input
stringlengths
6
17.2k
output
stringclasses
1 value
instruction
stringclasses
1 value
<s> import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) from .bin.aion_pipeline import aion_train_model <s> import argparse import sys import os import subprocess INSTALL = 'install' LINUXINSTALL = 'linuxinstall' FE_MIGRATE = 'migrateappfe' LAUNCH_KAFKA = 'launchkafkaconsumer' RUN_LOCAL_MLAC_PIPELINE = 'runpipelinelocal' BUILD_MLAC_CONTAINER = 'buildmlaccontainerlocal' CONVERT_MODEL = 'convertmodel' START_MLFLOW = 'mlflow' COMMON_SERVICE = 'service' TRAINING = 'training' TRAINING_AWS = 'trainingonaws' TRAINING_DISTRIBUTED = 'distributedtraining' START_APPF = 'appfe' ONLINE_TRAINING = 'onlinetraining' TEXT_SUMMARIZATION = 'textsummarization' GENERATE_MLAC = 'generatemlac' AWS_TRAINING = 'awstraining' LLAMA_7B_TUNING = 'llama7btuning' LLM_PROMPT = 'llmprompt' LLM_TUNING = 'llmtuning' LLM_PUBLISH = 'llmpublish' LLM_BENCHMARKING = 'llmbenchmarking' TELEMETRY_PUSH = 'pushtelemetry' def aion_aws_training(confFile): from hyperscalers.aion_aws_training import awsTraining status = awsTraining(confFile) print(status) def aion_training(confFile): from bin.aion_pipeline import aion_train_model status = aion_train_model(confFile) print(status) def aion_awstraining(config_file): from hyperscalers import aws_instance print(config_file) aws_instance.training(config_file) def aion_generatemlac(ConfFile): from bin.aion_mlac import generate_mlac_code status = generate_mlac_code(ConfFile) print(status) def aion_textsummarization(confFile): from bin.aion_text_summarizer import aion_textsummary status = aion_textsummary(confFile) def aion_oltraining(confFile): from bin.aion_online_pipeline import aion_ot_train_model status = aion_ot_train_model(confFile) print(status) def do_telemetry_sync(): from appbe.telemetry import SyncTelemetry SyncTelemetry() def aion_llm_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image): from llm.llm_inference import LLM_publish LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image) def aion_migratefe(operation): import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append(operation) execute_from_command_line(argi) def aion_appfe(url,port): #manage_location = os.path.join(os.path.dirname(os.path.abspath(__file__)),'manage.py') #subprocess.check_call([sys.executable,manage_location, "runserver","%s:%s"%(url,port)]) import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append('runaion') argi.append("%s:%s"%(url,port)) execute_from_command_line(argi) def aion_linux_install(version): from install import linux_dependencies linux_dependencies.process(version) def aion_install(version): from install import dependencies dependencies.process(version) def aion_service(ip,port,username,password): from bin.aion_service import start_server start_server(ip,port,username,password) def aion_distributedLearning(confFile): from distributed_learning import learning learning.training(confFile) def aion_launchkafkaconsumer(): from mlops import kafka_consumer kafka_consumer.launch_kafka_consumer() def aion_start_mlflow(): from appbe.dataPath import DEPLOY_LOCATION import platform import shutil from os.path import expanduser mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','Scripts','mlflow.exe')) print(mlflowpath) home = expanduser("~") if platform.system() == 'Windows': DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') outputStr = subprocess.Popen([sys.executable, mlflowpath,"ui", "--backend-store-uri","file:///"+DEPLOY_LOCATION]) else: DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') subprocess.check_call(['mlflow',"ui","-h","0.0.0.0","--backend-store-uri","file:///"+DEPLOY_LOCATION]) def aion_model_conversion(config_file): from conversions import model_convertions model_convertions.convert(config_file) def aion_model_buildMLaCContainer(config): from mlops import build_container build_container.local_docker_build(config) def aion_model_runpipelinelocal(config): from mlops import local_pipeline local_pipeline.run_pipeline(config) def aion_llm_tuning(config): from llm.llm_tuning import run run(config) def aion_llm_prompt(cloudconfig,instanceid,prompt): from llm.aws_instance_api import LLM_predict LLM_predict(cloudconfig,instanceid,prompt) def llm_bench_marking(hypervisor,instanceid,model,usecaseid,eval): print(eval) from llm.bench_marking import bench_mark bench_mark(hypervisor,instanceid,model,usecaseid,eval) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--configPath', help='Config File Path') parser.add_argument('-i', '--instanceid', help='instanceid') parser.add_argument('-hv', '--hypervisor', help='hypervisor') parser.add_argument('-md', '--model', help='model') parser.add_argument('-uc', '--usecase', help='usecase') parser.add_argument('-cc', '--cloudConfigPath', help='Cloud Config File Path') parser.add_argument('-m', '--module', help='MODULE=TRAINING, APPFE, ONLINETRAINING,DISTRIBUTEDTRAINING') parser.add_argument('-ip', '--ipaddress', help='URL applicable only for APPFE method ') parser.add_argument('-p', '--port', help='APP Front End Port applicable only for APPFE method ') parser.add_argument('-ac', '--appfecommand', help='APP Front End Command ') parser.add_argument('-un','--username', help="USERNAME") parser.add_argument('-passw','--password', help="PASSWORD") parser.add_argument('-j', '--jsoninput', help='JSON Input') parser.add_argument('-v', '--version', help='Installer Version') parser.add_argument('-pf', '--prompt', help='Prompt File') parser.add_argument('-r', '--region', help='REGION NAME') parser.add_argument('-im', '--image', help='IMAGE NAME') parser.add_argument('-e', '--eval', help='evaluation for code or doc', default='doc') args = parser.parse_args() if args.module.lower() == TRAINING: aion_training(args.configPath) elif args.module.lower() == TRAINING_AWS: aion_awstraining(args.configPath) elif args.module.lower() == TRAINING_DISTRIBUTED: aion_distributedLearning(args.configPath) elif args.module.lower() == START_APPF: aion_appfe(args.ipaddress,args.port) elif args.module.lower() == ONLINE_TRAINING: aion_oltraining(args.configPath) elif args.module.lower() == TEXT_SUMMARIZATION: aion_textsummarization(args.configPath) elif args.module.lower() == GENERATE_MLAC: aion_generatemlac(args.configPath) elif args.module.lower() == COMMON_SERVICE: aion_service(args.ipaddress,args.port,args.username,args.password) elif args.module.lower() == START_MLFLOW: aion_mlflow() elif args.module.lower() == CONVERT_MODEL: aion_model_conversion(args.configPath) elif args.module.lower() == BUILD_MLAC_CONTAINER: aion_model_buildMLaCContainer(args.jsoninput) elif args.module.lower() == RUN_LOCAL_MLAC_PIPELINE: aion_model_runpipelinelocal(args.jsoninput) elif args.module.lower() == LAUNCH_KAFKA: aion_launchkafkaconsumer() elif args.module.lower() == INSTALL: aion_install(args.version) elif args.module.lower() == LINUXINSTALL: aion_linux_install(args.version) elif args.module.lower() == FE_MIGRATE: aion_migratefe('makemigrations') aion_migratefe('migrate') elif args.module.lower() == AWS_TRAINING: aion_aws_training(args.configPath) elif args.module.lower() == LLAMA_7B_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_PROMPT: aion_llm_prompt(args.cloudConfigPath,args.instanceid,args.prompt) elif args.module.lower() == LLM_PUBLISH: aion_llm_publish(args.cloudConfigPath,args.instanceid,args.hypervisor,args.model,args.usecase,args.region,args.image) elif args.module.lower() == LLM_BENCHMARKING: llm_bench_marking(args.hypervisor,args.instanceid,args.model,args.usecase, args.eval) elif args.module.lower() == TELEMETRY_PUSH: do_telemetry_sync()<s><s> import numpy as np from scipy.stats import norm from sklearn.metrics import mean_squared_error, r2_score from ..utils.misc import fitted_ucc_w_nullref def picp(y_true, y_lower, y_upper): """ Prediction Interval Coverage Probability (PICP). Computes the fraction of samples for which the grounds truth lies within predicted interval. Measures the prediction interval calibration for regression. Args: y_true: Ground truth y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: the fraction of samples for which the grounds truth lies within predicted interval. """ satisfies_upper_bound = y_true <= y_upper satisfies_lower_bound = y_true >= y_lower return np.mean(satisfies_upper_bound * satisfies_lower_bound) def mpiw(y_lower, y_upper): """ Mean Prediction Interval Width (MPIW). Computes the average width of the the prediction intervals. Measures the sharpness of intervals. Args: y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: the average width the prediction interval across samples. """ return np.mean(np.abs(y_lower - y_upper)) def auucc_gain(y_true, y_mean, y_lower, y_upper): """ Computes the Area Under the Uncertainty Characteristics Curve (AUUCC) gain wrt to a null reference with constant band. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: AUUCC gain """ u = fitted_ucc_w_nullref(y_true, y_mean, y_lower, y_upper) auucc = u.get_AUUCC() assert(isinstance(auucc, list) and len(auucc) == 2), "Failed to calculate auucc gain" assert (not np.isclose(auucc[1], 0.)), "Failed to calculate auucc gain" auucc_gain = (auucc[1]-auucc[0])/auucc[0] return auucc_gain def negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper): """ Computes Gaussian negative_log_likelihood assuming symmetric band around the mean. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: nll """ y_std = (y_upper - y_lower) / 4.0 nll = np.mean(-norm.logpdf(y_true.squeeze(), loc=y_mean.squeeze(), scale=y_std.squeeze())) return nll def compute_regression_metrics(y_true, y_mean,
y_lower, y_upper, option="all", nll_fn=None): """ Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes the ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] metrics. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound option: string or list of string contained the name of the metrics to be computed. nll_fn: function that evaluates NLL, if None, then computes Gaussian NLL using y_mean and y_lower. Returns: dict: dictionary containing the computed metrics. """ assert y_true.shape == y_mean.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_mean.shape) assert y_true.shape == y_lower.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_lower.shape) assert y_true.shape == y_upper.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_upper.shape) results = {} if not isinstance(option, list): if option == "all": option_list = ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] else: option_list = [option] if "rmse" in option_list: results["rmse"] = mean_squared_error(y_true, y_mean, squared=False) if "nll" in option_list: if nll_fn is None: nll = negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper) results["nll"] = nll else: results["nll"] = np.mean(nll_fn(y_true)) if "auucc_gain" in option_list: gain = auucc_gain(y_true, y_mean, y_lower, y_upper) results["auucc_gain"] = gain if "picp" in option_list: results["picp"] = picp(y_true, y_lower, y_upper) if "mpiw" in option_list: results["mpiw"] = mpiw(y_lower, y_upper) if "r2" in option_list: results["r2"] = r2_score(y_true, y_mean) return results def _check_not_tuple_of_2_elements(obj, obj_name='obj'): """Check object is not tuple or does not have 2 elements.""" if not isinstance(obj, tuple) or len(obj) != 2: raise TypeError('%s must be a tuple of 2 elements.' % obj_name) def plot_uncertainty_distribution(dist, show_quantile_dots=False, qd_sample=20, qd_bins=7, ax=None, figsize=None, dpi=None, title='Predicted Distribution', xlims=None, xlabel='Prediction', ylabel='Density', **kwargs): """ Plot the uncertainty distribution for a single distribution. Args: dist: scipy.stats._continuous_distns. A scipy distribution object. show_quantile_dots: boolean. Whether to show quantil dots on top of the density plot. qd_sample: int. Number of dots for the quantile dot plot. qd_bins: int. Number of bins for the quantile dot plot. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. title : string or None, optional (default=Prediction Distribution) Axes title. If None, title is disabled. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. xlabel : string or None, optional (default=Prediction) X-axis title label. If None, title is disabled. ylabel : string or None, optional (default=Density) Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with prediction distribution. """ import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 100) ax.plot(x, dist.pdf(x), **kwargs) if show_quantile_dots: from matplotlib.patches import Circle from matplotlib.collections import PatchCollection import matplotlib.ticker as ticker data = dist.rvs(size=10000) p_less_than_x = np.linspace(1 / qd_sample / 2, 1 - (1 / qd_sample / 2), qd_sample) x_ = np.percentile(data, p_less_than_x * 100) # Inverce CDF (ppf) # Create bins hist = np.histogram(x_, bins=qd_bins) bins, edges = hist radius = (edges[1] - edges[0]) / 2 ax2 = ax.twinx() patches = [] max_y = 0 for i in range(qd_bins): x_bin = (edges[i + 1] + edges[i]) / 2 y_bins = [(i + 1) * (radius * 2) for i in range(bins[i])] max_y = max(y_bins) if max(y_bins) > max_y else max_y for _, y_bin in enumerate(y_bins): circle = Circle((x_bin, y_bin), radius) patches.append(circle) p = PatchCollection(patches, alpha=0.4) ax2.add_collection(p) # Axis tweek y_scale = (max_y + radius) / max(dist.pdf(x)) ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x_ / y_scale)) ax2.yaxis.set_major_formatter(ticks_y) ax2.set_yticklabels([]) if xlims is not None: ax2.set_xlim(left=xlims[0], right=xlims[1]) else: ax2.set_xlim([min(x_) - radius, max(x) + radius]) ax2.set_ylim([0, max_y + radius]) ax2.set_aspect(1) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) return ax def plot_picp_by_feature(x_test, y_test, y_test_pred_lower_total, y_test_pred_upper_total, num_bins=10, ax=None, figsize=None, dpi=None, xlims=None, ylims=None, xscale="linear", title=None, xlabel=None, ylabel=None): """ Plot how prediction uncertainty varies across the entire range of a feature. Args: x_test: One dimensional ndarray. Feature column of the test dataset. y_test: One dimensional ndarray. Ground truth label of the test dataset. y_test_pred_lower_total: One dimensional ndarray. Lower bound of the total uncertainty range. y_test_pred_upper_total: One dimensional ndarray. Upper bound of the total uncertainty range. num_bins: int. Number of bins used to discritize x_test into equal-sample-sized bins. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. ylims: tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.ylim()``. xscale: Passed to ``ax.set_xscale()``. title : string or None, optional Axes title. If None, title is disabled. xlabel : string or None, optional X-axis title label. If None, title is disabled. ylabel : string or None, optional Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with PICP scores binned by a feature. """ from scipy.stats.mstats import mquantiles import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x_uniques_sorted = np.sort(np.unique(x_test)) num_unique = len(x_uniques_sorted) sample_bin_ids = np.searchsorted(x_uniques_sorted, x_test) if len(x_uniques_sorted) > 10: # bin the values q_bins = mquantiles(x_test, np.histogram_bin_edges([], bins=num_bins-1, range=(0.0, 1.0))[1:]) q_sample_bin_ids = np.digitize(x_test, q_bins) picps = np.array([picp(y_test[q_sample_bin_ids==bin], y_test_pred_lower_total[q_sample_bin_ids==bin], y_test_pred_upper_total[q_sample_bin_ids==bin]) for bin in range(num_bins)]) unique_sample_bin_ids = np.digitize(x_uniques_sorted, q_bins) picp_replicated = [len(x_uniques_sorted[unique_sample_bin_ids == bin]) * [picps[bin]] for bin in range(num_bins)] picp_replicated = np.array([item for sublist in picp_replicated for item in sublist]) else: picps = np.array([picp(y_test[sample_bin_ids == bin], y_test_pred_lower_total[sample_bin_ids == bin], y_test_pred_upper_total[sample_bin_ids == bin]) for bin in range(num_unique)]) picp_replicated = picps ax.plot(x_uniques_sorted, picp_replicated, label='PICP') ax.axhline(0.95, linestyle='--', label='95%') ax.set_ylabel('PICP') ax.legend(loc='best') if title is None: title = 'Test data overall PICP: {:.2f} MPIW: {:.2f}'.format( picp(y_test, y_test_pred_lower_total, y_test_pred_upper_total), mpiw(y_test_pred_lower_total, y_test_pred_upper_total)) if xlims is not None: ax.set_xlim(left=xlims[0], right=xlims[1]) if ylims is not None: ax.set_ylim(bottom=ylims[0], top=ylims[1]) ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if xscale is not None: ax.set_xscale(xscale) return ax def plot_uncertainty_by_feature(x_test, y_test_pred_mean, y_test_pred_lower_total, y_test_pred_upper_total, y_test_pred_lower_epistemic=None, y_test_pred_upper_epistemic=None, ax=None, figsize=None, dpi=None, xlims=None, xscale="linear", title=None, xlabel=None, ylabel=None): """ Plot how prediction uncertainty varies across the entire range of a feature. Args: x_test: one dimensional ndarray. Feature column of the test dataset. y_test_pred_mean: One dimensional ndarray. Model prediction for the test dataset. y_test_pred_lower_total: One dimensional ndarray. Lower bound of the total uncertainty range. y_test_pred_upper_total: One dimensional ndarray. Upper bound of the total uncertainty range. y_test_pred_lower_epistemic: One dimensional ndarray. Lower bound of the epistemic uncertainty range. y_test_pred_upper_epistemic: One dimensional ndarray. Upper bound of the epistemic uncertainty range. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. xscale: Passed to ``ax.set_xscale()``. title : string or None, optional Axes title. If None, title is disabled. xlabel : string or None, optional X-axis title label. If None, title is disabled. ylabel : string or None, optional Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with model's uncertainty binned by a feature. """ import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x_uniques_sorted = np.sort(np.unique(x_test)) y_pred_var = ((y_test_pred_upper_total - y_test_pred_lower_total) / 4.0)**2 agg_y_std = np.array([np.sqrt(np.mean(y_pred_var[x_test==x])) for x in x_uniques_sorted]) agg_y_mean =
