File size: 5,638 Bytes
2ee286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b05bf
2ee286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4daca1
2ee286f
 
5e100a2
2ee286f
 
5e100a2
2ee286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
defbf5f
2ee286f
 
 
 
 
 
 
94f3eaf
2ee286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8

import json
import os

from PIL import Image

import datasets

def load_image(image_path):
    image = Image.open(image_path).convert("RGB")
    w, h = image.size
    return image, (w, h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]

logger = datasets.logging.get_logger(__name__)




class ResumeDataConfig(datasets.BuilderConfig):
    """BuilderConfig for Resume NER"""

    def __init__(self, **kwargs):
        """BuilderConfig for FUNSD.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ResumeDataConfig, self).__init__(**kwargs)


class ResumeData(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        ResumeDataConfig(name="funsd",
                         version=datasets.Version("1.0.0"),
                         description="Resume Dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description="",
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=["O",
                                   "B-ADDRESS",
                                    "B-EMAIL",
                                    "B-NAME",
                                    "B-PHONE",
                                    "B-SECTIONHEADER",
                                    "E-ADDRESS",
                                    "E-EMAIL",
                                    "E-NAME",
                                    "E-PHONE",
                                    "E-SECTIONHEADER",
                                    "I-ADDRESS",
                                    "I-EMAIL",
                                    "I-NAME",
                                    "I-PHONE",
                                    "I-SECTIONHEADER",
                                    "S-ADDRESS",
                                    "S-EMAIL",
                                    "S-NAME",
                                    "S-PHONE",
                                    "S-SECTIONHEADER"
                                   ]
                        )
                    ),
                    "image": datasets.features.Image(),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation="",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract("https://huggingface.co/datasets/Kunling/layoutlm_resume_data/resolve/main/person_resume_funsd_format_v5.zip")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training/"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing/"}
            ),
        ]

    def get_line_bbox(self, bboxs):
        x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
        y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]

        x0, y0, x1, y1 = min(x), min(y), max(x), max(y)

        assert x1 >= x0 and y1 >= y0
        bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
        return bbox

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        ann_dir = os.path.join(filepath, "annotations")
        img_dir = os.path.join(filepath, "images")
        for guid, file in enumerate(sorted(os.listdir(ann_dir))):
            tokens = []
            bboxes = []
            ner_tags = []

            file_path = os.path.join(ann_dir, file)
            with open(file_path, "r", encoding="utf8") as f:
                data = json.load(f)
            image_path = os.path.join(img_dir, file)
            image_path = image_path.replace("json", "jpeg")
            image, size = load_image(image_path)
            for item in data["form"]:
                cur_line_bboxes = []
                words, label = item["words"], item["label"]
                words = [w for w in words if w["text"].strip() != ""]
                if len(words) == 0:
                    continue
                if label.lower() == "other":
                    for w in words:
                        tokens.append(w["text"])
                        ner_tags.append("O")
                        cur_line_bboxes.append(normalize_bbox(w["box"], size))
                else:
                    tokens.append(words[0]["text"])
                    ner_tags.append("B-" + label.upper())
                    cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
                    for w in words[1:]:
                        tokens.append(w["text"])
                        ner_tags.append("I-" + label.upper())
                        cur_line_bboxes.append(normalize_bbox(w["box"], size))
                cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
                bboxes.extend(cur_line_bboxes)
            yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags,
                         "image": image}