datasets.Version("1.0.0", "") |
|
|
|
_URL = "https://cocodataset.org/#home" |
|
|
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/LinMBHPRDZ14, |
|
author = {Tsung{-}Yi Lin and |
|
Michael Maire and |
|
Serge J. Belongie and |
|
Lubomir D. Bourdev and |
|
Ross B. Girshick and |
|
James Hays and |
|
Pietro Perona and |
|
Deva Ramanan and |
|
Piotr Doll{\'{a}}r and |
|
C. Lawrence Zitnick}, |
|
title = {Microsoft {COCO:} Common Objects in Context}, |
|
journal = {CoRR}, |
|
volume = {abs/1405.0312}, |
|
year = {2014}, |
|
url = {http://arxiv.org/abs/1405.0312}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1405.0312}, |
|
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, |
|
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """COCO is a large-scale object detection, segmentation, and |
|
captioning dataset. |
|
Note: |
|
* Some images from the train and validation sets don't have annotations. |
|
* Coco 2014 and 2017 uses the same images, but different train/val/test splits |
|
* The test split don't have any annotations (only images). |
|
* Coco defines 91 classes but the data only uses 80 classes. |
|
* Panotptic annotations defines defines 200 classes but only uses 133. |
|
""" |
|
|
|
|
|
_CONFIG_DESCRIPTION = """ |
|
This version contains images, bounding boxes and labels for the {year} version. |
|
""" |
|
|
|
Split = collections.namedtuple( |
|
'Split', ['name', 'images', 'annotations', 'annotation_type'] |
|
) |
|
|
|
|
|
CAT = [ |
|
"none", |
|
"person", |
|
"bicycle", |
|
"car", |
|
"motorcycle", |
|
"airplane", |
|
"bus", |
|
"train", |
|
"truck", |
|
"boat", |
|
"traffic light", |
|
"fire hydrant", |
|
"street sign", |
|
"stop sign", |
|
"parking meter", |
|
"bench", |
|
"bird", |
|
"cat", |
|
"dog", |
|
"horse", |
|
"sheep", |
|
"cow", |
|
"elephant", |
|
"bear", |
|
"zebra", |
|
"giraffe", |
|
"hat", |
|
"backpack", |
|
"umbrella", |
|
"shoe", |
|
"eye glasses", |
|
"handbag", |
|
"tie", |
|
"suitcase", |
|
"frisbee", |
|
"skis", |
|
"snowboard", |
|
"sports ball", |
|
"kite", |
|
"baseball bat", |
|
"baseball glove", |
|
"skateboard", |
|
"surfboard", |
|
"tennis racket", |
|
"bottle", |
|
"plate", |
|
"wine glass", |
|
"cup", |
|
"fork", |
|
"knife", |
|
"spoon", |
|
"bowl", |
|
"banana", |
|
"apple", |
|
"sandwich", |
|
"orange", |
|
"broccoli", |
|
"carrot", |
|
"hot dog", |
|
"pizza", |
|
"donut", |
|
"cake", |
|
"chair", |
|
"couch", |
|
"potted plant", |
|
"bed", |
|
"mirror", |
|
"dining table", |
|
"window", |
|
"desk", |
|
"toilet", |
|
"door", |
|
"tv", |
|
"laptop", |
|
"mouse", |
|
"remote", |
|
"keyboard", |
|
"cell phone", |
|
"microwave", |
|
"oven", |
|
"toaster", |
|
"sink", |
|
"refrigerator", |
|
"blender", |
|
"book", |
|
"clock", |
|
"vase", |
|
"scissors", |
|
"teddy bear", |
|
"hair drier", |
|
"toothbrush", |
|
"hair brush", |
|
] |
|
|
|
CAT_PANOPTIC = CAT + [ |
|
"banner", |
|
"blanket", |
|
"none1", |
|
"bridge", |
|
"none2", |
|
"none3", |
|
"none4", |
|
"none5", |
|
"cardboard", |
|
"none6", |
|
"none7", |
|
"none8", |
|
"none9", |
|
"none10", |
|
"none11", |
|
"counter", |
|
"none12", |
|
"curtain", |
|
"none13", |
|
"none14", |
|
"door-stuff", |
|
"none15", |
|
"none16", |
|
"none17", |
|
"none18", |
|
"none19", |
|
"floor-wood", |
|
"flower", |
|
"none20", |
|
"none21", |
|
"fruit", |
|
"none22", |
|
"none23", |
|
"gravel", |
|
"none24", |
|
"none25", |
|
"house", |
|
"none26", |
|
"light", |
|
"none27", |
|
"none28", |
|
"mirror-stuff", |
|
"none29", |
|
"none30", |
|
"none31", |
|
"none32", |
|
"net", |
|
"none33", |
|
"none34", |
|
"pillow", |
|
"none35", |
|
"none36", |
|
"platform", |
|
"playingfield", |
|
"none37", |
|