np.array([np.mean(y_test_pred_mean[x_test==x]) for x in x_uniques_sorted]) ax.plot(x_uniques_sorted, agg_y_mean, '-b', lw=2, label='mean prediction') ax.fill_between(x_uniques_sorted, agg_y_mean - 2.0 * agg_y_std, agg_y_mean + 2.0 * agg_y_std, alpha=0.3, label='total uncertainty') if y_test_pred_lower_epistemic is not None: y_pred_var_epistemic = ((y_test_pred_upper_epistemic - y_test_pred_lower_epistemic) / 4.0)**2 agg_y_std_epistemic = np.array([np.sqrt(np.mean(y_pred_var_epistemic[x_test==x])) for x in x_uniques_sorted]) ax.fill_between(x_uniques_sorted, agg_y_mean - 2.0 * agg_y_std_epistemic, agg_y_mean + 2.0 * agg_y_std_epistemic, alpha=0.3, label='model uncertainty') ax.legend(loc='best') if xlims is not None: ax.set_xlim(left=xlims[0], right=xlims[1]) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if xscale is not None: ax.set_xscale(xscale) return ax <s> import numpy as np import pandas as pd from scipy.stats import entropy from sklearn.metrics import roc_auc_score, log_loss, accuracy_score def entropy_based_uncertainty_decomposition(y_prob_samples): """ Entropy based decomposition [2]_ of predictive uncertainty into aleatoric and epistemic components. References: .. [2] Depeweg, S., Hernandez-Lobato, J. M., Doshi-Velez, F., & Udluft, S. (2018, July). Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In International Conference on Machine Learning (pp. 1184-1193). PMLR. Args: y_prob_samples: list of array-like of shape (n_samples, n_classes) containing class prediction probabilities corresponding to samples from the model posterior. Returns: tuple: - total_uncertainty: entropy of the predictive distribution. - aleatoric_uncertainty: aleatoric component of the total_uncertainty. - epistemic_uncertainty: epistemic component of the total_uncertainty. """ y_preds_samples_stacked = np.stack(y_prob_samples) preds_mean = np.mean(y_preds_samples_stacked, 0) total_uncertainty = entropy(preds_mean, axis=1) aleatoric_uncertainty = np.mean( np.concatenate([entropy(y_pred, axis=1).reshape(-1, 1) for y_pred in y_prob_samples], axis=1), axis=1) epistemic_uncertainty = total_uncertainty - aleatoric_uncertainty return total_uncertainty, aleatoric_uncertainty, epistemic_uncertainty def multiclass_brier_score(y_true, y_prob): """Brier score for multi-class. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. Returns: float: Brier score. """ assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" y_target = np.zeros_like(y_prob) y_target[:, y_true] = 1.0 return np.mean(np.sum((y_target - y_prob) ** 2, axis=1)) def area_under_risk_rejection_rate_curve(y_true, y_prob, y_pred=None, selection_scores=None, risk_func=accuracy_score, attributes=None, num_bins=10, subgroup_ids=None, return_counts=False): """ Computes risk vs rejection rate curve and the area under this curve. Similar to risk-coverage curves [3]_ where coverage instead of rejection rate is used. References: .. [3] Franc, Vojtech, and Daniel Prusa. "On discriminative learning of prediction uncertainty." In International Conference on Machine Learning, pp. 1963-1971. 2019. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like of shape (n_samples,) predicted labels. selection_scores: scores corresponding to certainty in the predicted labels. risk_func: risk function under consideration. attributes: (optional) if risk function is a fairness metric also pass the protected attribute name. num_bins: number of bins. subgroup_ids: (optional) selectively compute risk on a subgroup of the samples specified by subgroup_ids. return_counts: set to True to return counts also. Returns: float or tuple: - aurrrc (float): area under risk rejection rate curve. - rejection_rates (list): rejection rates for each bin (returned only if return_counts is True). - selection_thresholds (list): selection threshold for each bin (returned only if return_counts is True). - risks (list): risk in each bin (returned only if return_counts is True). """ if selection_scores is None: assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" selection_scores = y_prob[np.arange(y_prob.shape[0]), np.argmax(y_prob, axis=1)] if y_pred is None: assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" y_pred = np.argmax(y_prob, axis=1) order = np.argsort(selection_scores)[::-1] rejection_rates = [] selection_thresholds = [] risks = [] for bin_id in range(num_bins): samples_in_bin = len(y_true) // num_bins selection_threshold = selection_scores[order[samples_in_bin * (bin_id+1)-1]] selection_thresholds.append(selection_threshold) ids = selection_scores >= selection_threshold if sum(ids) > 0: if attributes is None: if isinstance(y_true, pd.Series): y_true_numpy = y_true.values else: y_true_numpy = y_true if subgroup_ids is None: risk_value = 1.0 - risk_func(y_true_numpy[ids], y_pred[ids]) else: if sum(subgroup_ids & ids) > 0: risk_value = 1.0 - risk_func(y_true_numpy[subgroup_ids & ids], y_pred[subgroup_ids & ids]) else: risk_value = 0.0 else: risk_value = risk_func(y_true.iloc[ids], y_pred[ids], prot_attr=attributes) else: risk_value = 0.0 risks.append(risk_value) rejection_rates.append(1.0 - 1.0 * sum(ids) / len(y_true)) aurrrc = np.nanmean(risks) if not return_counts: return aurrrc else: return aurrrc, rejection_rates, selection_thresholds, risks def expected_calibration_error(y_true, y_prob, y_pred=None, num_bins=10, return_counts=False): """ Computes the reliability curve and the expected calibration error [1]_ . References: .. [1] Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger; Proceedings of the 34th International Conference on Machine Learning, PMLR 70:1321-1330, 2017. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like of shape (n_samples,) predicted labels. num_bins: number of bins. return_counts: set to True to return counts also. Returns: float or tuple: - ece (float): expected calibration error. - confidences_in_bins: average confidence in each bin (returned only if return_counts is True). - accuracies_in_bins: accuracy in each bin (returned only if return_counts is True). - frac_samples_in_bins: fraction of samples in each bin (returned only if return_counts is True). """ assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" num_samples, num_classes = y_prob.shape top_scores = np.max(y_prob, axis=1) if y_pred is None: y_pred = np.argmax(y_prob, axis=1) if num_classes == 2: bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.5, 1.0)) else: bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.0, 1.0)) non_boundary_bin_edges = bins_edges[1:-1] bin_centers = (bins_edges[1:] + bins_edges[:-1])/2 sample_bin_ids = np.digitize(top_scores, non_boundary_bin_edges) num_samples_in_bins = np.zeros(num_bins) accuracies_in_bins = np.zeros(num_bins) confidences_in_bins = np.zeros(num_bins) for bin in range(num_bins): num_samples_in_bins[bin] = len(y_pred[sample_bin_ids == bin]) if num_samples_in_bins[bin] > 0: accuracies_in_bins[bin] = np.sum(y_true[sample_bin_ids == bin] == y_pred[sample_bin_ids == bin]) / num_samples_in_bins[bin] confidences_in_bins[bin] = np.sum(top_scores[sample_bin_ids == bin]) / num_samples_in_bins[bin] ece = np.sum( num_samples_in_bins * np.abs(accuracies_in_bins - confidences_in_bins) / num_samples ) frac_samples_in_bins = num_samples_in_bins / num_samples if not return_counts: return ece else: return ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bin_centers def compute_classification_metrics(y_true, y_prob, option='all'): """ Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes the [aurrrc, ece, auroc, nll, brier, accuracy] metrics. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. option: string or list of string contained the name of the metrics to be computed. Returns: dict: a dictionary containing the computed metrics. """ results = {} if not isinstance(option, list): if option == "all": option_list = ["aurrrc", "ece", "auroc", "nll", "brier", "accuracy"] else: option_list = [option] if "aurrrc" in option_list: results["aurrrc"] = area_under_risk_rejection_rate_curve(y_true=y_true, y_prob=y_prob) if "ece" in option_list: results["ece"] = expected_calibration_error(y_true=y_true, y_prob=y_prob) if "auroc" in option_list: results["auroc"], _ = roc_auc_score(y_true=y_true, y_score=y_prob) if "nll" in option_list: results["nll"] = log_loss(y_true=y_true, y_pred=np.argmax(y_prob, axis=1)) if "brier" in option_list: results["brier"] = multiclass_brier_score(y_true=y_true, y_prob=y_prob) if "accuracy" in option_list: results["accuracy"] = accuracy_score(y_true=y_true, y_pred=np.argmax(y_prob, axis=1)) return results def plot_reliability_diagram(y_true, y_prob, y_pred, plot_label=[""], num_bins=10): """ Plots the reliability diagram showing the calibration error for different confidence scores. Multiple curves can be plot by passing data as lists. Args: y_true: array-like or or a list of array-like of shape (n_samples,) ground truth labels. y_prob: array-like or or a list of array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like or or a list of array-like of shape (n_samples,) predicted labels. plot_label: (optional) list of names identifying each curve. num_bins: number of bins. Returns: tuple: - ece_list: ece: list containing expected calibration error for each curve. - accuracies_in_bins_list: list containing binned average accuracies for each curve. - frac_samples_in_bins_list: list containing binned sample frequencies for each curve. - confidences_in_bins_list: list containing binned average confidence for each curve. """ import matplotlib.
pyplot as plt if not isinstance(y_true, list): y_true, y_prob, y_pred = [y_true], [y_prob], [y_pred] if len(plot_label) != len(y_true): raise ValueError('y_true and plot_label should be of same length.') ece_list = [] accuracies_in_bins_list = [] frac_samples_in_bins_list = [] confidences_in_bins_list = [] for idx in range(len(plot_label)): ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bins = expected_calibration_error(y_true[idx], y_prob[idx], y_pred[idx], num_bins=num_bins, return_counts=True) ece_list.append(ece) accuracies_in_bins_list.append(accuracies_in_bins) frac_samples_in_bins_list.append(frac_samples_in_bins) confidences_in_bins_list.append(confidences_in_bins) fig = plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) for idx in range(len(plot_label)): plt.plot(bins, frac_samples_in_bins_list[idx], 'o-', label=plot_label[idx]) plt.title("Confidence Histogram") plt.xlabel("Confidence") plt.ylabel("Fraction of Samples") plt.grid() plt.ylim([0.0, 1.0]) plt.legend() plt.subplot(1, 2, 2) for idx in range(len(plot_label)): plt.plot(bins, accuracies_in_bins_list[idx], 'o-', label="{} ECE = {:.2f}".format(plot_label[idx], ece_list[idx])) plt.plot(np.linspace(0, 1, 50), np.linspace(0, 1, 50), 'b.', label="Perfect Calibration") plt.title("Reliability Plot") plt.xlabel("Confidence") plt.ylabel("Accuracy") plt.grid() plt.legend() plt.show() return ece_list, accuracies_in_bins_list, frac_samples_in_bins_list, confidences_in_bins_list def plot_risk_vs_rejection_rate(y_true, y_prob, y_pred, selection_scores=None, plot_label=[""], risk_func=None, attributes=None, num_bins=10, subgroup_ids=None): """ Plots the risk vs rejection rate curve showing the risk for different rejection rates. Multiple curves can be plot by passing data as lists. Args: y_true: array-like or or a list of array-like of shape (n_samples,) ground truth labels. y_prob: array-like or or a list of array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like or or a list of array-like of shape (n_samples,) predicted labels. selection_scores: ndarray or a list of ndarray containing scores corresponding to certainty in the predicted labels. risk_func: risk function under consideration. attributes: (optional) if risk function is a fairness metric also pass the protected attribute name. num_bins: number of bins. subgroup_ids: (optional) ndarray or a list of ndarray containing subgroup_ids to selectively compute risk on a subgroup of the samples specified by subgroup_ids. Returns: tuple: - aurrrc_list: list containing the area under risk rejection rate curves. - rejection_rate_list: list containing the binned rejection rates. - selection_thresholds_list: list containing the binned selection thresholds. - risk_list: list containing the binned risks. """ import matplotlib.pyplot as plt if not isinstance(y_true, list): y_true, y_prob, y_pred, selection_scores, subgroup_ids = [y_true], [y_prob], [y_pred], [selection_scores], [subgroup_ids] if len(plot_label) != len(y_true): raise ValueError('y_true and plot_label should be of same length.') aurrrc_list = [] rejection_rate_list = [] risk_list = [] selection_thresholds_list = [] for idx in range(len(plot_label)): aursrc, rejection_rates, selection_thresholds, risks = area_under_risk_rejection_rate_curve( y_true[idx], y_prob[idx], y_pred[idx], selection_scores=selection_scores[idx], risk_func=risk_func, attributes=attributes, num_bins=num_bins, subgroup_ids=subgroup_ids[idx], return_counts=True ) aurrrc_list.append(aursrc) rejection_rate_list.append(rejection_rates) risk_list.append(risks) selection_thresholds_list.append(selection_thresholds) plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) for idx in range(len(plot_label)): plt.plot(rejection_rate_list[idx], risk_list[idx], label="{} AURRRC={:.5f}".format(plot_label[idx], aurrrc_list[idx])) plt.legend(loc="best") plt.xlabel("Rejection Rate") if risk_func is None: ylabel = "Prediction Error Rate" else: if 'accuracy' in risk_func.__name__: ylabel = "1.0 - " + risk_func.__name__ else: ylabel = risk_func.__name__ plt.ylabel(ylabel) plt.title("Risk vs Rejection Rate Plot") plt.grid() plt.subplot(1, 2, 2) for idx in range(len(plot_label)): plt.plot(selection_thresholds_list[idx], risk_list[idx], label="{}".format(plot_label[idx])) plt.legend(loc="best") plt.xlabel("Selection Threshold") if risk_func is None: ylabel = "Prediction Error Rate" else: if 'accuracy' in risk_func.__name__: ylabel = "1.0 - " + risk_func.__name__ else: ylabel = risk_func.__name__ plt.ylabel(ylabel) plt.title("Risk vs Selection Threshold Plot") plt.grid() plt.show() return aurrrc_list, rejection_rate_list, selection_thresholds_list, risk_list <s> from .classification_metrics import expected_calibration_error, area_under_risk_rejection_rate_curve, \\ compute_classification_metrics, entropy_based_uncertainty_decomposition from .regression_metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, \\ plot_uncertainty_by_feature, plot_picp_by_feature from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve <s> from copy import deepcopy import matplotlib.pyplot as plt import numpy as np from scipy.integrate import simps, trapz from sklearn.isotonic import IsotonicRegression DEFAULT_X_AXIS_NAME = 'excess' DEFAULT_Y_AXIS_NAME = 'missrate' class UncertaintyCharacteristicsCurve: """ Class with main functions of the Uncertainty Characteristics Curve (UCC). """ def __init__(self, normalize=True, precompute_bias_data=True): """ :param normalize: set initial axes normalization flag (can be changed via set_coordinates()) :param precompute_bias_data: if True, fit() will compute statistics necessary to generate bias-based UCCs (in addition to the scale-based ones). Skipping this precomputation may speed up the fit() call if bias-based UCC is not needed. """ self.axes_name2idx = {"missrate": 1, "bandwidth": 2, "excess": 3, "deficit": 4} self.axes_idx2descr = {1: "Missrate", 2: "Bandwidth", 3: "Excess", 4: "Deficit"} self.x_axis_idx = None self.y_axis_idx = None self.norm_x_axis = False self.norm_y_axis = False self.std_unit = None self.normalize = normalize self.d = None self.gt = None self.lb = None self.ub = None self.precompute_bias_data = precompute_bias_data self.set_coordinates(x_axis_name=DEFAULT_X_AXIS_NAME, y_axis_name=DEFAULT_Y_AXIS_NAME, normalize=normalize) def set_coordinates(self, x_axis_name=None, y_axis_name=None, normalize=None): """ Assigns user-specified type to the axes and normalization behavior (sticky). :param x_axis_name: None-> unchanged, or name from self.axes_name2idx :param y_axis_name: ditto :param normalize: True/False will activate/deactivate norming for specified axes. Behavior for Axes_name that are None will not be changed. Value None will leave norm status unchanged. Note, axis=='missrate' will never get normalized, even with normalize == True :return: none """ normalize = self.normalize if normalize is None else normalize if x_axis_name is None and self.x_axis_idx is None: raise ValueError("ERROR(UCC): x-axis has not been defined.") if y_axis_name is None and self.y_axis_idx is None: raise ValueError("ERROR(UCC): y-axis has not been defined.") if x_axis_name is None and y_axis_name is None and normalize is not None: # just set normalization on/off for both axes and return self.norm_x_axis = False if x_axis_name == 'missrate' else normalize self.norm_y_axis = False if y_axis_name == 'missrate' else normalize return if x_axis_name is not None: self.x_axis_idx = self.axes_name2idx[x_axis_name] self.norm_x_axis = False if x_axis_name == 'missrate' else normalize if y_axis_name is not None: self.y_axis_idx = self.axes_name2idx[y_axis_name] self.norm_y_axis = False if y_axis_name == 'missrate' else normalize def set_std_unit(self, std_unit=None): """ Sets the UCC's unit to be used when displaying normalized axes. :param std_unit: if None, the unit will be calculated as stddev of the ground truth data (ValueError raised if data has not been set at this point) or set to the user-specified value. :return: """ if std_unit is None: # set it to stddev of data if self.gt is None: raise ValueError("ERROR(UCC): No data specified - cannot set stddev unit.") self.std_unit = np.std(self.gt) if np.isclose(self.std_unit, 0.): print("WARN(UCC): data-based stddev is zero - resetting axes unit to 1.") self.std_unit = 1. else: self.std_unit = float(std_unit) def fit(self, X, gt): """ Calculates internal arrays necessary for other methods (plotting, auc, cost minimization). Re-entrant. :param X: [numsamples, 3] numpy matrix, or list of numpy matrices. Col 1: predicted values Col 2: lower band (deviate) wrt predicted value (always positive) Col 3: upper band wrt predicted value (always positive) If list is provided, all methods will output corresponding metrics as lists as well! :param gt: Ground truth array (i.e.,the 'actual' values corresponding to predictions in X :return: self """ if not isinstance(X, list): X = [X] newX = [] for x in X: assert (isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[1] == 3 and x.shape[0] == len(gt)) newX.append(self._sanitize_input(x)) self.d = [gt - x[:, 0] for x in newX] self.lb = [x[:, 1] for x in newX] self.ub = [x[:, 2] for x in newX] self.gt = gt self.set_std_unit() self.plotdata_for_scale = [] self.plotdata_for_bias = [] # precompute plotdata: for i in range(len(self.d)): self.plotdata_for_scale.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=False)) if self.precompute_bias_data: self.plotdata_for_bias.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=True)) return self def minimize_cost(self, x_axis_cost=.5, y_axis_cost=.5, augment_cost_by_normfactor=True, search=('scale', 'bias')): """ Find minima of a linear cost function for each component. Cost function C = x_axis_cost * x_axis_value + y_axis_cost * y_axis_value. A minimum can occur in the scale-based or bias-based UCC (this can be constrained by the 'search' arg). The function returns a 'recipe' how to achieve the corresponding minimum, for each component. :param x_axis_cost: weight of one unit on x_axis :param y_axis_cost: weight of one unit on y_axis :param augment_cost_by_normfactor: when False, the cost multipliers will apply as is. If True, they will be pre-normed by the corresponding axis norm (where applicable), to account for range differences between axes. :param search: list of types over which minimization is to be performed, valid elements are 'scale' and 'bias'. :return: list of dicts - one per component, or a single dict, if there is only one component. Dict keys are - 'operation': can be 'bias' (additive) or 'scale' (multiplicative), 'modvalue': value to multiply by or to add to error bars to achieve
