Konst12 commited on
Commit
600820f
·
1 Parent(s): 5c282c4

Upload outpaint_region.py

Browse files
Files changed (1) hide show
  1. outpaint_region.py +290 -0
outpaint_region.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import skimage
5
+
6
+ import modules.scripts as scripts
7
+ import gradio as gr
8
+ from PIL import Image, ImageDraw
9
+
10
+ from modules import images, processing, devices
11
+ from modules.processing import Processed, process_images
12
+ from modules.shared import opts, cmd_opts, state
13
+
14
+ # this function is taken from https://github.com/parlance-zz/g-diffuser-bot
15
+ def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05):
16
+ # helper fft routines that keep ortho normalization and auto-shift before and after fft
17
+ def _fft2(data):
18
+ if data.ndim > 2: # has channels
19
+ out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
20
+ for c in range(data.shape[2]):
21
+ c_data = data[:, :, c]
22
+ out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho")
23
+ out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
24
+ else: # one channel
25
+ out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
26
+ out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho")
27
+ out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
28
+
29
+ return out_fft
30
+
31
+ def _ifft2(data):
32
+ if data.ndim > 2: # has channels
33
+ out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
34
+ for c in range(data.shape[2]):
35
+ c_data = data[:, :, c]
36
+ out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho")
37
+ out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
38
+ else: # one channel
39
+ out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
40
+ out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho")
41
+ out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
42
+
43
+ return out_ifft
44
+
45
+ def _get_gaussian_window(width, height, std=3.14, mode=0):
46
+ window_scale_x = float(width / min(width, height))
47
+ window_scale_y = float(height / min(width, height))
48
+
49
+ window = np.zeros((width, height))
50
+ x = (np.arange(width) / width * 2. - 1.) * window_scale_x
51
+ for y in range(height):
52
+ fy = (y / height * 2. - 1.) * window_scale_y
53
+ if mode == 0:
54
+ window[:, y] = np.exp(-(x ** 2 + fy ** 2) * std)
55
+ else:
56
+ window[:, y] = (1 / ((x ** 2 + 1.) * (fy ** 2 + 1.))) ** (std / 3.14) # hey wait a minute that's not gaussian
57
+
58
+ return window
59
+
60
+ def _get_masked_window_rgb(np_mask_grey, hardness=1.):
61
+ np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
62
+ if hardness != 1.:
63
+ hardened = np_mask_grey[:] ** hardness
64
+ else:
65
+ hardened = np_mask_grey[:]
66
+ for c in range(3):
67
+ np_mask_rgb[:, :, c] = hardened[:]
68
+ return np_mask_rgb
69
+
70
+ width = _np_src_image.shape[0]
71
+ height = _np_src_image.shape[1]
72
+ num_channels = _np_src_image.shape[2]
73
+
74
+ np_src_image = _np_src_image[:] * (1. - np_mask_rgb)
75
+ np_mask_grey = (np.sum(np_mask_rgb, axis=2) / 3.)
76
+ img_mask = np_mask_grey > 1e-6
77
+ ref_mask = np_mask_grey < 1e-3
78
+
79
+ windowed_image = _np_src_image * (1. - _get_masked_window_rgb(np_mask_grey))
80
+ windowed_image /= np.max(windowed_image)
81
+ windowed_image += np.average(_np_src_image) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
82
+
83
+ src_fft = _fft2(windowed_image) # get feature statistics from masked src img
84
+ src_dist = np.absolute(src_fft)
85
+ src_phase = src_fft / src_dist
86
+
87
+ # create a generator with a static seed to make outpainting deterministic / only follow global seed
88
+ rng = np.random.default_rng(0)
89
+
90
+ noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
91
+ noise_rgb = rng.random((width, height, num_channels))
92
+ noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
93
+ noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
94
+ for c in range(num_channels):
95
+ noise_rgb[:, :, c] += (1. - color_variation) * noise_grey
96
+
97
+ noise_fft = _fft2(noise_rgb)
98
+ for c in range(num_channels):
99
+ noise_fft[:, :, c] *= noise_window
100
+ noise_rgb = np.real(_ifft2(noise_fft))
101
+ shaped_noise_fft = _fft2(noise_rgb)
102
+ shaped_noise_fft[:, :, :] = np.absolute(shaped_noise_fft[:, :, :]) ** 2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
103
+
104
+ brightness_variation = 0. # color_variation # todo: temporarily tieing brightness variation to color variation for now
105
+ contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
106
+
107
+ # scikit-image is used for histogram matching, very convenient!