"railroad", |
|
"river", |
|
"road", |
|
"none38", |
|
"roof", |
|
"none39", |
|
"none40", |
|
"sand", |
|
"sea", |
|
"shelf", |
|
"none41", |
|
"none42", |
|
"snow", |
|
"none43", |
|
"stairs", |
|
"none44", |
|
"none45", |
|
"none46", |
|
"none47", |
|
"tent", |
|
"none48", |
|
"towel", |
|
"none49", |
|
"none50", |
|
"wall-brick", |
|
"none51", |
|
"none52", |
|
"none53", |
|
"wall-stone", |
|
"wall-tile", |
|
"wall-wood", |
|
"water-other", |
|
"none54", |
|
"window-blind", |
|
"window-other", |
|
"none55", |
|
"none56", |
|
"tree-merged", |
|
"fence-merged", |
|
"ceiling-merged", |
|
"sky-other-merged", |
|
"cabinet-merged", |
|
"table-merged", |
|
"floor-other-merged", |
|
"pavement-merged", |
|
"mountain-merged", |
|
"grass-merged", |
|
"dirt-merged", |
|
"paper-merged", |
|
"food-other-merged", |
|
"building-other-merged", |
|
"rock-merged", |
|
"wall-other-merged", |
|
"rug-merged", |
|
] |
|
|
|
SUPER_CAT = [ |
|
"none", |
|
"person", |
|
"vehicle", |
|
"outdoor", |
|
"animal", |
|
"accessory", |
|
"sports", |
|
"kitchen", |
|
"food", |
|
"furniture", |
|
"electronic", |
|
"appliance", |
|
"indoor", |
|
] |
|
|
|
SUPER_CAT_PANOPTIC = SUPER_CAT + [ |
|
"textile", |
|
"building", |
|
"raw-material", |
|
"furniture-stuff", |
|
"floor", |
|
"plant", |
|
"food-stuff", |
|
"ground", |
|
"structural", |
|
"water", |
|
"wall", |
|
"window", |
|
"ceiling", |
|
"sky", |
|
"solid", |
|
] |
|
|
|
CAT2SUPER_CAT = [ |
|
"none", |
|
"person", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"vehicle", |
|
"outdoor", |
|
"outdoor", |
|
"outdoor", |
|
"outdoor", |
|
"outdoor", |
|
"outdoor", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"animal", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"accessory", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"sports", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"kitchen", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"food", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"furniture", |
|
"electronic", |
|
"electronic", |
|
"electronic", |
|
"electronic", |
|
"electronic", |
|
"electronic", |
|
"appliance", |
|
"appliance", |
|
"appliance", |
|
"appliance", |
|
"appliance", |
|
"appliance", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"indoor", |
|
"textile", |
|
"textile", |
|
"none", |
|
"building", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"raw-material", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"furniture-stuff", |
|
"none", |
|
"textile", |
|
"none", |
|
"none", |
|
"furniture-stuff", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"floor", |
|
"plant", |
|
"none", |
|
"none", |
|
"food-stuff", |
|
"none", |
|
"none", |
|
"ground", |
|
"none", |
|
"none", |
|
"building", |
|
"none", |
|
"furniture-stuff", |
|
"none", |
|
"none", |
|
"furniture-stuff", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"structural", |
|
"none", |
|
"none", |
|
"textile", |
|
"none", |
|
"none", |
|
"ground", |
|
"ground", |
|
"none", |
|
"ground", |
|
"water", |
|
"ground", |
|
"none", |
|
"building", |
|
"none", |
|
"none", |
|
"ground", |
|
"water", |
|
"furniture-stuff", |
|
"none", |
|
"none", |
|
"ground", |
|
"none", |
|
"furniture-stuff", |
|
"none", |
|
"none", |
|
"none", |
|
"none", |
|
"building", |
|
"none", |
|
"textile", |
|
"none", |
|
"none", |
|
"wall", |
|
"none", |
|
"none", |
|
"none", |
|
"wall", |
|
"wall", |
|
"wall", |
|
"water", |
|
"none", |
|
"window", |
|
"window", |
|
"none", |
|
"none", |
|
"plant", |
|
"structural", |
|
"ceiling", |
|
"sky", |
|
"furniture-stuff", |
|
"furniture-stuff", |
|
"floor", |
|
"ground", |
|
"solid", |
|
"plant", |
|
"ground", |
|
"raw-material", |
|