the minimum, 'new_x'/'new_y': new coordinates (operating point) with that minimum, 'cost': new cost at minimum point, 'original_cost': original cost (original operating point). """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if augment_cost_by_normfactor: if self.norm_x_axis: x_axis_cost /= self.std_unit if self.norm_y_axis: y_axis_cost /= self.std_unit print("INFO(UCC): Pre-norming costs by corresp. std deviation: new x_axis_cost = %.4f, y_axis_cost = %.4f" % (x_axis_cost, y_axis_cost)) if isinstance(search, tuple): search = list(search) if not isinstance(search, list): search = [search] min_costs = [] for d in range(len(self.d)): # original OP cost m, b, e, df = self._calc_missrate_bandwidth_excess_deficit(self.d[d], self.lb[d], self.ub[d]) original_cost = x_axis_cost * [0., m, b, e, df][self.x_axis_idx] + y_axis_cost * [0., m, b, e, df][ self.y_axis_idx] plotdata = self.plotdata_for_scale[d] cost_scale, minidx_scale = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx, x_axis_cost, y_axis_cost) mcf_scale_multiplier = plotdata[minidx_scale][0] mcf_scale_x = plotdata[minidx_scale][self.x_axis_idx] mcf_scale_y = plotdata[minidx_scale][self.y_axis_idx] if 'bias' in search: if not self.precompute_bias_data: raise ValueError( "ERROR(UCC): Cannot perform minimization - instantiated without bias data computation") plotdata = self.plotdata_for_bias[d] cost_bias, minidx_bias = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx, x_axis_cost, y_axis_cost) mcf_bias_add = plotdata[minidx_bias][0] mcf_bias_x = plotdata[minidx_bias][self.x_axis_idx] mcf_bias_y = plotdata[minidx_bias][self.y_axis_idx] if 'bias' in search and 'scale' in search: if cost_bias < cost_scale: min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add, 'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost}) else: min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier, 'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost}) elif 'scale' in search: min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier, 'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost}) elif 'bias' in search: min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add, 'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost}) else: raise ValueError("(ERROR): Unknown search element (%s) requested." % ",".join(search)) if len(min_costs) < 2: return min_costs[0] else: return min_costs def get_specific_operating_point(self, req_x_axis_value=None, req_y_axis_value=None, req_critical_value=None, vary_bias=False): """ Finds corresponding operating point on the current UCC, given a point on either x or y axis. Returns a list of recipes how to achieve the point (x,y), for each component. If there is only one component, returns a single recipe dict. :param req_x_axis_value: requested x value on UCC (normalization status is taken from current display) :param req_y_axis_value: requested y value on UCC (normalization status is taken from current display) :param vary_bias: set to True when referring to bias-induced UCC (scale UCC default) :return: list of dicts (recipes), or a single dict """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if np.sum([req_x_axis_value is not None, req_y_axis_value is not None, req_critical_value is not None]) != 1: raise ValueError("ERROR(UCC): exactly one axis value must be requested at a time.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. recipe = [] for dc in range(len(self.d)): plotdata = self.plotdata_for_bias[dc] if vary_bias else self.plotdata_for_scale[dc] if req_x_axis_value is not None: tgtidx = self.x_axis_idx req_value = req_x_axis_value * xnorm elif req_y_axis_value is not None: tgtidx = self.y_axis_idx req_value = req_y_axis_value * ynorm elif req_critical_value is not None: req_value = req_critical_value tgtidx = 0 # first element in plotdata is always the critical value (scale of bias) else: raise RuntimeError("Unhandled case") closestidx = np.argmin(np.asarray([np.abs(p[tgtidx] - req_value) for p in plotdata])) recipe.append({'operation': ('bias' if vary_bias else 'scale'), 'modvalue': plotdata[closestidx][0], 'new_x': plotdata[closestidx][self.x_axis_idx] / xnorm, 'new_y': plotdata[closestidx][self.y_axis_idx] / ynorm}) if len(recipe) < 2: return recipe[0] else: return recipe def _find_min_cost_in_component(self, plotdata, idx1, idx2, cost1, cost2): """ Find s minimum cost function value and corresp. position index in plotdata :param plotdata: liste of tuples :param idx1: idx of x-axis item within the tuple :param idx2: idx of y-axis item within the tuple :param cost1: cost factor for x-axis unit :param cost2: cost factor for y-axis unit :return: min cost value, index within plotdata where minimum occurs """ raw = [cost1 * i[idx1] + cost2 * i[idx2] for i in plotdata] minidx = np.argmin(raw) return raw[minidx], minidx def _sanitize_input(self, x): """ Replaces problematic values in input data (e.g, zero error bars) :param x: single matrix of input data [n, 3] :return: sanitized version of x """ if np.isclose(np.sum(x[:, 1]), 0.): raise ValueError("ERROR(UCC): Provided lower bands are all zero.") if np.isclose(np.sum(x[:, 2]), 0.): raise ValueError("ERROR(UCC): Provided upper bands are all zero.") for i in [1, 2]: if any(np.isclose(x[:, i], 0.)): print("WARN(UCC): some band values are 0. - REPLACING with positive minimum") m = np.min(x[x[:, i] > 0, i]) x = np.where(np.isclose(x, 0.), m, x) return x def _calc_avg_excess(self, d, lb, ub): """ Excess is amount an error bar overshoots actual :param d: pred-actual array :param lb: lower band :param ub: upper band :return: average excess over array """ excess = np.zeros(d.shape) posidx = np.where(d >= 0)[0] excess[posidx] = np.where(ub[posidx] - d[posidx] < 0., 0., ub[posidx] - d[posidx]) negidx = np.where(d < 0)[0] excess[negidx] = np.where(lb[negidx] + d[negidx] < 0., 0., lb[negidx] + d[negidx]) return np.mean(excess) def _calc_avg_deficit(self, d, lb, ub): """ Deficit is error bar insufficiency: bar falls short of actual :param d: pred-actual array :param lb: lower band :param ub: upper band :return: average deficit over array """ deficit = np.zeros(d.shape) posidx = np.where(d >= 0)[0] deficit[posidx] = np.where(- ub[posidx] + d[posidx] < 0., 0., - ub[posidx] + d[posidx]) negidx = np.where(d < 0)[0] deficit[negidx] = np.where(- lb[negidx] - d[negidx] < 0., 0., - lb[negidx] - d[negidx]) return np.mean(deficit) def _calc_missrate_bandwidth_excess_deficit(self, d, lb, ub, scale=1.0, bias=0.0): """ Calculates recall at a given scale/bias, average bandwidth and average excess :param d: delta :param lb: lower band :param ub: upper band :param scale: scale * (x + bias) :param bias: :return: miss rate, average bandwidth, avg excess, avg deficit """ abslband = scale * np.where((lb + bias) < 0., 0., lb + bias) absuband = scale * np.where((ub + bias) < 0., 0., ub + bias) recall = np.sum((d >= - abslband) & (d <= absuband)) / len(d) avgbandwidth = np.mean([absuband, abslband]) avgexcess = self._calc_avg_excess(d, abslband, absuband) avgdeficit = self._calc_avg_deficit(d, abslband, absuband) return 1 - recall, avgbandwidth, avgexcess, avgdeficit def _calc_plotdata(self, d, lb, ub, vary_bias=False): """ Generates data necessary for various UCC metrics. :param d: delta (predicted - actual) vector :param ub: upper uncertainty bandwidth (above predicted) :param lb: lower uncertainty bandwidth (below predicted) - all positive (bandwidth) :param vary_bias: True will switch to additive bias instead of scale :return: list. Elements are tuples (varyvalue, missrate, bandwidth, excess, deficit) """ # step 1: collect critical scale or bias values critval = [] for i in range(len(d)): if not vary_bias: if d[i] >= 0: critval.append(d[i] / ub[i]) else: critval.append(-d[i] / lb[i]) else: if d[i] >= 0: critval.append(d[i] - ub[i]) else: critval.append(-lb[i] - d[i]) critval = sorted(critval) plotdata = [] for i in range(len(critval)): if not vary_bias: missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=critval[i]) else: missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, bias=critval[i]) plotdata.append((critval[i], missrate, bandwidth, excess, deficit)) return plotdata def get_AUUCC(self, vary_bias=False, aucfct="trapz", partial_x=None, partial_y=None): """ returns approximate area under the curve on current coordinates, for each component. :param vary_bias: False == varies scale, True == varies bias :param aucfct: specifies AUC integrator (can be "trapz", "simps") :param partial_x: tuple (x_min, x_max) defining interval on x to calc a a partial AUC. The interval bounds refer to axes as visualized (ie. potentially normed) :param partial_y: tuple (y_min, y_max) defining interval on y to calc a a partial AUC. partial_x must be None. :return: list of floats with AUUCCs for each input component, or a single float, if there is only 1 component. """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") if partial_x is not None and partial_y is not None: raise ValueError("ERROR(UCC): partial_x and partial_y can not be specified at the same time.") assert(partial_x is None or (isinstance(partial_x, tuple) and len(partial_x)==2)) assert(partial_y is None or (isinstance(partial_y, tuple) and len(partial_y)==2)) # find starting point (where the x axis value starts to actually change) rv = [] # do this for individual streams xind = self.x_axis_idx aucfct = simps if aucfct == "simps" else trapz for s in range(len(self.d)): plotdata = self.plotdata_for_bias[s] if vary_bias else self.plotdata_for_scale[s] prev = plotdata[0][xind] t = 1 cval = plotdata[t
][xind] while cval == prev and t < len(plotdata) - 1: t += 1 prev = cval cval = plotdata[t][xind] startt = t - 1 # from here, it's a valid function endtt = len(plotdata) if startt >= endtt - 2: rvs = 0. # no area else: xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. y=[(plotdata[i][self.y_axis_idx]) / ynorm for i in range(startt, endtt)] x=[(plotdata[i][self.x_axis_idx]) / xnorm for i in range(startt, endtt)] if partial_x is not None: from_i = self._find_closest_index(partial_x[0], x) to_i = self._find_closest_index(partial_x[1], x) + 1 elif partial_y is not None: from_i = self._find_closest_index(partial_y[0], y) to_i = self._find_closest_index(partial_y[1], y) if from_i > to_i: # y is in reverse order from_i, to_i = to_i, from_i to_i += 1 # as upper bound in array indexing else: from_i = 0 to_i = len(x) to_i = min(to_i, len(x)) if to_i < from_i: raise ValueError("ERROR(UCC): Failed to find an appropriate partial-AUC interval in the data.") if to_i - from_i < 2: raise RuntimeError("ERROR(UCC): There are too few samples (1) in the partial-AUC interval specified") rvs = aucfct(x=x[from_i:to_i], y=y[from_i:to_i]) rv.append(rvs) if len(rv) < 2: return rv[0] else: return rv @ staticmethod def _find_closest_index(value, array): """ Returns an index of the 'array' element closest in value to 'value' :param value: :param array: :return: """ return np.argmin(np.abs(np.asarray(array)-value)) def _get_single_OP(self, d, lb, ub, scale=1., bias=0.): """ Returns Operating Point for original input data, on coordinates currently set up, given a scale/bias. :param scale: :param bias: :return: single tuple (x point, y point, unit of x, unit of y) """ xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. auxop = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=scale, bias=bias) op = [0.] + [i for i in auxop] # mimic plotdata (first element ignored here) return (op[self.x_axis_idx] / xnorm, op[self.y_axis_idx] / ynorm, xnorm, ynorm) def get_OP(self, scale=1., bias=0.): """ Returns all Operating Points for original input data, on coordinates currently set up, given a scale/bias. :param scale: :param bias: :return: list of tuples (x point, y point, unit of x, unit of y) or a single tuple if there is only 1 component. """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") op = [] for dc in range(len(self.d)): op.append(self._get_single_OP(self.d[dc], self.lb[dc], self.ub[dc], scale=scale, bias=bias)) if len(op) < 2: return op[0] else: return op def plot_UCC(self, titlestr='', syslabel='model', outfn=None, vary_bias=False, markers=None, xlim=None, ylim=None, **kwargs): """ Will plot/display the UCC based on current data and coordinates. Multiple curves will be shown if there are multiple data components (via fit()) :param titlestr: Plot title string :param syslabel: list is label strings to appear in the plot legend. Can be single, if one component. :param outfn: base name of an image file to be created (will append .png before creating) :param vary_bias: True will switch to varying additive bias (default is multiplicative scale) :param markers: None or a list of marker styles to be used for each curve. List must be same or longer than number of components. Markers can be one among these ['o', 's', 'v', 'D', '+']. :param xlim: tuples or lists of specifying the range for the x axis, or None (auto) :param ylim: tuples or lists of specifying the range for the y axis, or None (auto) :param `**kwargs`: Additional arguments passed to the main plot call. :return: list of areas under the curve (or single area, if one data component) list of operating points (or single op): format of an op is tuple (xaxis value, yaxis value, xunit, yunit) """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") if not isinstance(syslabel, list): syslabel = [syslabel] assert (len(syslabel) == len(self.d)) assert (markers is None or (isinstance(markers, list) and len(markers) >= len(self.d))) # main plot of (possibly multiple) datasets plt.figure() xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. op_info = [] auucc = self.get_AUUCC(vary_bias=vary_bias) auucc = [auucc] if not isinstance(auucc, list) else auucc for s in range(len(self.d)): # original operating point x_op, y_op, x_unit, y_unit = self._get_single_OP(self.d[s], self.lb[s], self.ub[s]) op_info.append((x_op, y_op, x_unit, y_unit)) # display chart plotdata = self.plotdata_for_scale[s] if not vary_bias else self.plotdata_for_bias[s] axisX_data = [i[self.x_axis_idx] / xnorm for i in plotdata] axisY_data = [i[self.y_axis_idx] / ynorm for i in plotdata] marker = None if markers is not None: marker = markers[s] p = plt.plot(axisX_data, axisY_data, label=syslabel[s] + (" (AUC=%.3f)" % auucc[s]), marker=marker, **kwargs) if s + 1 == len(self.d): oplab = 'OP' else: oplab = None plt.plot(x_op, y_op, marker='o', color=p[0].get_color(), label=oplab, markerfacecolor='w', markeredgewidth=1.5, markeredgecolor=p[0].get_color()) axisX_label = self.axes_idx2descr[self.x_axis_idx] axisY_label = self.axes_idx2descr[self.y_axis_idx] axisX_units = "(raw)" if np.isclose(xnorm, 1.0) else "[in std deviations]" axisY_units = "(raw)" if np.isclose(ynorm, 1.0) else "[in std deviations]" axisX_label += ' ' + axisX_units axisY_label += ' ' + axisY_units if ylim is not None: plt.ylim(ylim) if xlim is not None: plt.xlim(xlim) plt.xlabel(axisX_label) plt.ylabel(axisY_label) plt.legend() plt.title(titlestr) plt.grid() if outfn is None: plt.show() else: plt.savefig(outfn) if len(auucc) < 2: auucc = auucc[0] op_info = op_info[0] return auucc, op_info <s> from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve <s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class BuiltinUQ(ABC): """ BuiltinUQ is the base class for any algorithm that has UQ built into it. """ def __init__(self, *argv, **kwargs): """ Initialize a BuiltinUQ object. """ @abc.abstractmethod def fit(self, *argv, **kwargs): """ Learn the UQ related parameters.. """ raise NotImplementedError @abc.abstractmethod def predict(self, *argv, **kwargs): """ Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric uncertainty in the predictions. """ raise NotImplementedError def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self <s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class PostHocUQ(ABC): """ PostHocUQ is the base class for any algorithm that quantifies uncertainty of a pre-trained model. """ def __init__(self, *argv, **kwargs): """ Initialize a BuiltinUQ object. """ @abc.abstractmethod def _process_pretrained_model(self, *argv, **kwargs): """ Method to process the pretrained model that requires UQ. """ raise NotImplementedError @abc.abstractmethod def predict(self, *argv, **kwargs): """ Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric uncertainty in the predictions. """ raise NotImplementedError def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self def get_params(self): """ This method should not take any arguments and returns a dict of the __init__ parameters. """ raise NotImplementedError <s><s> from collections import namedtuple import numpy as np import torch from scipy.stats import norm from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from uq360.algorithms.builtinuq import BuiltinUQ from uq360.models.heteroscedastic_mlp import GaussianNoiseMLPNet as _MLPNet np.random.seed(42) torch.manual_seed(42) class HeteroscedasticRegression(BuiltinUQ): """ Wrapper for heteroscedastic regression. We learn to predict targets given features, assuming that the targets are noisy and that the amount of noise varies between data points. https://en.wikipedia.org/wiki/Heteroscedasticity """ def __init__(self, model_type=None, model=None, config=None, device=None, verbose=True): """ Args: model_type: The base model architecture. Currently supported values are [mlp]. mlp modeltype learns a multi-layer perceptron with a heteroscedastic Gaussian likelihood. Both the mean and variance of the Gaussian are functions of the data point ->git N(y_n | mlp_mu(x_n), mlp_var(x_n)) model: (optional) The prediction model. Currently support pytorch models that returns mean and log variance. config: dictionary containing the config parameters for the model. device: device used for pytorch models ignored otherwise. verbose: if True, print statements with the progress are enabled. """ super(HeteroscedasticRegression).__init__() self.config = config self.device = device self.verbose = verbose if model_type == "mlp": self.model_type = model_type self.model = _MLPNet( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) elif model_type == "custom": self.model_type = model_type self.model = model else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config, "model": self.model, "device": self.device, "verbose": self.verbose} def _loss(self, y_true, y_pred_mu, y_pred_log_var): return torch.mean(0.5 * torch.exp(-y_pred_log_var) * torch.abs(y_true - y_pred_mu) ** 2 + 0.5 * y_pred_log_var) def fit(self, X, y): """ Fit the Heteroscedastic Regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ X = torch.from_numpy(X).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) dataset_loader = DataLoader( TensorDataset(X,y), batch_size=self.config["batch_size"] ) optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config["lr"]) for epoch in range(self.config["num_epochs"]): avg_loss = 0.0 for batch_x, batch_y in dataset_loader: self.model.train() batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x) loss = self.model.loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var) optimizer.zero_grad() loss.backward() optimizer.step() avg_loss += loss.item()/len(dataset_loader)
