File size: 5,638 Bytes
2ee286f e9b05bf 2ee286f f4daca1 2ee286f 5e100a2 2ee286f 5e100a2 2ee286f defbf5f 2ee286f 94f3eaf 2ee286f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
import json
import os
from PIL import Image
import datasets
def load_image(image_path):
image = Image.open(image_path).convert("RGB")
w, h = image.size
return image, (w, h)
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
logger = datasets.logging.get_logger(__name__)
class ResumeDataConfig(datasets.BuilderConfig):
"""BuilderConfig for Resume NER"""
def __init__(self, **kwargs):
"""BuilderConfig for FUNSD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ResumeDataConfig, self).__init__(**kwargs)
class ResumeData(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
ResumeDataConfig(name="funsd",
version=datasets.Version("1.0.0"),
description="Resume Dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description="",
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["O",
"B-ADDRESS",
"B-EMAIL",
"B-NAME",
"B-PHONE",
"B-SECTIONHEADER",
"E-ADDRESS",
"E-EMAIL",
"E-NAME",
"E-PHONE",
"E-SECTIONHEADER",
"I-ADDRESS",
"I-EMAIL",
"I-NAME",
"I-PHONE",
"I-SECTIONHEADER",
"S-ADDRESS",
"S-EMAIL",
"S-NAME",
"S-PHONE",
"S-SECTIONHEADER"
]
)
),
"image": datasets.features.Image(),
}
),
supervised_keys=None,
homepage="",
citation="",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract("https://huggingface.co/datasets/Kunling/layoutlm_resume_data/resolve/main/person_resume_funsd_format_v5.zip")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training/"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing/"}
),
]
def get_line_bbox(self, bboxs):
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
assert x1 >= x0 and y1 >= y0
bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
return bbox
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
ann_dir = os.path.join(filepath, "annotations")
img_dir = os.path.join(filepath, "images")
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
tokens = []
bboxes = []
ner_tags = []
file_path = os.path.join(ann_dir, file)
with open(file_path, "r", encoding="utf8") as f:
data = json.load(f)
image_path = os.path.join(img_dir, file)
image_path = image_path.replace("json", "jpeg")
image, size = load_image(image_path)
for item in data["form"]:
cur_line_bboxes = []
words, label = item["words"], item["label"]
words = [w for w in words if w["text"].strip() != ""]
if len(words) == 0:
continue
if label.lower() == "other":
for w in words:
tokens.append(w["text"])
ner_tags.append("O")
cur_line_bboxes.append(normalize_bbox(w["box"], size))
else:
tokens.append(words[0]["text"])
ner_tags.append("B-" + label.upper())
cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
for w in words[1:]:
tokens.append(w["text"])
ner_tags.append("I-" + label.upper())
cur_line_bboxes.append(normalize_bbox(w["box"], size))
cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
bboxes.extend(cur_line_bboxes)
yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags,
"image": image} |