"food-stuff", |
|
"building", |
|
"solid", |
|
"wall", |
|
"textile", |
|
] |
|
|
|
|
|
class AnnotationType(object): |
|
"""Enum of the annotation format types. |
|
Splits are annotated with different formats. |
|
""" |
|
|
|
BBOXES = 'bboxes' |
|
PANOPTIC = 'panoptic' |
|
NONE = 'none' |
|
|
|
|
|
|
|
DETECTION_FEATURE = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"image/filename": datasets.Value("string"), |
|
"image/id": datasets.Value("int64"), |
|
"objects": datasets.Sequence(feature=datasets.Features({ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("float32"), |
|
"bbox": datasets.Sequence( |
|
feature=datasets.Value("float32") |
|
), |
|
"label": datasets.ClassLabel(names=CAT), |
|
"super_cat_label": datasets.ClassLabel(names=SUPER_CAT), |
|
"is_crowd": datasets.Value("bool"), |
|
})), |
|
} |
|
) |
|
|
|
PANOPTIC_FEATURE = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"image/filename": datasets.Value("string"), |
|
"image/id": datasets.Value("int64"), |
|
"panoptic_objects": datasets.Sequence(feature=datasets.Features({ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("float32"), |
|
"bbox": datasets.Sequence( |
|
feature=datasets.Value("float32") |
|
), |
|
"label": datasets.ClassLabel(names=CAT_PANOPTIC), |
|
"super_cat_label": datasets.ClassLabel(names=SUPER_CAT_PANOPTIC), |
|
"is_crowd": datasets.Value("bool"), |
|
})), |
|
"panoptic_image": datasets.Image(), |
|
"panoptic_image/filename": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class CocoConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CocoConfig.""" |
|
|
|
def __init__(self, features, splits=None, has_panoptic=False, **kwargs): |
|
super(CocoConfig, self).__init__( |
|
**kwargs |
|
) |
|
self.features = features |
|
self.splits = splits |
|
self.has_panoptic = has_panoptic |
|
|
|
|
|
|
|
class Coco(datasets.GeneratorBasedBuilder): |
|
"""Base MS Coco dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CocoConfig( |
|
name='2014', |
|
features=DETECTION_FEATURE, |
|
description=_CONFIG_DESCRIPTION.format(year=2014), |
|
version=_VERSION, |
|
splits=[ |
|
Split( |
|
name=datasets.Split.TRAIN, |
|
images='train2014', |
|
annotations='annotations_trainval2014', |
|
annotation_type=AnnotationType.BBOXES, |
|
), |
|
Split( |
|
name=datasets.Split.VALIDATION, |
|
images='val2014', |
|
annotations='annotations_trainval2014', |
|
annotation_type=AnnotationType.BBOXES, |
|
), |
|
Split( |
|
name=datasets.Split.TEST, |
|
images='test2014', |
|
annotations='image_info_test2014', |
|
annotation_type=AnnotationType.NONE, |
|
), |
|
|
|
Split( |
|
name='test2015', |
|
images='test2015', |
|
annotations='image_info_test2015', |
|
annotation_type=AnnotationType.NONE, |
|
), |
|
], |
|
), |
|
CocoConfig( |
|
name='2017', |
|
features=DETECTION_FEATURE, |
|
description=_CONFIG_DESCRIPTION.format(year=2017), |
|
version=_VERSION, |
|
splits=[ |
|
Split( |
|
name=datasets.Split.TRAIN, |
|
images='train2017', |
|
annotations='annotations_trainval2017', |
|
annotation_type=AnnotationType.BBOXES, |
|
), |
|
Split( |
|
name=datasets.Split.VALIDATION, |
|
images='val2017', |
|
annotations='annotations_trainval2017', |
|
annotation_type=AnnotationType.BBOXES, |
|
), |
|
Split( |
|
name=datasets.Split.TEST, |
|
images='test2017', |
|
annotations='image_info_test2017', |
|
annotation_type=AnnotationType.NONE, |
|
), |
|
], |
|
), |
|
CocoConfig( |
|
name='2017_panoptic', |
|
features=PANOPTIC_FEATURE, |
|
description=_CONFIG_DESCRIPTION.format(year=2017), |
|
version=_VERSION, |
|
has_panoptic=True, |
|
splits=[ |
|
Split( |
|
name=datasets.Split.TRAIN, |
|
images='train2017', |
|
annotations='panoptic_annotations_trainval2017', |