if self.verbose: print("Epoch: {}, loss = {}".format(epoch, avg_loss)) return self def predict(self, X, return_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ self.model.eval() X = torch.from_numpy(X).float().to(self.device) dataset_loader = DataLoader( X, batch_size=self.config["batch_size"] ) y_mean_list = [] y_log_var_list = [] for batch_x in dataset_loader: batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x) y_mean_list.append(batch_y_pred_mu.data.cpu().numpy()) y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy()) y_mean = np.concatenate(y_mean_list) y_log_var = np.concatenate(y_log_var_list) y_std = np.sqrt(np.exp(y_log_var)) y_lower = y_mean - 2.0*y_std y_upper = y_mean + 2.0*y_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) return res <s> from .heteroscedastic_regression import HeteroscedasticRegression<s> from collections import namedtuple import numpy as np from sklearn.calibration import CalibratedClassifierCV from sklearn.preprocessing import LabelEncoder from uq360.utils.misc import DummySklearnEstimator from uq360.algorithms.posthocuq import PostHocUQ class ClassificationCalibration(PostHocUQ): """Post hoc calibration of classification models. Currently wraps `CalibratedClassifierCV` from sklearn and allows non-sklearn models to be calibrated. """ def __init__(self, num_classes, fit_mode="features", method='isotonic', base_model_prediction_func=None): """ Args: num_classes: number of classes. fit_mode: features or probs. If probs the `fit` and `predict` operate on the base models probability scores, useful when these are precomputed. method: isotonic or sigmoid. base_model_prediction_func: the function that takes in the input features and produces base model's probability scores. This is ignored when operating in `probs` mode. """ super(ClassificationCalibration).__init__() if fit_mode == "probs": # In this case, the fit assumes that it receives the probability scores of the base model. # create a dummy estimator self.base_model = DummySklearnEstimator(num_classes, lambda x: x) else: self.base_model = DummySklearnEstimator(num_classes, base_model_prediction_func) self.method = method def get_params(self, deep=True): return {"num_classes": self.num_classes, "fit_mode": self.fit_mode, "method": self.method, "base_model_prediction_func": self.base_model_prediction_func} def _process_pretrained_model(self, base_model): return base_model def fit(self, X, y): """ Fits calibration model using the provided calibration set. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ self.base_model.label_encoder_ = LabelEncoder().fit(y) self.calib_model = CalibratedClassifierCV(base_estimator=self.base_model, cv="prefit", method=self.method) self.calib_model.fit(X, y) return self def predict(self, X): """ Obtain calibrated predictions for the test points. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. Returns: namedtuple: A namedtupe that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_prob: ndarray of shape (n_samples, n_classes) Predicted probability scores of the classes. """ y_prob = self.calib_model.predict_proba(X) if len(np.shape(y_prob)) == 1: y_pred_labels = y_prob > 0.5 else: y_pred_labels = np.argmax(y_prob, axis=1) Result = namedtuple('res', ['y_pred', 'y_prob']) res = Result(y_pred_labels, y_prob) return res <s> from .classification_calibration import ClassificationCalibration <s> from collections import namedtuple import botorch import gpytorch import numpy as np import torch from botorch.models import SingleTaskGP from botorch.utils.transforms import normalize from gpytorch.constraints import GreaterThan from scipy.stats import norm from sklearn.preprocessing import StandardScaler from uq360.algorithms.builtinuq import BuiltinUQ np.random.seed(42) torch.manual_seed(42) class HomoscedasticGPRegression(BuiltinUQ): """ A wrapper around Botorch SingleTask Gaussian Process Regression [1]_ with homoscedastic noise. References: .. [1] https://botorch.org/api/models.html#singletaskgp """ def __init__(self, kernel=gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel()), likelihood=None, config=None): """ Args: kernel: gpytorch kernel function with default set to `RBFKernel` with output scale. likelihood: gpytorch likelihood function with default set to `GaussianLikelihood`. config: dictionary containing the config parameters for the model. """ super(HomoscedasticGPRegression).__init__() self.config = config self.kernel = kernel self.likelihood = likelihood self.model = None self.scaler = StandardScaler() self.X_bounds = None def get_params(self, deep=True): return {"kernel": self.kernel, "likelihood": self.likelihood, "config": self.config} def fit(self, X, y, **kwargs): """ Fit the GP Regression model. Additional arguments relevant for SingleTaskGP fitting can be passed to this function. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values **kwargs: Additional arguments relevant for SingleTaskGP fitting. Returns: self """ y = self.scaler.fit_transform(y) X, y = torch.tensor(X), torch.tensor(y) self.X_bounds = X_bounds = torch.stack([X.min() * torch.ones(X.shape[1]), X.max() * torch.ones(X.shape[1])]) X = normalize(X, X_bounds) model_homo = SingleTaskGP(train_X=X, train_Y=y, covar_module=self.kernel, likelihood=self.likelihood, **kwargs) model_homo.likelihood.noise_covar.register_constraint("raw_noise", GreaterThan(1e-5)) model_homo_marginal_log_lik = gpytorch.mlls.ExactMarginalLogLikelihood(model_homo.likelihood, model_homo) botorch.fit.fit_gpytorch_model(model_homo_marginal_log_lik) model_homo_marginal_log_lik.eval() self.model = model_homo_marginal_log_lik self.inferred_observation_noise = self.scaler.inverse_transform(self.model.likelihood.noise.detach().numpy()[0].reshape(1,1)).squeeze() return self def predict(self, X, return_dists=False, return_epistemic=False, return_epistemic_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. return_epistemic: if True, the epistemic upper and lower bounds are returned. return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ X = torch.tensor(X) X_test_norm = normalize(X, self.X_bounds) self.model.eval() with torch.no_grad(): posterior = self.model.model.posterior(X_test_norm) y_mean = posterior.mean #y_epi_std = torch.sqrt(posterior.variance) y_lower_epistemic, y_upper_epistemic = posterior.mvn.confidence_region() predictive_posterior = self.model.model.posterior(X_test_norm, observation_noise=True) #y_std = torch.sqrt(predictive_posterior.variance) y_lower_total, y_upper_total = predictive_posterior.mvn.confidence_region() y_mean, y_lower, y_upper, y_lower_epistemic, y_upper_epistemic = self.scaler.inverse_transform(y_mean.numpy()).squeeze(), \\ self.scaler.inverse_transform(y_lower_total.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_upper_total.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_lower_epistemic.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_upper_epistemic.numpy()).squeeze() y_epi_std = (y_upper_epistemic - y_lower_epistemic) / 4.0 y_std = (y_upper_total - y_lower_total) / 4.0 Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_epistemic: Result = namedtuple('res', Result._fields + ('y_lower_epistemic', 'y_upper_epistemic',)) res = Result(*res, y_lower_epistemic=y_lower_epistemic, y_upper_epistemic=y_upper_epistemic) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) if return_epistemic_dists: epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_epistemic_dists',)) res = Result(*res, y_epistemic_dists=epi_dists) return res <s> from .homoscedastic_gaussian_process_regression import HomoscedasticGPRegression<s> from collections import namedtuple from sklearn.ensemble import GradientBoostingRegressor from uq360.algorithms.builtinuq import BuiltinUQ class QuantileRegression(BuiltinUQ): """Quantile Regression uses quantile loss and learns two separate models for the upper and lower quantile to obtain the prediction intervals. """ def __init__(self, model_type="gbr
", config=None): """ Args: model_type: The base model used for predicting a quantile. Currently supported values are [gbr]. gbr is sklearn GradientBoostingRegressor. config: dictionary containing the config parameters for the model. """ super(QuantileRegression).__init__() if config is not None: self.config = config else: self.config = {} if "alpha" not in self.config: self.config["alpha"] = 0.95 if model_type == "gbr": self.model_type = model_type self.model_mean = GradientBoostingRegressor( loss='ls', n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"], min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"] ) self.model_upper = GradientBoostingRegressor( loss='quantile', alpha=self.config["alpha"], n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"], min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"] ) self.model_lower = GradientBoostingRegressor( loss='quantile', alpha=1.0 - self.config["alpha"], n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"], min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"]) else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config} def fit(self, X, y): """ Fit the Quantile Regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ self.model_mean.fit(X, y) self.model_lower.fit(X, y) self.model_upper.fit(X, y) return self def predict(self, X): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_mean = self.model_mean.predict(X) y_lower = self.model_lower.predict(X) y_upper = self.model_upper.predict(X) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) return res <s> from .quantile_regression import QuantileRegression <s> import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class BlackboxMetamodelRegression(PostHocUQ): """ Extracts confidence scores from black-box regression models using a meta-model [2]_ . References: .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype' :param mdltype: string with name (must be supprted) :param config: dict with args passed in the instantiation call :return: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'gbr': mdl = GradientBoostingRegressor(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \\"%s\\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance :param model: string, class, or instance. Class and instance must have certain methods callable. :param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., 'gbr'), (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(BlackboxMetamodelRegression).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbr' self.meta_model_default = 'gbr' self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model :param y: ground truth for the base model :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert(len(meta_train_data)==2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta = self.base_model.predict(X_meta) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # used base input and output as meta input X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta) # train meta model to predict abs diff self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta)) return self def _process_pretrained_model(self, X, y_hat): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat: [nsamples,] :return: array with new features [nsamples, newdim] """ y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_meta_prime]) return X_meta_in def predict(self, X): """ Generate prediction and uncertainty bounds for data X. :param X: input features :return: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_hat = self.base_model.predict(X) y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_prime]) z_hat = self.meta_model.predict(X_meta_in) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_hat, y_hat - z_hat, y_hat + z_hat) return res <s> import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class BlackboxMetamodelClassification(PostHocUQ): """ Extracts confidence scores from black-box classification models using a meta-model [4]_ . References: .. [4] Chen, Tongfei, et al. "Confidence scoring using whitebox meta-models with linear classifier probes." The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype'. Args: mdltype: string with name (must be supported) config: dict with args passed in the instantiation call Returns: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'lr': mdl = LogisticRegression(**config) elif mdltype == 'gbm': mdl = GradientBoostingClassifier(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \\"%s\\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance. :param model: string, class, or instance. Class and instance must have certain methods callable. :
param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., logistic regression 'lr' or gradient boosting machine 'gbm'), (3) Base model class declaration (e.g., sklearn.linear_model.LogisticRegression). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have certain callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(BlackboxMetamodelClassification).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbm' self.meta_model_default = 'lr' self.base_config_default = {'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'penalty': 'l1', 'C': 1, 'solver': 'liblinear', 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def _process_pretrained_model(self, X, y_hat_proba): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat_proba: [nsamples, nclasses] :return: array with new features [nsamples, newdim] """ assert (len(y_hat_proba.shape) == 2) assert (X.shape[0] == y_hat_proba.shape[0]) # sort the probs sample by sample faux1 = np.sort(y_hat_proba, axis=-1) # add delta between top and second candidate faux2 = np.expand_dims(faux1[:, -1] - faux1[:, -2], axis=-1) return np.hstack([X, faux1, faux2]) def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model, array-like of shape (n_samples, n_features). Features vectors of the training data. :param y: ground truth for the base model, array-like of shape (n_samples,) :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert (len(meta_train_data) == 2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta_proba = self.base_model.predict_proba(X_meta) # determine correct-incorrect outcome - these are targets for the meta model trainer # y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=np.int) -- Fix for python 3.8.11 update (in 2.9.0.8) y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=int) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # get input features for meta training X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta_proba) # train meta model to predict 'correct' vs. 'incorrect' of the base self.meta_model.fit(X_meta_in, y_hat_meta_targets) return self def predict(self, X): """ Generate a base prediction along with uncertainty/confidence for data X. :param X: array-like of shape (n_samples, n_features). Features vectors of the test points. :return: namedtuple: A namedtuple that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_score: ndarray of shape (n_samples,) Confidence score the test points. """ y_hat_proba = self.base_model.predict_proba(X) y_hat = np.argmax(y_hat_proba, axis=-1) X_meta_in = self._process_pretrained_model(X, y_hat_proba) z_hat = self.meta_model.predict_proba(X_meta_in) index_of_class_1 = np.where(self.meta_model.classes_ == 1)[0][0] # class 1 corresponds to probab of positive/correct outcome Result = namedtuple('res', ['y_pred', 'y_score']) res = Result(y_hat, z_hat[:, index_of_class_1]) return res <s> from .blackbox_metamodel_regression import BlackboxMetamodelRegression from .blackbox_metamodel_classification import BlackboxMetamodelClassification <s> from collections import namedtuple from uq360.algorithms.posthocuq import PostHocUQ from uq360.utils.misc import form_D_for_auucc from uq360.metrics.uncertainty_characteristics_curve.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve class UCCRecalibration(PostHocUQ): """ Recalibration a regression model to specified operating point using Uncertainty Characteristics Curve. """ def __init__(self, base_model): """ Args: base_model: pretrained model to be recalibrated. """ super(UCCRecalibration).__init__() self.base_model = self._process_pretrained_model(base_model) self.ucc = None def get_params(self, deep=True): return {"base_model": self.base_model} def _process_pretrained_model(self, base_model): return base_model def fit(self, X, y): """ Fit the Uncertainty Characteristics Curve. Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3] bwu = y_pred_upper - y_pred_mean bwl = y_pred_mean - y_pred_lower self.ucc = UncertaintyCharacteristicsCurve() self.ucc.fit(form_D_for_auucc(y_pred_mean, bwl, bwu), y.squeeze()) return self def predict(self, X, missrate=0.05): """ Generate prediction and uncertainty bounds for data X. Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. missrate: desired missrate of the new operating point, set to 0.05 by default. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ C = self.ucc.get_specific_operating_point(req_y_axis_value=missrate, vary_bias=False) new_scale = C['modvalue'] y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3] bwu = y_pred_upper - y_pred_mean bwl = y_pred_mean - y_pred_lower if C['operation'] == 'bias': calib_y_pred_upper = y_pred_mean + (new_scale + bwu) # lower bound width calib_y_pred_lower = y_pred_mean - (new_scale + bwl) # Upper bound width else: calib_y_pred_upper = y_pred_mean + (new_scale * bwu) # lower bound width calib_y_pred_lower = y_pred_mean - (new_scale * bwl) # Upper bound width Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_pred_mean, calib_y_pred_lower, calib_y_pred_upper) return res <s> from .ucc_recalibration import UCCRecalibration <s> from collections import namedtuple import numpy as np from uq360.algorithms.posthocuq import PostHocUQ class InfinitesimalJackknife(PostHocUQ): """ Performs a first order Taylor series expansion around MLE / MAP fit. Requires the model being probed to be twice differentiable. """ def __init__(self, params, gradients, hessian, config): """ Initialize IJ. Args: params: MLE / MAP fit around which uncertainty is sought. d*1 gradients: Per data point gradients, estimated at the MLE / MAP fit. d*n hessian: Hessian evaluated at the MLE / MAP fit. d*d """ super(InfinitesimalJackknife).__init__() self.params_one = params self.gradients = gradients self.hessian = hessian self.d, self.n = gradients.shape self.dParams_dWeights = -np.linalg.solve(self.hessian, self.gradients) self.approx_dParams_dWeights = -np.linalg.solve(np.diag(np.diag(self.hessian)), self.gradients) self.w_one = np.ones([self.n]) self.config = config def get_params(self, deep=True): return {"params": self.params, "config": self.config, "gradients": self.gradients, "hessian": self.hessian} def _process_pretrained_model(self, *argv, **kwargs): pass def get_parameter_uncertainty(self): if (self.config['resampling_strategy'] == "jackknife") or (self.config['resampling_strategy'] == "jackknife+"): w_query = np.ones_like(self.w_one) resampled_params = np.zeros([self.n, self.d]) for i in np.arange(self.n): w_query[i] = 0 resampled_params[i] = self.ij(w_query) w_query[i] = 1 return np.cov(resampled_params), resampled_params elif self.config['resampling_strategy'] == "bootstrap": pass else: raise NotImplemented