108
+ shaped_noise = np.real(_ifft2(shaped_noise_fft))
109
+ shaped_noise -= np.min(shaped_noise)
110
+ shaped_noise /= np.max(shaped_noise)
111
+ shaped_noise[img_mask, :] = skimage.exposure.match_histograms(shaped_noise[img_mask, :] ** 1., contrast_adjusted_np_src[ref_mask, :], channel_axis=1)
112
+ shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
113
+
114
+ matched_noise = shaped_noise[:]
115
+
116
+ return np.clip(matched_noise, 0., 1.)
117
+
118
+ class Script(scripts.Script):
119
+ def title(self):
120
+ return "Outpaint Canvas Region"
121
+
122
+ def show(self, is_img2img):
123
+ return is_img2img
124
+
125
+ def ui(self, is_img2img):
126
+ if not is_img2img:
127
+ return None
128
+
129
+ canvasButton = gr.Button("Show/Hide Canvas")
130
+ leftcoord = gr.Slider(label="Left start coord", minimum=-400, maximum=2048, step=1, value=0, elem_id="leftCoord")
131
+ topcoord = gr.Slider(label="top start coord", minimum=-400, maximum=2048, step=1, value=0, elem_id="topCoord")
132
+ dummy = gr.Slider(label="unused", minimum=-1, maximum=1, step=1, value=0)
133
+
134
+ canvasButton.click(None, [], dummy, _js="(x) => { let grap = document.body.children[0];\
135
+ let tabDiv = grap.shadowRoot.getElementById('tab_img2img');\
136
+ let img2imgDiv = grap.shadowRoot.getElementById('img2img_image');\
137
+ let imgB64 = img2imgDiv.children[2].children[0].children[1].src;\
138
+ let canvDiv = grap.shadowRoot.getElementById('outDrawCanvasDiv');\
139
+ let canv = grap.shadowRoot.getElementById('outDrawCanvas');\
140
+ console.info('run',canvDiv);\
141
+ if (!canvDiv) {\
142
+ canvDiv = document.createElement('div');\
143
+ canvDiv.id = 'outDrawCanvasDiv';\
144
+ canv = document.createElement('canvas');\
145
+ canv.id = 'outDrawCanvas';\
146
+ canvDiv.append(canv);\
147
+ tabDiv.append(canvDiv);\
148
+ canvDiv.style.display = 'none';\
149
+ canvDiv.style.position = 'absolute';\
150
+ canvDiv.style.left = '50px';\
151
+ canvDiv.style.right = '50px';\
152
+ canvDiv.style.top = '50px';\
153
+ canvDiv.style.bottom = '50px';\
154
+ canvDiv.style.zIndex = '1000';\
155
+ canvDiv.style.background = '#d0d0d0';\
156
+ canvDiv.style.overflow = 'auto';\
157
+ canv.onclick = function(event) {\
158
+ event.stopPropagation();\
159
+ let rect = canv.getBoundingClientRect();\
160
+ let x = event.clientX - rect.left;\
161
+ let y = event.clientY - rect.top;\
162
+ if (x>canv.width-512 || y>canv.height-512) return;\
163
+ let ctx = canv.getContext('2d');\
164
+ ctx.fillStyle = 'black';\
165
+ ctx.fillRect(0, 0, canv.width, canv.height);\
166
+ ctx.drawImage(canv.storeImage, 400, 400, canv.width-800, canv.height-800);\
167
+ ctx.beginPath();\
168
+ ctx.lineWidth = '2';\
169
+ ctx.strokeStyle = 'white';\
170
+ ctx.rect(x, y, 512, 512);\
171
+ ctx.stroke();\
172
+ grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[0].value = x - 400;\
173
+ grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[1].value = x - 400;\
174
+ grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[0].value = y -400;\
175
+ grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[1].value = y - 400;\
176
+ grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[0].dispatchEvent(new Event('input'));\
177
+ grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[0].dispatchEvent(new Event('input'));\
178
+ }\
179
+ }\
180
+ console.info(canvDiv.style.display);\
181
+ if (canvDiv.style.display!=='none') {\
182
+ canvDiv.style.display = 'none';\
183
+ return 0;\
184
+ }\
185
+ if (canv && imgB64) {\
186
+ let ctx = canv.getContext('2d');\
187
+ let image = new Image();\
188
+ image.onload = function() {\
189
+ console.info('onLoad');\
190
+ canv.width = this.width;\
191
+ canv.height = this.height;\
192
+ ctx.drawImage(this, 0, 0);\
193