|
annotation_type=AnnotationType.PANOPTIC, |
|
), |
|
Split( |
|
name=datasets.Split.VALIDATION, |
|
images='val2017', |
|
annotations='panoptic_annotations_trainval2017', |
|
annotation_type=AnnotationType.PANOPTIC, |
|
), |
|
], |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "2017" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=self.config.features, |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
|
|
|
|
|
|
if dl_manager.manual_dir is None: |
|
|
|
urls = {} |
|
for split in self.config.splits: |
|
urls['{}_images'.format(split.name)] = 'zips/{}.zip'.format(split.images) |
|
urls['{}_annotations'.format(split.name)] = 'annotations/{}.zip'.format( |
|
split.annotations |
|
) |
|
|
|
logging.info("download and extract coco dataset") |
|
root_url = 'http://images.cocodataset.org/' |
|
extracted_paths = dl_manager.download_and_extract( |
|
{key: root_url + url for key, url in urls.items()} |
|
) |
|
else: |
|
logging.info(f"use manual directory: {dl_manager.manual_dir}") |
|
extracted_paths = {} |
|
for split in self.config.splits: |
|
extracted_paths['{}_images'.format(split.name)] = dl_manager.manual_dir |
|
extracted_paths['{}_annotations'.format(split.name)] = dl_manager.manual_dir |
|
|
|
splits = [] |
|
for split in self.config.splits: |
|
image_dir = extracted_paths['{}_images'.format(split.name)] |
|
annotations_dir = extracted_paths['{}_annotations'.format(split.name)] |
|
if self.config.has_panoptic: |
|
if dl_manager.manual_dir is None: |
|
logging.info("extract panoptic data") |
|
panoptic_image_zip_path = os.path.join( |
|
annotations_dir, |
|
'annotations', |
|
'panoptic_{}.zip'.format(split.images), |
|
) |
|
panoptic_dir = dl_manager.extract(panoptic_image_zip_path) |
|
panoptic_dir = os.path.join( |
|
panoptic_dir, 'panoptic_{}'.format(split.images) |
|
) |
|
else: |
|
logging.info("use extracted data") |
|
panoptic_dir = os.path.join(annotations_dir, 'annotations', 'panoptic_{}.zip'.format(split.images)) |
|
else: |
|
panoptic_dir = None |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=split.name, |
|
gen_kwargs={ |
|
'image_dir': image_dir, |
|
'annotation_dir': annotations_dir, |
|
'split_name': split.images, |
|
'annotation_type': split.annotation_type, |
|
'panoptic_dir': panoptic_dir, |
|
} |
|
) |
|
) |
|
return splits |
|
|
|
def _generate_examples(self, image_dir, annotation_dir, split_name, annotation_type, panoptic_dir): |
|
"""Generate examples as dicts. |
|
Args: |
|
image_dir: `str`, directory containing the images |
|
annotation_dir: `str`, directory containing annotations |
|
split_name: `str`, <split_name><year> (ex: train2014, val2017) |
|
annotation_type: `AnnotationType`, the annotation format (NONE, BBOXES, |
|
PANOPTIC) |
|
panoptic_dir: If annotation_type is PANOPTIC, contains the panoptic image |
|
directory |
|
Yields: |
|
example key and data |
|
""" |
|
|
|
if annotation_type == AnnotationType.BBOXES: |
|
instance_filename = 'instances_{}.json' |
|
elif annotation_type == AnnotationType.PANOPTIC: |
|
instance_filename = 'panoptic_{}.json' |
|
elif annotation_type == AnnotationType.NONE: |
|
instance_filename = 'image_info_{}.json' |
|
|
|
|
|
instance_path = os.path.join( |
|
annotation_dir, |
|
'annotations', |
|
instance_filename.format(split_name), |
|
) |
|
coco_annotation = ANNOTATION_CLS[annotation_type](instance_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
categories = coco_annotation.categories |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = coco_annotation.images |
|
|
|
|
|
|
|
|
|
|
|
if self.config.has_panoptic: |
|
objects_key = 'panoptic_objects' |
|
else: |
|