Error("Only jackknife, jackknife+, and bootstrap resampling strategies are supported") def predict(self, X, model): """ Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. model: model object, must implement a set_parameters function Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ n, _ = X.shape y_all = model.predict(X) _, d_out = y_all.shape params_cov, params = self.get_parameter_uncertainty() if d_out > 1: print("Quantiles are computed independently for each dimension. May not be accurate.") y = np.zeros([params.shape[0], n, d_out]) for i in np.arange(params.shape[0]): model.set_parameters(params[i]) y[i] = model.predict(X) y_lower = np.quantile(y, q=0.5 * self.config['alpha'], axis=0) y_upper = np.quantile(y, q=(1. - 0.5 * self.config['alpha']), axis=0) y_mean = y.mean(axis=0) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) return res def ij(self, w_query): """ Args: w_query: A n*1 vector to query parameters at. Return: new parameters at w_query """ assert w_query.shape[0] == self.n return self.params_one + self.dParams_dWeights @ (w_query-self.w_one).T def approx_ij(self, w_query): """ Args: w_query: A n*1 vector to query parameters at. Return: new parameters at w_query """ assert w_query.shape[0] == self.n return self.params_one + self.approx_dParams_dWeights @ (w_query-self.w_one).T<s> from .infinitesimal_jackknife import InfinitesimalJackknife <s> import copy from collections import namedtuple import numpy as np import torch import torch.nn.functional as F from torch.utils.data import DataLoader import torch.utils.data as data_utils from scipy.stats import norm from sklearn.preprocessing import StandardScaler from uq360.algorithms.builtinuq import BuiltinUQ from uq360.models.bayesian_neural_networks.bnn_models import horseshoe_mlp, bayesian_mlp class BnnRegression(BuiltinUQ): """ Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for regression. References: .. [6] Ghosh, Soumya, Jiayu Yao, and Finale Doshi-Velez. "Structured variational learning of Bayesian neural networks with horseshoe priors." International Conference on Machine Learning. PMLR, 2018. """ def __init__(self, config, prior="Gaussian"): """ Args: config: a dictionary specifying network and learning hyperparameters. prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe """ super(BnnRegression, self).__init__() self.config = config if prior == "Gaussian": self.net = bayesian_mlp.BayesianRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers']) self.config['use_reg_hshoe'] = None elif prior == "Hshoe": self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale']) self.config['use_reg_hshoe'] = False elif prior == "RegHshoe": self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale'], use_reg_hshoe=config['use_reg_hshoe']) self.config['use_reg_hshoe'] = True else: raise NotImplementedError("'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe") def get_params(self, deep=True): return {"prior": self.prior, "config": self.config} def fit(self, X, y): """ Fit the BNN regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ torch.manual_seed(1234) optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size']) neg_elbo = torch.zeros([self.config['num_epochs'], 1]) params_store = {} for epoch in range(self.config['num_epochs']): loss = self.net.neg_elbo(num_batches=1, x=X, y=y.float().unsqueeze(dim=1)) / X.shape[0] optimizer.zero_grad() loss.backward() optimizer.step() if hasattr(self.net, 'fixed_point_updates'): # for hshoe or regularized hshoe nets self.net.fixed_point_updates() neg_elbo[epoch] = loss.item() if (epoch + 1) % 10 == 0: # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0]) print('Epoch[{}/{}], neg elbo: {:.6f}, noise var: {:.6f}' .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item() / X.shape[0], self.net.get_noise_var())) params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all. best_model_id = neg_elbo.argmin() # loss_val_store.argmin() # self.net.load_state_dict(params_store[best_model_id.item()]) return self def predict(self, X, mc_samples=100, return_dists=False, return_epistemic=True, return_epistemic_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. mc_samples: Number of Monte-Carlo samples. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. return_epistemic: if True, the epistemic upper and lower bounds are returned. return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ epistemic_out = np.zeros([mc_samples, X.shape[0]]) total_out = np.zeros([mc_samples, X.shape[0]]) for s in np.arange(mc_samples): pred = self.net(X).data.numpy().ravel() epistemic_out[s] = pred total_out[s] = pred + np.sqrt(self.net.get_noise_var()) * np.random.randn(pred.shape[0]) y_total_std = np.std(total_out, axis=0) y_epi_std = np.std(epistemic_out, axis=0) y_mean = np.mean(total_out, axis=0) y_lower = y_mean - 2 * y_total_std y_upper = y_mean + 2 * y_total_std y_epi_lower = y_mean - 2 * y_epi_std y_epi_upper = y_mean + 2 * y_epi_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_epistemic: Result = namedtuple('res', Result._fields + ('lower_epistemic', 'upper_epistemic',)) res = Result(*res, lower_epistemic=y_epi_lower, upper_epistemic=y_epi_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_total_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) if return_epistemic_dists: epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_epistemic_dists',)) res = Result(*res, y_epistemic_dists=epi_dists) return res class BnnClassification(BuiltinUQ): """ Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for classification. """ def __init__(self, config, prior="Gaussian", device=None): """ Args: config: a dictionary specifying network and learning hyperparameters. prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe """ super(BnnClassification, self).__init__() self.config = config self.device = device if prior == "Gaussian": self.net = bayesian_mlp.BayesianClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers']) self.config['use_reg_hshoe'] = None elif prior == "Hshoe": self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale']) self.config['use_reg_hshoe'] = False elif prior == "RegHshoe": self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale'], use_reg_hshoe=config['use_reg_hshoe']) self.config['use_reg_hshoe'] = True else: raise NotImplementedError("'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe") if "batch_size" not in self.config: self.config["batch_size"] = 50 self.net = self.net.to(device) def get_params(self, deep=True): return {"prior": self.prior, "config": self.config, "device": self.device} def fit(self, X=None, y=None, train_loader=None): """ Fits BNN regression model. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. Ignored if train_loader is not None. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Ignored if train_loader is not None. train_loader: pytorch train_loader object. Returns: self """ if train_loader is None: train = data_utils.TensorDataset(torch.Tensor(X), torch.Tensor(y.values).long()) train_loader = data_utils.DataLoader(train, batch_size=self.config['batch_size'], shuffle=True) torch.manual_seed(1234) optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size']) neg_elbo = torch.zeros([self.config['num_epochs'], 1]) params_store = {} for epoch in range(self.config['num_epochs']): avg_loss = 0.0 for batch_x, batch_y in train_loader: loss = self.net.neg_elbo(num_batches=len(train_
loader), x=batch_x, y=batch_y) / batch_x.size(0) optimizer.zero_grad() loss.backward() optimizer.step() if hasattr(self.net, 'fixed_point_updates'): # for hshoe or regularized hshoe nets self.net.fixed_point_updates() avg_loss += loss.item() neg_elbo[epoch] = avg_loss / len(train_loader) if (epoch + 1) % 10 == 0: # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0]) print('Epoch[{}/{}], neg elbo: {:.6f}' .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item())) params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all. best_model_id = neg_elbo.argmin() # loss_val_store.argmin() # self.net.load_state_dict(params_store[best_model_id.item()]) return self def predict(self, X, mc_samples=100): """ Obtain calibrated predictions for the test points. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. mc_samples: Number of Monte-Carlo samples. Returns: namedtuple: A namedtupe that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_prob: ndarray of shape (n_samples, n_classes) Predicted probability scores of the classes. y_prob_var: ndarray of shape (n_samples,) Variance of the prediction on the test points. y_prob_samples: ndarray of shape (mc_samples, n_samples, n_classes) Samples from the predictive distribution. """ X = torch.Tensor(X) y_prob_samples = [F.softmax(self.net(X), dim=1).detach().numpy() for _ in np.arange(mc_samples)] y_prob_samples_stacked = np.stack(y_prob_samples) prob_mean = np.mean(y_prob_samples_stacked, 0) prob_var = np.std(y_prob_samples_stacked, 0) ** 2 if len(np.shape(prob_mean)) == 1: y_pred_labels = prob_mean > 0.5 else: y_pred_labels = np.argmax(prob_mean, axis=1) Result = namedtuple('res', ['y_pred', 'y_prob', 'y_prob_var', 'y_prob_samples']) res = Result(y_pred_labels, prob_mean, prob_var, y_prob_samples) return res <s><s> from collections import namedtuple import numpy as np import torch import torch.nn.functional as F from scipy.stats import norm from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from uq360.algorithms.builtinuq import BuiltinUQ np.random.seed(42) torch.manual_seed(42) class _MLPNet_Main(torch.nn.Module): def __init__(self, num_features, num_outputs, num_hidden): super(_MLPNet_Main, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_mu = torch.nn.Linear(num_hidden, num_outputs) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) def forward(self, x): x = F.relu(self.fc(x)) mu = self.fc_mu(x) log_var = self.fc_log_var(x) return mu, log_var class _MLPNet_Aux(torch.nn.Module): def __init__(self, num_features, num_outputs, num_hidden): super(_MLPNet_Aux, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) def forward(self, x): x = F.relu(self.fc(x)) log_var = self.fc_log_var(x) return log_var class AuxiliaryIntervalPredictor(BuiltinUQ): """ Auxiliary Interval Predictor [1]_ uses an auxiliary model to encourage calibration of the main model. References: .. [1] Thiagarajan, J. J., Venkatesh, B., Sattigeri, P., & Bremer, P. T. (2020, April). Building calibrated deep models via uncertainty matching with auxiliary interval predictors. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6005-6012). https://arxiv.org/abs/1909.04079 """ def __init__(self, model_type=None, main_model=None, aux_model=None, config=None, device=None, verbose=True): """ Args: model_type: The model type used to build the main model and the auxiliary model. Currently supported values are [mlp, custom]. `mlp` modeltype learns a mlp neural network using pytorch framework. For `custom` the user provide `main_model` and `aux_model`. main_model: (optional) The main prediction model. Currently support pytorch models that return mean and log variance. aux_model: (optional) The auxiliary prediction model. Currently support pytorch models that return calibrated log variance. config: dictionary containing the config parameters for the model. device: device used for pytorch models ignored otherwise. verbose: if True, print statements with the progress are enabled. """ super(AuxiliaryIntervalPredictor).__init__() self.config = config self.device = device self.verbose = verbose if model_type == "mlp": self.model_type = model_type self.main_model = _MLPNet_Main( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) self.aux_model = _MLPNet_Aux( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) elif model_type == "custom": self.model_type = model_type self.main_model = main_model self.aux_model = aux_model else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config, "main_model": self.main_model, "aux_model": self.aux_model, "device": self.device, "verbose": self.verbose} def _main_model_loss(self, y_true, y_pred_mu, y_pred_log_var, y_pred_log_var_aux): r = torch.abs(y_true - y_pred_mu) # + 0.5 * y_pred_log_var + loss = torch.mean(0.5 * torch.exp(-y_pred_log_var) * r ** 2) + \\ self.config["lambda_match"] * torch.mean(torch.abs(torch.exp(0.5 * y_pred_log_var) - torch.exp(0.5 * y_pred_log_var_aux))) return loss def _aux_model_loss(self, y_true, y_pred_mu, y_pred_log_var_aux): deltal = deltau = 2.0 * torch.exp(0.5 * y_pred_log_var_aux) upper = y_pred_mu + deltau lower = y_pred_mu - deltal width = upper - lower r = torch.abs(y_true - y_pred_mu) emce = torch.mean(torch.sigmoid((y_true - lower) * (upper - y_true) * 100000)) loss_emce = torch.abs(self.config["calibration_alpha"]-emce) loss_noise = torch.mean(torch.abs(0.5 * width - r)) loss_sharpness = torch.mean(torch.abs(upper - y_true)) + torch.mean(torch.abs(lower - y_true)) #print(emce) return loss_emce + self.config["lambda_noise"] * loss_noise + self.config["lambda_sharpness"] * loss_sharpness def fit(self, X, y): """ Fit the Auxiliary Interval Predictor model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ X = torch.from_numpy(X).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) dataset_loader = DataLoader( TensorDataset(X,y), batch_size=self.config["batch_size"] ) optimizer_main_model = torch.optim.Adam(self.main_model.parameters(), lr=self.config["lr"]) optimizer_aux_model = torch.optim.Adam(self.aux_model.parameters(), lr=self.config["lr"]) for it in range(self.config["num_outer_iters"]): # Train the main model for epoch in range(self.config["num_main_iters"]): avg_mean_model_loss = 0.0 for batch_x, batch_y in dataset_loader: self.main_model.train() self.aux_model.eval() batch_y_pred_log_var_aux = self.aux_model(batch_x) batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) main_loss = self._main_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var, batch_y_pred_log_var_aux) optimizer_main_model.zero_grad() main_loss.backward() optimizer_main_model.step() avg_mean_model_loss += main_loss.item()/len(dataset_loader) if self.verbose: print("Iter: {}, Epoch: {}, main_model_loss = {}".format(it, epoch, avg_mean_model_loss)) # Train the auxiliary model for epoch in range(self.config["num_aux_iters"]): avg_aux_model_loss = 0.0 for batch_x, batch_y in dataset_loader: self.aux_model.train() self.main_model.eval() batch_y_pred_log_var_aux = self.aux_model(batch_x) batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) aux_loss = self._aux_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var_aux) optimizer_aux_model.zero_grad() aux_loss.backward() optimizer_aux_model.step() avg_aux_model_loss += aux_loss.item() / len(dataset_loader) if self.verbose: print("Iter: {}, Epoch: {}, aux_model_loss = {}".format(it, epoch, avg_aux_model_loss)) return self def predict(self, X, return_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ self.main_model.eval() X = torch.from_numpy(X).float().to(self.device) dataset_loader = DataLoader( X, batch_size=self.config["batch_size"] ) y_mean_list = [] y_log_var_list = [] for batch_x in dataset_loader: batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) y_mean_list.append(batch_y_pred_mu.data.cpu().numpy()) y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy()) y_mean = np.concatenate(y_mean_list) y_log_var = np.concatenate(y_log_var_list) y_std = np.sqrt(np.exp(y_log_var)) y_lower = y_mean - 2.0*y_std y_upper = y_mean + 2.0*y_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) return res <s> from .auxiliary_interval_predictor import AuxiliaryIntervalPredictor <s><s><s> import torch import torch.nn.functional as F from uq360.models.noise_models.heteroscedastic_noise_models import GaussianNoise class GaussianNoiseMLPNet(torch.nn.Module): def __init__(self, num
_features, num_outputs, num_hidden): super(GaussianNoiseMLPNet, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_mu = torch.nn.Linear(num_hidden, num_outputs) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) self.noise_layer = GaussianNoise() def forward(self, x): x = F.relu(self.fc(x)) mu = self.fc_mu(x) log_var = self.fc_log_var(x) return mu, log_var def loss(self, y_true=None, mu_pred=None, log_var_pred=None): return self.noise_layer.loss(y_true, mu_pred, log_var_pred, reduce_mean=True)<s> """ Contains implementations of various Bayesian layers """ import numpy as np import torch import torch.nn.functional as F from torch.nn import Parameter from uq360.models.bayesian_neural_networks.layer_utils import InvGammaHalfCauchyLayer, InvGammaLayer td = torch.distributions def reparam(mu, logvar, do_sample=True, mc_samples=1): if do_sample: std = torch.exp(0.5 * logvar) eps = torch.FloatTensor(std.size()).normal_() sample = mu + eps * std for _ in np.arange(1, mc_samples): sample += mu + eps * std return sample / mc_samples else: return mu class BayesianLinearLayer(torch.nn.Module): """ Affine layer with N(0, v/H) or N(0, user specified v) priors on weights and fully factorized variational Gaussian approximation """ def __init__(self, in_features, out_features, cuda=False, init_weight=None, init_bias=None, prior_stdv=None): super(BayesianLinearLayer, self).__init__() self.cuda = cuda self.in_features = in_features self.out_features = out_features # weight mean params self.weights = Parameter(torch.Tensor(out_features, in_features)) self.bias = Parameter(torch.Tensor(out_features)) # weight variance params self.weights_logvar = Parameter(torch.Tensor(out_features, in_features)) self.bias_logvar = Parameter(torch.Tensor(out_features)) # numerical stability self.fudge_factor = 1e-8 if not prior_stdv: # We will use a N(0, 1/num_inputs) prior over weights self.prior_stdv = torch.FloatTensor([1. / np.sqrt(self.weights.size(1))]) else: self.prior_stdv = torch.FloatTensor([prior_stdv]) # self.prior_stdv = torch.Tensor([1. / np.sqrt(1e+3)]) self.prior_mean = torch.FloatTensor([0.]) # for Bias use a prior of N(0, 1) self.prior_bias_stdv = torch.FloatTensor([1.]) self.prior_bias_mean = torch.FloatTensor([0.]) # init params either random or with pretrained net self.init_parameters(init_weight, init_bias) def init_parameters(self, init_weight, init_bias): # init means if init_weight is not None: self.weights.data = torch.Tensor(init_weight) else: self.weights.data.normal_(0, np.float(self.prior_stdv.numpy()[0])) if init_bias is not None: self.bias.data = torch.Tensor(init_bias) else: self.bias.data.normal_(0, 1) # init variances self.weights_logvar.data.normal_(-9, 1e-2) self.bias_logvar.data.normal_(-9, 1e-2) def forward(self, x, do_sample=True, scale_variances=False): # local reparameterization trick mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) if scale_variances: activ = reparam(mu_activations, var_activations.log() - np.log(self.in_features), do_sample=do_sample) else: activ = reparam(mu_activations, var_activations.log(), do_sample=do_sample) return activ def kl(self): """ KL divergence (q(W) || p(W)) :return: """ weights_logvar = self.weights_logvar kld_weights = self.prior_stdv.log() - weights_logvar.mul(0.5) + \\ (weights_logvar.exp() + (self.weights.pow(2) - self.prior_mean)) / ( 2 * self.prior_stdv.pow(2)) - 0.5 kld_bias = self.prior_bias_stdv.log() - self.bias_logvar.mul(0.5) + \\ (self.bias_logvar.exp() + (self.bias.pow(2) - self.prior_bias_mean)) / ( 2 * self.prior_bias_stdv.pow(2)) \\ - 0.5 return kld_weights.sum() + kld_bias.sum() class HorseshoeLayer(BayesianLinearLayer): """ Uses non-centered parametrization. w_k = v*tau_k*beta_k where k indexes an output unit and w_k and beta_k are vectors of all weights incident into the unit """ def __init__(self, in_features, out_features, cuda=False, scale=1.): super(HorseshoeLayer, self).