+ let pixelData = ctx.getImageData(0, 0, canv.width, canv.height).data;\
194
+ let firstX = 9999;\
195
+ let firstY = 9999;\
196
+ let lastX = 0;\
197
+ let lastY = 0;\
198
+ for (let y=0;y<this.height;y=y+10) {\
199
+ for (let x=0;x<this.width;x++) {\
200
+ if (pixelData[y*this.width*3+x*3] || pixelData[y*this.width*3+x*3+1] || pixelData[y*this.width*3+x*3+2]) {\
201
+ if (x<firstX) firstX = x;\
202
+ if (x>lastX) lastX = x;\
203
+ }\
204
+ }\
205
+ }\
206
+ for (let x=0;x<this.width;x=x+10) {\
207
+ for (let y=0;y<this.height;y++) {\
208
+ if (pixelData[y*this.width*3+x*3] || pixelData[y*this.width*3+x*3+1] || pixelData[y*this.width*3+x*3+2]) {\
209
+ if (y<firstY) firstY = y;\
210
+ if (y>lastY) lastY = y;\
211
+ }\
212
+ }\
213
+ }\
214
+ if (lastX<firstX || lastY < firstY) return 0;\
215
+ canv.width = (lastX - firstX) + 800;\
216
+ canv.style.width = canv.width + 'px';\
217
+ canv.height = (lastY - firstY) + 800;\
218
+ canv.style.height = canv.height + 'px';\
219
+ ctx.fillStyle = 'black';\
220
+ ctx.fillRect(0, 0, canv.width, canv.height);\
221
+ ctx.drawImage(image, 400, 400, (lastX - firstX), (lastY - firstY));\
222
+ canvDiv.style.display = 'block';\
223
+ canvDiv.style.position = 'fixed';\
224
+ canvDiv.style.left = '400px';\
225
+ canvDiv.style.width = 'calc(100% - 400px)';\
226
+ canvDiv.style.top = '0px';\
227
+ canvDiv.style.height = '100%';\
228
+ canv.storeImage = this; \
229
+ };\
230
+ console.info('loading image');\
231
+ image.src = imgB64;\
232
+ };\
233
+ return 0}")
234
+ return [leftcoord, topcoord,canvasButton,dummy]
235
+
236
+ def run(self, p, leftcoord, topcoord,canvasButton,dummy):
237
+ initial_seed = None
238
+ initial_info = None
239
+ p.mask_blur = 0
240
+ p.inpaint_full_res = False
241
+ p.do_not_save_samples = True
242
+ p.do_not_save_grid = True
243
+ origInBaseLeft = 0
244
+ origInBaseTop = 0
245
+ workItemLeft = leftcoord
246
+ workItemTop = topcoord
247
+ newwidth = p.init_images[0].width
248
+ newheight = p.init_images[0].height
249
+ if leftcoord<0:
250
+ newwidth = newwidth - leftcoord
251
+ origInBaseLeft = -leftcoord
252
+ workItemLeft = 0
253
+ if topcoord<0:
254
+ newheight = newheight - topcoord
255
+ origInBaseTop = -topcoord
256
+ workItemTop = 0
257
+ if leftcoord + p.width > newwidth:
258
+ newwidth = leftcoord + p.width
259
+ if topcoord + p.height > newheight:
260
+ newheight = topcoord + p.height
261
+ newBase = Image.new("RGB", (newwidth, newheight), "black")
262
+ newBase.paste(p.init_images[0], (origInBaseLeft, origInBaseTop))
263
+ workItem = Image.new("RGB", (p.width, p.height))
264
+ region = newBase.crop((workItemLeft, workItemTop, workItemLeft+p.width, workItemTop + p.height))
265
+ workItem.paste(region, (0,0))
266
+ workData = np.array(workItem).astype(np.float32) / 255.0
267
+ mask = Image.new("L", (p.width, p.height),color=255)
268
+ maskData = np.array(mask)
269
+ for y in range(p.height):
270
+ for x in range(p.width):
271
+ if workData[y][x][0] + workData[y][x][1] + workData[y][x][2] > 0.001:
272
+ maskData[y][x] = 0
273
+ p.image_mask = Image.fromarray(maskData, mode="L")
274
+ np_image = (np.asarray(workItem) / 255.0).astype(np.float64)
275
+ np_mask = (np.asarray(p.image_mask.convert('RGB')) / 255.0).astype(np.float64)
276
+ noised = get_matched_noise(np_image, np_mask)
277
+ workItem = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
278
+ workImages = []
279
+ for n in range(p.batch_size):
280
+ workImages.append(workItem)
281
+ p.init_images = workImages
282
+ p.latent_mask = None
283
+ proc = process_images(p)
284
+ results = []
285
+ for n in range(p.batch_size):
286
+ proc_img = proc.images[n]
287
+ final_image = newBase.copy()
288
+ final_image.paste(proc_img,(workItemLeft,workItemTop))
289
+ proc.images[n] = final_image
290
+ return proc