objects_key = 'objects' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotation_skipped = 0 |
|
for image_info in sorted(images, key=lambda x: x['id']): |
|
if annotation_type == AnnotationType.BBOXES: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
instances = coco_annotation.get_annotations(img_id=image_info['id']) |
|
elif annotation_type == AnnotationType.PANOPTIC: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
panoptic_annotation = coco_annotation.get_annotations( |
|
img_id=image_info['id'] |
|
) |
|
instances = panoptic_annotation['segments_info'] |
|
else: |
|
instances = [] |
|
|
|
if not instances: |
|
annotation_skipped += 1 |
|
|
|
def build_bbox(x, y, width, height): |
|
|
|
|
|
return [ |
|
x, |
|
y, |
|
(x + width), |
|
(y + height), |
|
] |
|
|
|
|
|
example = { |
|
'image': os.path.abspath(os.path.join(image_dir, split_name, image_info['file_name'])), |
|
'image/filename': image_info['file_name'], |
|
'image/id': image_info['id'], |
|
objects_key: [ |
|
{ |
|
'id': instance['id'], |
|
'area': instance['area'], |
|
'bbox': build_bbox(*instance['bbox']), |
|
'label': instance['category_id'], |
|
'super_cat_label': SUPER_CAT_PANOPTIC.index(CAT2SUPER_CAT[instance['category_id']]), |
|
'is_crowd': bool(instance['iscrowd']), |
|
} |
|
for instance in instances |
|
], |
|
} |
|
if self.config.has_panoptic: |
|
panoptic_filename = panoptic_annotation['file_name'] |
|
panoptic_image_path = os.path.join(panoptic_dir, panoptic_filename) |
|
example['panoptic_image'] = panoptic_image_path |
|
example['panoptic_image/filename'] = panoptic_filename |
|
|
|
yield image_info['file_name'], example |
|
|
|
logging.info( |
|
'%d/%d images do not contains any annotations', |
|
annotation_skipped, |
|
len(images), |
|
) |
|
|
|
|
|
class CocoAnnotation(object): |
|
"""Coco annotation helper class.""" |
|
|
|
def __init__(self, annotation_path): |
|
with open(annotation_path, "r") as f: |
|
data = json.load(f) |
|
self._data = data |
|
|
|
@property |
|
def categories(self): |
|
"""Return the category dicts, as sorted in the file.""" |
|
return self._data['categories'] |
|
|
|
@property |
|
def images(self): |
|
"""Return the image dicts, as sorted in the file.""" |
|
return self._data['images'] |
|
|
|
def get_annotations(self, img_id): |
|
"""Return all annotations associated with the image id string.""" |
|
raise NotImplementedError |
|
|
|
|
|
class CocoAnnotationBBoxes(CocoAnnotation): |
|
"""Coco annotation helper class.""" |
|
|
|
def __init__(self, annotation_path): |
|
super(CocoAnnotationBBoxes, self).__init__(annotation_path) |
|
|
|
img_id2annotations = collections.defaultdict(list) |
|
for a in self._data['annotations']: |
|
img_id2annotations[a['image_id']].append(a) |
|
self._img_id2annotations = { |
|
k: list(sorted(v, key=lambda a: a['id'])) |
|
for k, v in img_id2annotations.items() |
|
} |
|
|
|
def get_annotations(self, img_id): |
|
"""Return all annotations associated with the image id string.""" |
|
|
|
return self._img_id2annotations.get(img_id, []) |
|
|
|
|
|
class CocoAnnotationPanoptic(CocoAnnotation): |
|
"""Coco annotation helper class.""" |
|
|
|
def __init__(self, annotation_path): |
|
super(CocoAnnotationPanoptic, self).__init__(annotation_path) |
|
self._img_id2annotations = { |
|
a['image_id']: a for a in self._data['annotations'] |
|
} |
|
|
|
def get_annotations(self, img_id): |
|
"""Return all annotations associated with the image id string.""" |
|
return self._img_id2annotations[img_id] |
|
|
|
|
|
ANNOTATION_CLS = { |
|
AnnotationType.NONE: CocoAnnotation, |
|
AnnotationType.BBOXES: CocoAnnotationBBoxes, |
|
AnnotationType.PANOPTIC: CocoAnnotationPanoptic, |
|
} |
|
|