__init__(in_features, out_features) self.cuda = cuda self.in_features = in_features self.out_features = out_features self.nodescales = InvGammaHalfCauchyLayer(out_features=out_features, b=1.) self.layerscale = InvGammaHalfCauchyLayer(out_features=1, b=scale) # prior on beta is N(0, I) when employing non centered parameterization self.prior_stdv = torch.Tensor([1]) self.prior_mean = torch.Tensor([0.]) def forward(self, x, do_sample=True, debug=False, eps_scale=None, eps_w=None): # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample # sample scales scale_mean = 0.5 * (self.nodescales.mu + self.layerscale.mu) scale_var = 0.25 * (self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2) scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp() # sample preactivations mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample) return scale_sample * activ_sample def kl(self): return super(HorseshoeLayer, self).kl() + self.nodescales.kl() + self.layerscale.kl() def fixed_point_updates(self): self.nodescales.fixed_point_updates() self.layerscale.fixed_point_updates() class RegularizedHorseshoeLayer(HorseshoeLayer): """ Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe. For all weights w_k incident upon node k in the layer we have: w_k ~ N(0, (tau_k * v)^2 I) N(0, c^2 I), c^2 ~ InverseGamma(c_a, b). c^2 controls the scale of the thresholding. As c^2 -> infinity, the regularized Horseshoe -> Horseshoe. """ def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.): super(RegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale) self.c = InvGammaLayer(a=c_a, b=c_b) def forward(self, x, do_sample=True, **kwargs): # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample # sample regularized scales scale_mean = self.nodescales.mu + self.layerscale.mu scale_var = self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2 scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp() c_sample = reparam(self.c.mu, 2 * self.c.log_sigma, do_sample=do_sample).exp() regularized_scale_sample = (c_sample * scale_sample) / (c_sample + scale_sample) # sample preactivations mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample) return torch.sqrt(regularized_scale_sample) * activ_sample def kl(self): return super(RegularizedHorseshoeLayer, self).kl() + self.c.kl() class NodeSpecificRegularizedHorseshoeLayer(RegularizedHorseshoeLayer): """ Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe. For all weights w_k incident upon node k in the layer we have: w_k ~ N(0, (tau_k * v)^2 I) N(0, c_k^2 I), c_k^2 ~ InverseGamma(a, b). c_k^2 controls the scale of the thresholding. As c_k^2 -> infinity, the regularized Horseshoe -> Horseshoe Note that we now have a per-node c_k. """ def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.): super(NodeSpecificRegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale) self.c = InvGammaLayer(a=c_a, b=c_b, out_features=out_features) <s><s> """ Contains implementations of various utilities used by Horseshoe Bayesian layers """ import numpy as np import torch from torch.nn import Parameter td = torch.distributions gammaln = torch.lgamma def diag_gaussian_entropy(log_std, D): return 0.5 * D * (1.0 + torch.log(2 * np.pi)) + torch.sum(log_std) def inv_gamma_entropy(a, b): return torch.sum(a + torch.log(b) + torch.lgamma(a) - (1 + a) * torch.digamma(a)) def log_normal_entropy(log_std, mu, D): return torch.sum(log_std + mu + 0.5) + (D / 2) * np.log(2 * np.pi) class InvGammaHalfCauchyLayer(torch.nn.Module): """ Uses the inverse Gamma parameterization of the half-Cauchy distribution. a ~ C^+(0, b) <==> a^2 ~ IGamma(0.5, 1/lambda), lambda ~ IGamma(0.5, 1/b^2), where lambda is an auxiliary latent variable. Uses a factorized variational approximation q(ln a^2)q(lambda) = N(mu, sigma^2) IGamma(ahat, bhat). This layer places a half Cauchy prior on the scales of each output node of the layer. """ def __init__(self, out_features, b): """ :param out_fatures: number of output nodes in the layer. :param b: scale of the half Cauchy """ super(InvGammaHalfCauchyLayer, self).__init__() self.b = b self.out_features = out_features # variational parameters for q(ln a^2) self.mu = Parameter(torch.FloatTensor(out_features)) self.log_sigma = Parameter(torch.FloatTensor(out_features)) # self.log_sigma = torch.FloatTensor(out_features) # variational parameters for q(lambda). These will be updated via fixed point updates, hence not parameters. self.ahat = torch.FloatTensor([1.]) # The posterior parameter is always 1. self.bhat = torch.ones(out_features) * (1.0 / self.b ** 2) self.const = torch.FloatTensor([0.5]) self.initialize_from_prior() def initialize_from_prior(self): """ Initializes variational parameters by sampling from the prior. """ # sample from half cauchy and log to initialize the mean of the log normal sample = np.abs(self.b * (np.random.randn(self.out_features) / np.random.randn(self.out_features))) self.mu.data = torch.FloatTensor(np.log(sample)) self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.) def expectation_wrt_prior(self): """ Computes E[ln p(a^2 | lambda)] + E[ln p(lambda)] """ expected_a_given_lambda = -gammaln(self.const) - 0.5 * (torch.log(self.bhat) - torch.digamma(self.ahat)) + ( -0.5 - 1.) * self.mu - torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) * (self.ahat / self.bhat) expected_lambda = -gammaln(self.const) - 2 * 0.5 * np.log(
self.b) + (-self.const - 1.) * ( torch.log(self.bhat) - torch.digamma(self.ahat)) - (1. / self.b ** 2) * (self.ahat / self.bhat) return torch.sum(expected_a_given_lambda) + torch.sum(expected_lambda) def entropy(self): """ Computes entropy of q(ln a^2) and q(lambda) """ return self.entropy_lambda() + self.entropy_a2() def entropy_lambda(self): return inv_gamma_entropy(self.ahat, self.bhat) def entropy_a2(self): return log_normal_entropy(self.log_sigma, self.mu, self.out_features) def kl(self): """ Computes KL(q(ln(a^2)q(lambda) || IG(a^2 | 0.5, 1/lambda) IG(lambda | 0.5, 1/b^2)) """ return -self.expectation_wrt_prior() - self.entropy() def fixed_point_updates(self): # update lambda moments self.bhat = torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) + (1. / self.b ** 2) class InvGammaLayer(torch.nn.Module): """ Approximates the posterior of c^2 with prior IGamma(c^2 | a , b) using a log Normal approximation q(ln c^2) = N(mu, sigma^2) """ def __init__(self, a, b, out_features=1): super(InvGammaLayer, self).__init__() self.a = torch.FloatTensor([a]) self.b = torch.FloatTensor([b]) # variational parameters for q(ln c^2) self.mu = Parameter(torch.FloatTensor(out_features)) self.log_sigma = Parameter(torch.FloatTensor(out_features)) self.out_features = out_features self.initialize_from_prior() def initialize_from_prior(self): """ Initializes variational parameters by sampling from the prior. """ self.mu.data = torch.log(self.b / (self.a + 1) * torch.ones(self.out_features)) # initialize at the mode self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.) def expectation_wrt_prior(self): """ Computes E[ln p(c^2 | a, b)] """ # return self.c_a * np.log(self.c_b) - gammaln(self.c_a) + ( # - self.c_a - 1) * c_mu - self.c_b * Ecinv return self.a * torch.log(self.b) - gammaln(self.a) + (- self.a - 1) \\ * self.mu - self.b * torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) def entropy(self): return log_normal_entropy(self.log_sigma, self.mu, 1) def kl(self): """ Computes KL(q(ln(c^2) || IG(c^2 | a, b)) """ return -self.expectation_wrt_prior().sum() - self.entropy() <s> import numpy as np import torch from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseFixedPrecision def compute_test_ll(y_test, y_pred_samples, std_y=1.): """ Computes test log likelihoods = (1 / Ntest) * \\sum_n p(y_n | x_n, D_train) :param y_test: True y :param y_pred_samples: y^s = f(x_test, w^s); w^s ~ q(w). S x Ntest, where S is the number of samples q(w) is either a trained variational posterior or an MCMC approximation to p(w | D_train) :param std_y: True std of y (assumed known) """ S, _ = y_pred_samples.shape noise = GaussianNoiseFixedPrecision(std_y=std_y) ll = noise.loss(y_pred=y_pred_samples, y_true=y_test.unsqueeze(dim=0), reduce_sum=False) ll = torch.logsumexp(ll, dim=0) - np.log(S) # mean over num samples return torch.mean(ll) # mean over test points <s> from abc import ABC import numpy as np import torch from torch import nn from uq360.models.bayesian_neural_networks.layers import HorseshoeLayer, BayesianLinearLayer, RegularizedHorseshoeLayer from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision import numpy as np td = torch.distributions class HshoeBNN(nn.Module, ABC): """ Bayesian neural network with Horseshoe layers. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-1, use_reg_hshoe=False): if use_reg_hshoe: layer = RegularizedHorseshoeLayer else: layer = HorseshoeLayer super(HshoeBNN, self).__init__() self.num_layers = num_layers if activation_type == 'relu': # activation self.activation = nn.ReLU() elif activation_type == 'tanh': self.activation = nn.Tanh() else: print("Activation Type not supported") self.fc_hidden = [] self.fc1 = layer(ip_dim, num_nodes, scale=hshoe_scale) for _ in np.arange(self.num_layers - 1): self.fc_hidden.append(layer(num_nodes, num_nodes)) self.fc_out = BayesianLinearLayer(num_nodes, op_dim) self.noise_layer = None def forward(self, x, do_sample=True): x = self.fc1(x, do_sample=do_sample) x = self.activation(x) for layer in self.fc_hidden: x = layer(x, do_sample=do_sample) x = self.activation(x) return self.fc_out(x, do_sample=do_sample, scale_variances=True) def kl_divergence_w(self): kld = self.fc1.kl() + self.fc_out.kl() for layer in self.fc_hidden: kld += layer.kl() return kld def fixed_point_updates(self): if hasattr(self.fc1, 'fixed_point_updates'): self.fc1.fixed_point_updates() if hasattr(self.fc_out, 'fixed_point_updates'): self.fc_out.fixed_point_updates() for layer in self.fc_hidden: if hasattr(layer, 'fixed_point_updates'): layer.fixed_point_updates() def prior_predictive_samples(self, n_sample=100): n_eval = 1000 x = torch.linspace(-2, 2, n_eval)[:, np.newaxis] y = np.zeros([n_sample, n_eval]) for i in np.arange(n_sample): y[i] = self.forward(x).data.numpy().ravel() return x.data.numpy(), y ### get and set weights ### def get_weights(self): assert len(self.fc_hidden) == 0 # only works for one layer networks. weight_dict = {} weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy() return weight_dict def set_weights(self, weight_dict): assert len(self.fc_hidden) == 0 # only works for one layer networks. to_param = lambda x: nn.Parameter(torch.Tensor(x)) self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1]) self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1]) self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1]) self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1]) self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1]) self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1]) self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1]) self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1]) class HshoeRegressionNet(HshoeBNN, ABC): """ Horseshoe net with N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b) likelihoods. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False): super(HshoeRegressionNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, hshoe_scale=hshoe_scale, use_reg_hshoe=use_reg_hshoe) self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.) def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer.loss(y_pred=out, y_true=y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik return neg_elbo def mse(self, x, y): """ scaled rmse (scaled by 1 / std_y**2) """ E_noise_precision = 1. / self.noise_layer.get_noise_var() return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum() def get_noise_var(self): return self.noise_layer.get_noise_var() class HshoeClassificationNet(HshoeBNN, ABC): """ Horseshoe net with Categorical(y_true | f(x, w)) likelihoods. Use for classification. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False): super(HshoeClassificationNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, hshoe_scale=hshoe_scale, use_reg_hshoe=use_reg_hshoe) self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum') def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer(out, y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w()) / num_batches - Elik return neg_elbo <s> from abc import ABC import torch from torch import nn from uq360.models.bayesian_neural_networks.layers import BayesianLinearLayer from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision import numpy as np td = torch.distributions class BayesianNN(nn.Module, ABC): """ Bayesian neural network with zero mean Gaussian priors over weights. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianNN, self).__init__() self.num_layers = num_layers if activation_type == 'relu': # activation self.activation = nn.ReLU() elif activation_type == 'tanh': self.activation = nn.Tanh() else: print("Activation Type not supported") self.fc_hidden = [] self.fc1 = layer(ip_dim, num_nodes,) for _ in np.arange(self.num_layers - 1): self.fc_hidden.append(layer(num_nodes, num_nodes, )) self.fc_out = layer(num_nodes, op_dim, ) self.noise_layer = None def forward(self, x, do_sample=True): x = self.fc1(x, do_sample=do_sample) x = self.activation(x) for layer in self.fc_hidden: x = layer(x, do_
sample=do_sample) x = self.activation(x) return self.fc_out(x, do_sample=do_sample, scale_variances=True) def kl_divergence_w(self): kld = self.fc1.kl() + self.fc_out.kl() for layer in self.fc_hidden: kld += layer.kl() return kld def prior_predictive_samples(self, n_sample=100): n_eval = 1000 x = torch.linspace(-2, 2, n_eval)[:, np.newaxis] y = np.zeros([n_sample, n_eval]) for i in np.arange(n_sample): y[i] = self.forward(x).data.numpy().ravel() return x.data.numpy(), y ### get and set weights ### def get_weights(self): assert len(self.fc_hidden) == 0 # only works for one layer networks. weight_dict = {} weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy() return weight_dict def set_weights(self, weight_dict): assert len(self.fc_hidden) == 0 # only works for one layer networks. to_param = lambda x: nn.Parameter(torch.Tensor(x)) self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1]) self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1]) self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1]) self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1]) self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1]) self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1]) self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1]) self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1]) class BayesianRegressionNet(BayesianNN, ABC): """ Bayesian neural net with N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b) likelihoods. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianRegressionNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, ) self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.) def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer.loss(y_pred=out, y_true=y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik return neg_elbo def mse(self, x, y): """ scaled rmse (scaled by 1 / std_y**2) """ E_noise_precision = 1. / self.noise_layer.get_noise_var() return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum() def get_noise_var(self): return self.noise_layer.get_noise_var() class BayesianClassificationNet(BayesianNN, ABC): """ Bayesian neural net with Categorical(y_true | f(x, w)) likelihoods. Use for classification. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianClassificationNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers) self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum') def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer(out, y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = self.kl_divergence_w() / num_batches - Elik return neg_elbo <s><s> import math import numpy as np import torch from scipy.special import gammaln from uq360.models.noise_models.noisemodel import AbstractNoiseModel from torch.nn import Parameter td = torch.distributions def transform(a): return torch.log(1 + torch.exp(a)) class GaussianNoise(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f_\\mu(x, w), f_\\sigma^2(x, w)) """ def __init__(self, cuda=False): super(GaussianNoise, self).__init__() self.cuda = cuda self.const = torch.log(torch.FloatTensor([2 * math.pi])) def loss(self, y_true=None, mu_pred=None, log_var_pred=None, reduce_mean=True): """ computes -1 * ln N (y_true | mu_pred, softplus(log_var_pred)) :param y_true: :param mu_pred: :param log_var_pred: :return: """ var_pred = transform(log_var_pred) ll = -0.5 * self.const - 0.5 * torch.log(var_pred) - 0.5 * (1. / var_pred) * ((mu_pred - y_true) ** 2) if reduce_mean: return -ll.mean(dim=0) else: return -ll.sum(dim=0) def get_noise_var(self, log_var_pred): return transform(log_var_pred) <s> import math import numpy as np import torch from scipy.special import gammaln from uq360.models.noise_models.noisemodel import AbstractNoiseModel from torch.nn import Parameter td = torch.distributions def transform(a): return torch.log(1 + torch.exp(a)) class GaussianNoiseGammaPrecision(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b). Uses a variational approximation; q(lambda) = Gamma(ahat, bhat) """ def __init__(self, a0=6, b0=6, cuda=False): super(GaussianNoiseGammaPrecision, self).__init__() self.cuda = cuda self.a0 = a0 self.b0 = b0 self.const = torch.log(torch.FloatTensor([2 * math.pi])) # variational parameters self.ahat = Parameter(torch.FloatTensor([10.])) self.bhat = Parameter(torch.FloatTensor([3.])) def loss(self, y_pred=None, y_true=None): """ computes -1 * E_q(\\lambda)[ln N (y_pred | y_true, \\lambda^-1)], where q(lambda) = Gamma(ahat, bhat) :param y_pred: :param y_true: :return: """ n = y_pred.shape[0] ahat = transform(self.ahat) bhat = transform(self.bhat) return -1 * (-0.5 * n * self.const + 0.5 * n * (torch.digamma(ahat) - torch.log(bhat)) \\ - 0.5 * (ahat/bhat) * ((y_pred - y_true) ** 2).sum()) def kl(self): ahat = transform(self.ahat) bhat = transform(self.bhat) return (ahat - self.a0) * torch.digamma(ahat) - torch.lgamma(ahat) + gammaln(self.a0) + \\ self.a0 * (torch.log(bhat) - np.log(self.b0)) + ahat * (self.b0 - bhat) / bhat def get_noise_var(self): ahat = transform(self.ahat) bhat = transform(self.bhat) return (bhat / ahat).data.numpy()[0] class GaussianNoiseFixedPrecision(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f(x, w), sigma_y**2); known sigma_y """ def __init__(self, std_y=1., cuda=False): super(GaussianNoiseFixedPrecision, self).