from torch import nn import torch from modules import devices, shared import ldm.models.diffusion.ddpm class VectorAdjustPrior(nn.Module): def __init__(self, hidden_size, inter_dim=64): super().__init__() self.vector_proj = nn.Linear(hidden_size * 2, inter_dim, bias=True) self.out_proj = nn.Linear(hidden_size + inter_dim, hidden_size, bias=True) def forward(self, z): b, s = z.shape[0:2] x1 = torch.mean(z, dim=1).repeat(s, 1) x2 = z.reshape(b * s, -1) x = torch.cat((x1, x2), dim=1) x = self.vector_proj(x) x = torch.cat((x2, x), dim=1) x = self.out_proj(x) x = x.reshape(b, s, -1) return x @classmethod def load_model(cls, model_path, hidden_size=768, inter_dim=64): model = cls(hidden_size=hidden_size, inter_dim=inter_dim) model.load_state_dict(torch.load(model_path)["state_dict"]) return model vap = VectorAdjustPrior.load_model('v2.pt').to(devices.device) def get_learned_conditioning_with_prior(self, c): cond = ldm.models.diffusion.ddpm.LatentDiffusion.get_learned_conditioning_original(self, c) if shared.opts.use_prior: cond = vap(cond) return cond if not hasattr(ldm.models.diffusion.ddpm.LatentDiffusion, 'get_learned_conditioning_original'): ldm.models.diffusion.ddpm.LatentDiffusion.get_learned_conditioning_original = ldm.models.diffusion.ddpm.LatentDiffusion.get_learned_conditioning ldm.models.diffusion.ddpm.LatentDiffusion.get_learned_conditioning = get_learned_conditioning_with_prior shared.options_templates.update(shared.options_section(('nai', "NAI"), { "use_prior": shared.OptionInfo(False, "use v2.pt"), }))