|
import os |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import pickle |
|
import math |
|
import random |
|
|
|
""" |
|
Dataset url: https://github.com/koc-lab/law-turk/tree/main/data/constitutional/deep |
|
Paper url: https://www.sciencedirect.com/science/article/abs/pii/S0306457321001692 |
|
""" |
|
|
|
def prepare_data(): |
|
label_dict = {' İhlal' : 0, ' İhlal Olmadığı' : 1} |
|
|
|
|
|
with open('old_dataset/constitutional_tokenized.law' ,'rb') as pickle_file: |
|
tokenized = pickle.load(pickle_file) |
|
with open('old_dataset/constitutional_labels.law' ,'rb') as pickle_file: |
|
labels = pickle.load(pickle_file) |
|
|
|
tokenized_lower = [] |
|
|
|
for text in tokenized: |
|
temp_text = "" |
|
for word in text: |
|
temp_text += word.lower() + " " |
|
|
|
tokenized_lower.append(temp_text) |
|
|
|
|
|
|
|
train_ratio = 0.70 |
|
val_ratio = 0.15 |
|
|
|
list_indices = [] |
|
|
|
for i, lbl in enumerate(labels): |
|
if lbl in label_dict: |
|
list_indices.append(i) |
|
|
|
random.Random(13).shuffle(list_indices) |
|
|
|
new_length = len(list_indices) |
|
|
|
train_idx = math.floor(new_length * train_ratio) |
|
val_idx = math.floor(new_length * (train_ratio + val_ratio)) |
|
|
|
train_indices = list_indices[0:train_idx] |
|
val_indices = list_indices[train_idx : val_idx] |
|
test_indices = list_indices[val_idx:] |
|
|
|
train_list = [] |
|
val_list = [] |
|
test_list = [] |
|
|
|
for ind in train_indices: |
|
train_list.append(tokenized_lower[ind]) |
|
|
|
for ind in val_indices: |
|
val_list.append(tokenized_lower[ind]) |
|
|
|
for ind in test_indices: |
|
test_list.append(tokenized_lower[ind]) |
|
|
|
train_labels = [] |
|
val_labels = [] |
|
test_labels = [] |
|
count = 0 |
|
|
|
for ind in train_indices: |
|
if labels[ind] == " İhlal": |
|
train_labels.append("Violation") |
|
else: |
|
train_labels.append("No violation") |
|
|
|
for ind in val_indices: |
|
if labels[ind] == " İhlal": |
|
val_labels.append("Violation") |
|
else: |
|
val_labels.append("No violation") |
|
|
|
for ind in test_indices: |
|
if labels[ind] == " İhlal": |
|
test_labels.append("Violation") |
|
else: |
|
test_labels.append("No violation") |
|
print(count) |
|
|
|
train_split = np.concatenate((np.expand_dims(train_list, axis=1), np.expand_dims(train_labels, axis=1)), axis=1) |
|
val_split = np.concatenate((np.expand_dims(val_list, axis=1), np.expand_dims(val_labels, axis=1)), axis=1) |
|
test_split = np.concatenate((np.expand_dims(test_list, axis=1), np.expand_dims(test_labels, axis=1)), axis=1) |
|
|
|
return pd.DataFrame(train_split, columns=["Text", "Label"]), pd.DataFrame(val_split, columns=["Text", "Label"]), pd.DataFrame(test_split, columns=["Text", "Label"]) |
|
|
|
train_split, val_split, test_split = prepare_data() |
|
train_split.to_json(os.path.join("train.jsonl"), lines=True, orient="records", force_ascii=False) |
|
val_split.to_json(os.path.join("validation.jsonl"), lines=True, orient="records", force_ascii=False) |
|
test_split.to_json(os.path.join("test.jsonl"), lines=True, orient="records", force_ascii=False) |