__init__() self.cuda = cuda self.const = torch.log(torch.FloatTensor([2 * math.pi])) self.sigma_y = std_y def loss(self, y_pred=None, y_true=None): """ computes -1 * ln N (y_pred | y_true, sigma_y**2) :param y_pred: :param y_true: :return: """ ll = -0.5 * self.const - np.log(self.sigma_y) - 0.5 * (1. / self.sigma_y ** 2) * ((y_pred - y_true) ** 2) return -ll.sum(dim=0) def get_noise_var(self): return self.sigma_y ** 2<s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class AbstractNoiseModel(ABC): """ Abstract class. All noise models inherit from here. """ def __init__(self, *argv, **kwargs): """ Initialize an AbstractNoiseModel object. """ @abc.abstractmethod def loss(self, *argv, **kwargs): """ Compute loss given predictions and groundtruth labels """ raise NotImplementedError @abc.abstractmethod def get_noise_var(self, *argv, **kwargs): """ Return the current estimate of noise variance """ raise NotImplementedError <s><s> import autograd import autograd.numpy as np import scipy.optimize from autograd import grad from autograd.scipy.special import logsumexp from sklearn.cluster import KMeans class HMM: """ A Hidden Markov Model with Gaussian observations with unknown means and known precisions. """ def __init__(self, X, config_dict=None): self.N, self.T, self.D = X.shape self.K = config_dict['K'] # number of HMM states self.I = np.eye(self.K) self.Precision = np.zeros([self.D, self.D, self.K]) self.X = X if config_dict['precision'] is None: for k in np.arange(self.K): self.Precision[:, :, k] = np.eye(self.D) else: self.Precision = config_dict['precision'] self.dParams_dWeights = None self.alphaT = None # Store the final beliefs. self.beta1 = None # store the first timestep beliefs from the beta recursion. self.forward_trellis = {} # stores \\alpha self.backward_trellis = {} # stores \\beta def initialize_params(self, seed=1234): np.random.seed(seed) param_dict = {} A = np.random.randn(self.K, self.K) # use k-means to initialize the mean parameters X = self.X.reshape([-1, self.D]) kmeans = KMeans(n_clusters=self.K, random_state=seed, n_init=15).fit(X) labels = kmeans.labels_ _, counts = np.unique(labels, return_counts=True) pi = counts phi = kmeans.cluster_centers_ param_dict['A'] = np.exp(A) param_dict['pi0'] = pi param_dict['phi'] = phi return self.pack_params(param_dict) def unpack_params(self, params): param_dict = dict() K = self.K # For unpacking simplex parameters: have packed them as # log(pi[:-1]) - log(pi[-1]). unnorm_A = np.exp(np.append(params[:K**2-K].reshape(K, K-1), np.zeros((K, 1)), axis=1) ) Z = np.sum(unnorm_A[:, :-1], axis=1) unnorm_A /= Z[:, np.newaxis] norm_A = unnorm_A / unnorm_A.sum(axis=1, keepdims=True) param_dict['A'] = norm_A unnorm_pi = np.exp(np.append(params[K**2-K:K**2-1],
0.0)) Z = np.sum(unnorm_pi[:-1]) unnorm_pi /= Z param_dict['pi0'] = unnorm_pi / unnorm_pi.sum() param_dict['phi'] = params[K**2-K+K-1:].reshape(self.D, K) return param_dict def weighted_alpha_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False): """ Computes the weighted marginal probability of the sequence xseq given parameters; weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B) :param xseq: T * D :param pi: K * 1 :param phi: D * K :param wseq: T * 1 :param A: :return: """ ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma) alpha = np.log(pi.ravel()) + wseq[0] * ll[0] if wseq[0] == 0: self.forward_trellis[0] = alpha[:, np.newaxis] for t in np.arange(1, self.T): alpha = logsumexp(alpha[:, np.newaxis] + np.log(A), axis=0) + wseq[t] * ll[t] if wseq[t] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.forward_trellis[t] = alpha[:, np.newaxis] if store_belief: # store the final belief self.alphaT = alpha return logsumexp(alpha) def weighted_beta_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False): """ Runs beta recursion; weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B) :param xseq: T * D :param pi: K * 1 :param phi: D * K :param wseq: T * 1 :param A: :return: """ ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma) beta = np.zeros_like(pi.ravel()) # log(\\beta) of all ones. max_t = ll.shape[0] if wseq[max_t - 1] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.backward_trellis[max_t - 1] = beta[:, np.newaxis] for i in np.arange(1, max_t): t = max_t - i - 1 beta = logsumexp((beta + wseq[t + 1] * ll[t + 1])[np.newaxis, :] + np.log(A), axis=1) if wseq[t] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.backward_trellis[t] = beta[:, np.newaxis] # account for the init prob beta = (beta + wseq[0] * ll[0]) + np.log(pi.ravel()) if store_belief: # store the final belief self.beta1 = beta return logsumexp(beta) def weighted_loss(self, params, weights): """ For LOOCV / IF computation within a single sequence. Uses weighted alpha recursion :param params: :param weights: :return: """ param_dict = self.unpack_params(params) logp = self.get_prior_contrib(param_dict) logp = logp + self.weighted_alpha_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights) return -logp def loss_at_missing_timesteps(self, weights, params): """ :param weights: zeroed out weights indicate missing values :param params: packed parameters :return: """ # empty forward and backward trellis self.clear_trellis() param_dict = self.unpack_params(params) # populate forward and backward trellis lpx = self.weighted_alpha_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights, store_belief=True ) lpx_alt = self.weighted_beta_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights, store_belief=True) assert np.allclose(lpx, lpx_alt) # sanity check test_ll = [] # compute loo likelihood ll = self.log_obs_lik(self.X[0][:, :, np.newaxis], param_dict['phi'], self.Precision) # compute posterior p(z_t | x_1,...t-1, t+1,...T) \\forall missing t tsteps = [] for t in self.forward_trellis.keys(): lpz_given_x = self.forward_trellis[t] + self.backward_trellis[t] - lpx test_ll.append(logsumexp(ll[t] + lpz_given_x.ravel())) tsteps.append(t) # empty forward and backward trellis self.clear_trellis() return -np.array(test_ll) def fit(self, weights, init_params=None, num_random_restarts=1, verbose=False, maxiter=None): if maxiter: options_dict = {'disp': verbose, 'gtol': 1e-10, 'maxiter': maxiter} else: options_dict = {'disp': verbose, 'gtol': 1e-10} # Define a function that returns gradients of training loss using Autograd. training_loss_fun = lambda params: self.weighted_loss(params, weights) training_gradient_fun = grad(training_loss_fun, 0) if init_params is None: init_params = self.initialize_params() if verbose: print("Initial loss: ", training_loss_fun(init_params)) res = scipy.optimize.minimize(fun=training_loss_fun, jac=training_gradient_fun, x0=init_params, tol=1e-10, options=options_dict) if verbose: print('grad norm =', np.linalg.norm(res.jac)) return res.x def clear_trellis(self): self.forward_trellis = {} self.backward_trellis = {} #### Required for IJ computation ### def compute_hessian(self, params_one, weights_one): return autograd.hessian(self.weighted_loss, argnum=0)(params_one, weights_one) def compute_jacobian(self, params_one, weights_one): return autograd.jacobian(autograd.jacobian(self.weighted_loss, argnum=0), argnum=1)\\ (params_one, weights_one).squeeze() ################################################### @staticmethod def log_obs_lik(x, phi, Sigma): """ :param x: T*D*1 :param phi: 1*D*K :param Sigma: D*D*K --- precision matrices per state :return: ll """ centered_x = x - phi ll = -0.5 * np.einsum('tdk, tdk, ddk -> tk', centered_x, centered_x, Sigma ) return ll @staticmethod def pack_params(params_dict): param_list = [(np.log(params_dict['A'][:, :-1]) - np.log(params_dict['A'][:, -1])[:, np.newaxis]).ravel(), np.log(params_dict['pi0'][:-1]) - np.log(params_dict['pi0'][-1]), params_dict['phi'].ravel()] return np.concatenate(param_list) @staticmethod def get_prior_contrib(param_dict): logp = 0.0 # Prior logp += -0.5 * (np.linalg.norm(param_dict['phi'], axis=0) ** 2).sum() logp += (1.1 - 1) * np.log(param_dict['A']).sum() logp += (1.1 - 1) * np.log(param_dict['pi0']).sum() return logp @staticmethod def get_indices_in_held_out_fold(T, pct_to_drop, contiguous=False): """ :param T: length of the sequence :param pct_to_drop: % of T in the held out fold :param contiguous: if True generate a block of indices to drop else generate indices by iid sampling :return: o (the set of indices in the fold) """ if contiguous: l = np.floor(pct_to_drop / 100. * T) anchor = np.random.choice(np.arange(l + 1, T)) o = np.arange(anchor - l, anchor).astype(int) else: # i.i.d LWCV o = np.random.choice(T - 2, size=np.int(pct_to_drop / 100. * T), replace=False) + 1 return o @staticmethod def synthetic_hmm_data(K, T, D, sigma0=None, seed=1234, varainces_of_mean=1.0, diagonal_upweight=False): """ :param K: Number of HMM states :param T: length of the sequence """ N = 1 # For structured IJ we will remove data / time steps from a single sequence np.random.seed(seed) if sigma0 is None: sigma0 = np.eye(D) A = np.random.dirichlet(alpha=np.ones(K), size=K) if diagonal_upweight: A = A + 3 * np.eye(K) # add 3 to the diagonal and renormalize to encourage self transitions A = A / A.sum(axis=1) pi0 = np.random.dirichlet(alpha=np.ones(K)) mus = np.random.normal(size=(K, D), scale=np.sqrt(varainces_of_mean)) zs = np.empty((N, T), dtype=np.int) X = np.empty((N, T, D)) for n in range(N): zs[n, 0] = int(np.random.choice(np.arange(K), p=pi0)) X[n, 0] = np.random.multivariate_normal(mean=mus[zs[n, 0]], cov=sigma0) for t in range(1, T): zs[n, t] = int(np.random.choice(np.arange(K), p=A[zs[n, t - 1], :])) X[n, t] = np.random.multivariate_normal(mean=mus[zs[n, t]], cov=sigma0) return {'X': X, 'state_assignments': zs, 'A': A, 'initial_state_assignment': pi0, 'means': mus} <s> from builtins import range import autograd.numpy as np def adam(grad, x, callback=None, num_iters=100, step_size=0.001, b1=0.9, b2=0.999, eps=10**-8, polyak=False): """Adapted from autograd.misc.optimizers""" m = np.zeros(len(x)) v = np.zeros(len(x)) for i in range(num_iters): g = grad(x, i) if callback: callback(x, i, g, polyak) m = (1 - b1) * g + b1 * m # First moment estimate. v = (1 - b2) * (g**2) + b2 * v # Second moment estimate. mhat = m / (1 - b1**(i + 1)) # Bias correction. vhat = v / (1 - b2**(i + 1)) x = x - step_size*mhat/(np.sqrt(vhat) + eps) return x<s> import matplotlib.pyplot as plt import numpy as np import numpy.random as npr import torch as torch def make_data_gap(seed, data_count=100): import GPy npr.seed(0) x = np.hstack([np.linspace(-5, -2, int(data_count/2)), np.linspace(2, 5, int(data_count/2))]) x = x[:, np.newaxis] k = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.) K = k.K(x) L = np.linalg.cholesky(K + 1e-5 * np.eye(data_count)) # draw a noise free random function from a GP eps = np.random.randn(data_count) f = L @ eps # use a homoskedastic Gaussian noise model N(f(x)_i, \\sigma^2). \\sigma^2 = 0.1 eps_noise = np.sqrt(0.1) * np.random.randn(data_count) y = f + eps_noise y = y[:, np.newaxis] plt.plot(x, f, 'ko', ms=2) plt.plot(x, y, 'ro') plt.title("GP generated Data") plt.pause(1) return torch.FloatTensor(x), torch.FloatTensor(y), torch.FloatTensor(x), torch.FloatTensor(y) def make_data_sine(seed, data_count=450): # fix the random seed np.random.seed(seed) noise_var = 0.1 X = np.linspace(-4, 4, data_count) y = 1*np.sin(X) + np.sqrt(noise_var)*npr.randn(data_count) train_count = int (0.2 * data_count) idx = npr.permutation(range(data_
count)) X_train = X[idx[:train_count], np.newaxis ] X_test = X[ idx[train_count:], np.newaxis ] y_train = y[ idx[:train_count] ] y_test = y[ idx[train_count:] ] mu = np.mean(X_train, 0) std = np.std(X_train, 0) X_train = (X_train - mu) / std X_test = (X_test - mu) / std mu = np.mean(y_train, 0) std = np.std(y_train, 0) # mu = 0 # std = 1 y_train = (y_train - mu) / std y_test = (y_test -mu) / std train_stats = dict() train_stats['mu'] = torch.FloatTensor([mu]) train_stats['sigma'] = torch.FloatTensor([std]) return torch.FloatTensor(X_train), torch.FloatTensor(y_train), torch.FloatTensor(X_test), torch.FloatTensor(y_test),\\ train_stats<s> import autograd import autograd.numpy as np import numpy.random as npr import scipy.optimize sigmoid = lambda x: 0.5 * (np.tanh(x / 2.) + 1) get_num_train = lambda inputs: inputs.shape[0] logistic_predictions = lambda params, inputs: sigmoid(np.dot(inputs, params)) class LogisticRegression: def __init__(self): self.params = None def set_parameters(self, params): self.params = params def predict(self, X): if self.params is not None: # Outputs probability of a label being true according to logistic model return np.atleast_2d(sigmoid(np.dot(X, self.params))).T else: raise RuntimeError("Params need to be fit before predictions can be made.") def loss(self, params, weights, inputs, targets): # Training loss is the negative log-likelihood of the training labels. preds = logistic_predictions(params, inputs) label_probabilities = preds * targets + (1 - preds) * (1 - targets) return -np.sum(weights * np.log(label_probabilities + 1e-16)) def fit(self, weights, init_params, inputs, targets, verbose=True): training_loss_fun = lambda params: self.loss(params, weights, inputs, targets) # Define a function that returns gradients of training loss using Autograd. training_gradient_fun = autograd.grad(training_loss_fun, 0) # optimize params if verbose: print("Initial loss:", self.loss(init_params, weights, inputs, targets)) # opt_params = sgd(training_gradient_fun, params, hyper=1, num_iters=5000, step_size=0.1) res = scipy.optimize.minimize(fun=training_loss_fun, jac=training_gradient_fun, x0=init_params, tol=1e-10, options={'disp': verbose}) opt_params = res.x if verbose: print("Trained loss:", self.loss(opt_params, weights, inputs, targets)) self.params = opt_params return opt_params def get_test_acc(self, params, test_targets, test_inputs): preds = np.round(self.predict(test_inputs).T).astype(np.int) err = np.abs(test_targets - preds).sum() return 1 - err/ test_targets.shape[1] #### Required for IJ computation ### def compute_hessian(self, params_one, weights_one, inputs, targets): return autograd.hessian(self.loss, argnum=0)(params_one, weights_one, inputs, targets) def compute_jacobian(self, params_one, weights_one, inputs, targets): return autograd.jacobian(autograd.jacobian(self.loss, argnum=0), argnum=1)\\ (params_one, weights_one, inputs, targets).squeeze() ################################################### @staticmethod def synthetic_lr_data(N=10000, D=10): x = 1. * npr.randn(N, D) x_test = 1. * npr.randn(int(0.3 * N), D) w = npr.randn(D, 1) y = sigmoid((x @ w)).ravel() y = npr.binomial(n=1, p=y) # corrupt labels y_test = sigmoid(x_test @ w).ravel() # y_test = np.round(y_test) y_test = npr.binomial(n=1, p=y_test) return x, np.atleast_2d(y), x_test, np.atleast_2d(y_test) <s><s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) from copy import deepcopy import numpy as np import numpy.random as npr def make_batches(n_data, batch_size): return [slice(i, min(i+batch_size, n_data)) for i in range(0, n_data, batch_size)] def generate_regression_data(seed, data_count=500): """ Generate data from a noisy sine wave. :param seed: random number seed :param data_count: number of data points. :return: """ np.random.seed(seed) noise_var = 0.1 x = np.linspace(-4, 4, data_count) y = 1*np.sin(x) + np.sqrt(noise_var)*npr.randn(data_count) train_count = int (0.2 * data_count) idx = npr.permutation(range(data_count)) x_train = x[idx[:train_count], np.newaxis ] x_test = x[ idx[train_count:], np.newaxis ] y_train = y[ idx[:train_count] ] y_test = y[ idx[train_count:] ] mu = np.mean(x_train, 0) std = np.std(x_train, 0) x_train = (x_train - mu) / std x_test = (x_test - mu) / std mu = np.mean(y_train, 0) std = np.std(y_train, 0) y_train = (y_train - mu) / std train_stats = dict() train_stats['mu'] = mu train_stats['sigma'] = std return x_train, y_train, x_test, y_test, train_stats def form_D_for_auucc(yhat, zhatl, zhatu): # a handy routine to format data as needed by the UCC fit() method D = np.zeros([yhat.shape[0], 3]) D[:, 0] = yhat.squeeze() D[:, 1] = zhatl.squeeze() D[:, 2] = zhatu.squeeze() return D def fitted_ucc_w_nullref(y_true, y_pred_mean, y_pred_lower, y_pred_upper): """ Instantiates an UCC object for the target predictor plus a 'null' (constant band) reference :param y_pred_lower: :param y_pred_mean: :param y_pred_upper: :param y_true: :return: ucc object fitted for two systems: target + null reference """ # form matrix for ucc: X_for_ucc = form_D_for_auucc(y_pred_mean.squeeze(), y_pred_mean.squeeze() - y_pred_lower.squeeze(), y_pred_upper.squeeze() - y_pred_mean.squeeze()) # form matrix for a 'null' system (constant band) X_null = deepcopy(X_for_ucc) X_null[:,1:] = np.std(y_pred_mean) # can be set to any other constant (no effect on AUUCC) # create an instance of ucc and fit data from uq360.metrics.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve as ucc u = ucc() u.fit([X_for_ucc, X_null], y_true.squeeze()) return u def make_sklearn_compatible_scorer(task_type, metric, greater_is_better=True, **kwargs): """ Args: task_type: (str) regression or classification. metric: (str): choice of metric can be one of these - [aurrrc, ece, auroc, nll, brier, accuracy] for classification and ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] for regression. greater_is_better: is False the scores are negated before returning. **kwargs: additional arguments specific to some metrics. Returns: sklearn compatible scorer function. """ from uq360.metrics.classification_metrics import compute_classification_metrics from uq360.metrics.regression_metrics import compute_regression_metrics def sklearn_compatible_score(model, X, y_true): """ Args: model: The model being scored. Currently uq360 and sklearn models are supported. X: Input features. y_true: ground truth values for the target. Returns: Computed score of the model. """ from uq360.algorithms.builtinuq import BuiltinUQ from uq360.algorithms.posthocuq import PostHocUQ if isinstance(model, BuiltinUQ) or isinstance(model, PostHocUQ): # uq360 models if task_type == "classification": score = compute_classification_metrics( y_true=y_true, y_prob=model.predict(X).y_prob, option=metric, **kwargs )[metric] elif task_type == "regression": y_mean, y_lower, y_upper = model.predict(X) score = compute_regression_metrics( y_true=y_true, y_mean=y_mean, y_lower=y_lower, y_upper=y_upper, option=metric, **kwargs )[metric] else: raise NotImplementedError else: # sklearn models if task_type == "classification": score = compute_classification_metrics( y_true=y_true, y_prob=model.predict_proba(X), option=metric, **kwargs )[metric] else: if metric in ["rmse", "r2"]: score = compute_regression_metrics( y_true=y_true, y_mean=model.predict(X), y_lower=None, y_upper=None, option=metric, **kwargs )[metric] else: raise NotImplementedError("{} is not supported for sklearn regression models".format(metric)) if not greater_is_better: score = -score return score return sklearn_compatible_score class DummySklearnEstimator(ABC): def __init__(self, num_classes, base_model_prediction_fn): self.base_model_prediction_fn = base_model_prediction_fn self.classes_ = [i for i in range(num_classes)] def fit(self): pass def predict_proba(self, X): return self.base_model_prediction_fn(X) <s> from .meps_dataset import MEPSDataset <s> # Adapted from https://github.com/Trusted-AI/AIX360/blob/master/aix360/datasets/meps_dataset.py # Utilization target is kept as a continuous target. import os import pandas as pd def default_preprocessing(df): """ 1.Create a new column, RACE that is 'White' if RACEV2X = 1 and HISPANX = 2 i.e. non Hispanic White and 'non-White' otherwise 2. Restrict to Panel 19 3. RENAME all columns that are PANEL/ROUND SPECIFIC 4. Drop rows based on certain values of individual features that correspond to missing/unknown - generally < -1 5. Compute UTILIZATION. """ def race(row): if ((row['HISPANX'] == 2) and (row['RACEV2X'] == 1)): #non-Hispanic Whites are marked as WHITE; all others as NON-WHITE return 'White' return 'Non-White' df['RACEV2X'] = df.apply(lambda row: race(row), axis=1) df = df.rename(columns = {'RACEV2X' : 'RACE'}) df = df[df['PANEL'] == 19] # RENAME COLUMNS df = df.rename(columns = {'FTSTU53X' : 'FTSTU', 'ACTDTY53' : 'ACTDTY', 'HONRDC53' : 'HONRDC', 'RTHLTH53' : 'RTHLTH', 'MNHLTH53' : 'MNHLTH', 'CHBRON53' : 'CHBRON', 'JTPAIN53' : 'JTPAIN', 'PREGNT53' : 'PREGNT', 'WLKLIM53' : 'WLKLIM', 'ACTLIM53' : 'ACTLIM', 'SOCLIM53' : 'SOCLIM', 'COGLIM53' : 'COGLIM', 'EMPST53' : 'EMPST', 'REGION53' : 'REGION', 'MARRY53X' : 'MARRY', 'AGE53X' : 'AGE', 'POVCAT15' : 'POVCAT', 'INSCOV15' : 'INSCOV'}) df = df[df['REGION'] >= 0] # remove values -1 df = df[df['AGE'] >= 0] # remove values -1 df = df[df['MARRY'] >= 0] # remove values -1, -7, -8, -9 df = df[df['ASTHDX'] >= 0] # remove values -1, -7, -8, -9 df = df[(df[['FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX','EDUCYR','HIDEG',
'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX', 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM', 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42', 'PHQ242','EMPST','POVCAT','INSCOV']] >= -1).all(1)] #for all other categorical features, remove values < -1 def utilization(row): return row['OBTOTV15'] + row['OPTOTV15'] + row['ERTOT15'] + row['IPNGTD15'] + row['HHTOTD15'] df['TOTEXP15'] = df.apply(lambda row: utilization(row), axis=1) df = df.rename(columns = {'TOTEXP15' : 'UTILIZATION'}) df = df[['REGION','AGE','SEX','RACE','MARRY', 'FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX', 'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX', 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM', 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42','PCS42', 'MCS42','K6SUM42','PHQ242','EMPST','POVCAT','INSCOV','UTILIZATION','PERWT15F']] return df class MEPSDataset(): """ The Medical Expenditure Panel Survey (MEPS) [#]_ data consists of large scale surveys of families and individuals, medical providers, and employers, and collects data on health services used, costs & frequency of services, demographics, health status and conditions, etc., of the respondents. This specific dataset contains MEPS survey data for calendar year 2015 obtained in rounds 3, 4, and 5 of Panel 19, and rounds 1, 2, and 3 of Panel 20. See :file:`uq360/datasets/data/meps_data/README.md` for more details on the dataset and instructions on downloading/processing the data. References: .. [#] `Medical Expenditure Panel Survey data <https://meps.ahrq.gov/mepsweb/>`_ """ def __init__(self, custom_preprocessing=default_preprocessing, dirpath=None): self._dirpath = dirpath if not self._dirpath: self._dirpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'meps_data') self._filepath = os.path.join(self._dirpath, 'h181.csv') try: df = pd.read_csv(self._filepath, sep=',', na_values=[]) except IOError as err: print("IOError: {}".format(err)) print("To use this class, please place the heloc_dataset.csv:") print("file, as-is, in the folder:") print("\\n\\t{}\\n".format(os.path.abspath(os.path.join( os.path.abspath(__file__), 'data', 'meps_data')))) import sys sys.exit(1) if custom_preprocessing: self._data = custom_preprocessing(df) def data(self): return self._data<s><s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class for generating the feature_statistics proto from TensorFlow data. The proto is used as input for the Overview visualization. """ from functools import partial from facets_overview.base_generic_feature_statistics_generator import BaseGenericFeatureStatisticsGenerator import tensorflow as tf # The feature name used to track sequence length when analyzing # tf.SequenceExamples. SEQUENCE_LENGTH_FEATURE_NAME = 'sequence length (derived feature)' class BaseFeatureStatisticsGenerator(BaseGenericFeatureStatisticsGenerator): """Base class for generator of stats proto from TF data.""" def __init__(self, fs_proto, datasets_proto, histogram_proto): BaseGenericFeatureStatisticsGenerator.__init__( self, fs_proto, datasets_proto, histogram_proto) def ProtoFromTfRecordFiles(self, files, max_entries=10000, features=None, is_sequence=False, iterator_options=None, histogram_categorical_levels_count=None): """Creates a feature statistics proto from a set of TFRecord files. Args: files: A list of dicts describing files for each dataset for the proto. Each entry contains a 'path' field with the path to the TFRecord file on disk and a 'name' field to identify the dataset in the proto. max_entries: The maximum number of examples to load from each dataset in order to create the proto. Defaults to 10000. features: A list of strings that is a whitelist of feature names to create feature statistics for. If set to None then all features in the dataset are analyzed. Defaults to None. is_sequence: True if the input data from 'tables' are tf.SequenceExamples, False if tf.Examples. Defaults to false. iterator_options: Options to pass to the iterator that reads the examples. Defaults to None. histogram_categorical_levels_count: int, controls the maximum number of levels to display in histograms for categorical features. Useful to prevent codes/IDs features from bloating the stats object. Defaults to None. Returns: The feature statistics proto for the provided files. """ datasets = [] for entry in files: entries, size = self._GetTfRecordEntries(entry['path'], max_entries, is_sequence, iterator_options) datasets.append({'entries': entries, 'size': size, 'name': entry['name']}) return self.GetDatasetsProto( datasets, features, histogram_categorical_levels_count) def _ParseExample(self, example_features, example_feature_lists, entries, index): """Parses data from an example, populating a dictionary of feature values. Args: example_features: A map of strings to tf.Features from the example. example_feature_lists: A map of strings to tf.FeatureLists from the example. entries: A dictionary of all features parsed thus far and arrays of their values. This is mutated by the function. index: The index of the example to parse from a list of examples. Raises: TypeError: Raises an exception when a feature has inconsistent types across examples. """ features_seen = set() for feature_list, is_feature in zip( [example_features, example_feature_lists], [True, False]): sequence_length = None for feature_name in feature_list: # If this feature has not been seen in previous examples, then # initialize its entry into the entries dictionary. if feature_name not in entries: entries[feature_name] = { 'vals': [], 'counts': [], 'feat_lens': [], 'missing': index } feature_entry = entries[feature_name] feature = feature_list[feature_name] value_type = None value_list = [] if is_feature: # If parsing a tf.Feature, extract the type and values simply. if feature.HasField('float_list'): value_list = feature.float_list.value value_type = self.fs_proto.FLOAT elif feature.HasField('bytes_list'): value_list = feature.bytes_list.value value_type = self.fs_proto.STRING elif feature.HasField('int64_list'): value_list = feature.int64_list.value value_type = self.fs_proto.INT else: # If parsing a tf.FeatureList, get the type and values by iterating # over all Features in the FeatureList. sequence_length = len(feature.feature) if sequence_length != 0 and feature.feature[0].HasField('float_list'): for feat in feature.feature: for value in feat.float_list.value: value_list.append(value) value_type = self.fs_proto.FLOAT elif sequence_length != 0 and feature.feature[0].HasField( 'bytes_list'): for feat in feature.feature: for value in feat.bytes_list.value: value_list.append(value) value_type = self.fs_proto.STRING elif sequence_length != 0 and feature.feature[0].HasField( 'int64_list'): for feat in feature.feature: for value in feat.int64_list.value: value_list.append(value) value_type = self.fs_proto.INT if value_type is not None: if 'type' not in feature_entry: feature_entry['type'] = value_type elif feature_entry['type'] != value_type: raise TypeError('type mismatch for feature ' + feature_name) feature_entry['counts'].append(len(value_list)) feature_entry['vals'].extend(value_list) if sequence_length is not None: feature_entry['feat_lens'].append(sequence_length) if value_list: features_seen.add(feature_name) # For all previously-seen features not found in this example, update the # feature's missing value. for f in entries: fv = entries[f] if f not in features_seen: fv['missing'] += 1 def _GetEntries(self, paths, max_entries, iterator_from_file, is_sequence=False): """Extracts examples into a dictionary of feature values. Args: paths: A list of the paths to the files to parse. max_entries: The maximum number of examples to load. iterator_from_file: A method that takes a file path string and returns an iterator to the examples in that file. is_sequence: True if the input data from 'iterator_from_file' are tf.SequenceExamples, False if tf.Examples. Defaults to false. Returns: A tuple with two elements: - A dictionary of all features parsed thus far and arrays of their values. - The number of examples parsed. """ entries = {} index = 0 for filepath in paths: reader = iterator_from_file(filepath) for record in reader: if is_sequence: sequence_example = tf.train.SequenceExample.FromString(record) self._ParseExample(sequence_example.context.feature, sequence_example.feature_lists.feature_list, entries, index) else: self._ParseExample( tf.train.Example.FromString(record).features.feature, [], entries, index) index += 1 if index == max_entries: return entries, index return entries, index def _GetTfRecordEntries(self, path, max_entries, is_sequence, iterator_options): """Extracts TFRecord examples into a dictionary of feature values. Args: path: The path to the TFRecord file(s). max_entries: The maximum number of examples to load. is_sequence: True if the input data from 'path' are tf.SequenceExamples, False if tf.Examples. Defaults to false. iterator_options: Options to pass to the iterator that reads the examples. Defaults to None. Returns: A tuple with two elements: - A dictionary of all features parsed thus far and arrays of their values. - The number of examples parsed. """ return self._GetEntries([path], max_entries, partial( tf.compat.v1.io.tf_record_iterator, options=iterator_options), is_sequence) <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator import numpy as np import pandas as pd from tensorflow.python.platform import googletest class GenericFeatureStatisticsGeneratorTest(googletest.TestCase): def setUp(self): self.gfsg = GenericFeatureStatisticsGenerator() def testProtoFromDataFrames(self): data = [[1, 'hi'], [2, 'hello'], [3, 'hi']] df = pd.DataFrame(data, columns=['testFeatureInt', 'testFeatureString']) dataframes = [{'table': df, 'name': 'testDataset'}] p = self.gfsg.ProtoFromDataFrames(dataframes) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(2, len(test_data.features)) if test_data.features[0].name == 'testFeatureInt': numfeat = test_data.features[0] stringfeat = test_data.features[1] else: numfeat = test_data.features[1] stringfeat = test_data.features[0] self.assertEqual('testFeatureInt', numfeat.name) self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type) self.assertEqual(1, numfeat.num_stats.min) self.assertEqual(3, numfeat.num_stats.max) self.assertEqual('testFeatureString', stringfeat.name)
self.assertEqual(self.gfsg.fs_proto.STRING, stringfeat.type) self.assertEqual(2, stringfeat.string_stats.unique) def testNdarrayToEntry(self): arr = np.array([1.0, 2.0, None, float('nan'), 3.0], dtype=float) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual(2, entry['missing']) arr = np.array(['a', 'b', float('nan'), 'c'], dtype=str) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual(1, entry['missing']) def testNdarrayToEntryTimeTypes(self): arr = np.array( [np.datetime64('2005-02-25'), np.datetime64('2006-02-25')], dtype=np.datetime64) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual([1109289600000000000, 1140825600000000000], entry['vals']) arr = np.array( [np.datetime64('2009-01-01') - np.datetime64('2008-01-01')], dtype=np.timedelta64) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual([31622400000000000], entry['vals']) def testDTypeToType(self): self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.int32))) # Boolean and time types treated as int self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.bool))) self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.datetime64))) self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.timedelta64))) self.assertEqual(self.gfsg.fs_proto.FLOAT, self.gfsg.DtypeToType(np.dtype(np.float32))) self.assertEqual(self.gfsg.fs_proto.STRING, self.gfsg.DtypeToType(np.dtype(np.str))) # Unsupported types treated as string for now self.assertEqual(self.gfsg.fs_proto.STRING, self.gfsg.DtypeToType(np.dtype(np.void))) def testGetDatasetsProtoFromEntriesLists(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 3], 'counts': [1, 1, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeature', numfeat.name) self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type) self.assertEqual(1, numfeat.num_stats.min) self.assertEqual(3, numfeat.num_stats.max) hist = numfeat.num_stats.common_stats.num_values_histogram buckets = hist.buckets self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(.3, buckets[0].sample_count) self.assertEqual(1, buckets[9].low_value) self.assertEqual(1, buckets[9].high_value) self.assertEqual(.3, buckets[9].sample_count) def testGetDatasetsProtoSequenceExampleHistogram(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 2, 3], 'counts': [1, 2, 1], 'feat_lens': [1, 2, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets) hist = p.datasets[0].features[ 0].num_stats.common_stats.feature_list_length_histogram buckets = hist.buckets self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(.3, buckets[0].sample_count) self.assertEqual(1.8, buckets[9].low_value) self.assertEqual(2, buckets[9].high_value) self.assertEqual(.3, buckets[9].sample_count) def testGetDatasetsProtoWithWhitelist(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 3], 'counts': [1, 1, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } entries['ignoreFeature'] = { 'vals': [5, 6], 'counts': [1, 1], 'missing': 1, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets, features=['testFeature']) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeature', numfeat.name) self.assertEqual(1, numfeat.num_stats.min) def testGetDatasetsProtoWithMaxHistigramLevelsCount(self): # Selected entries' lengths make it easy to compute average length data = [['hi'], ['good'], ['hi'], ['hi'], ['a'], ['a']] df = pd.DataFrame(data, columns=['testFeatureString']) dataframes = [{'table': df, 'name': 'testDataset'}] # Getting proto from ProtoFromDataFrames instead of GetDatasetsProto # directly to avoid any hand written values ex: size of dataset. p = self.gfsg.ProtoFromDataFrames(dataframes, histogram_categorical_levels_count=2) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(6, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeatureString', numfeat.name) top_values = numfeat.string_stats.top_values self.assertEqual(3, top_values[0].frequency) self.assertEqual('hi', top_values[0].value) self.assertEqual(3, numfeat.string_stats.unique) self.assertEqual(2, numfeat.string_stats.avg_length) rank_hist = numfeat.string_stats.rank_histogram buckets = rank_hist.buckets self.assertEqual(2, len(buckets)) self.assertEqual('hi', buckets[0].label) self.assertEqual(3, buckets[0].sample_count) self.assertEqual('a', buckets[1].label) self.assertEqual(2, buckets[1].sample_count) if __name__ == '__main__': googletest.main() <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code for generating the feature_statistics proto from generic data. The proto is used as input for the Overview visualization. """ from facets_overview.base_generic_feature_statistics_generator import BaseGenericFeatureStatisticsGenerator import facets_overview.feature_statistics_pb2 as fs class GenericFeatureStatisticsGenerator(BaseGenericFeatureStatisticsGenerator): """Generator of stats proto from generic data.""" def __init__(self): BaseGenericFeatureStatisticsGenerator.__init__( self, fs.FeatureNameStatistics, fs.DatasetFeatureStatisticsList, fs.Histogram) <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from facets_overview.feature_statistics_generator import FeatureStatisticsGenerator import numpy as np import tensorflow as tf from tensorflow.python.platform import googletest class FeatureStatisticsGeneratorTest(googletest.TestCase): def setUp(self): self.fs = FeatureStatisticsGenerator() def testParseExampleInt(self): # Tests parsing examples of integers examples = [] for i in range(50): example = tf.train.Example() example.features.feature['num'].int64_list.value.append(i) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) self.assertEqual(1, len(entries)) self.assertIn('num', entries) info = entries['num'] self.assertEqual(0, info['missing']) self.assertEqual(self.fs.fs_proto.INT, info['type']) for i in range(len(examples)): self.assertEqual(1, info['counts'][i]) self.assertEqual(i, info['vals'][i]) def testParseExampleMissingValueList(self): # Tests parsing examples of integers examples = [] example = tf.train.Example() # pylint: disable=pointless-statement example.features.feature['str'] # pylint: enable=pointless-statement examples.append(example) example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'test') examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) self.assertEqual(1, len(entries)) self.assertIn('str', entries) info = entries['str'] self.assertEqual(1, info['missing']) self.assertEqual(self.fs.fs_proto.STRING, info['type']) self.assertEqual(0, info['counts'][0]) self.assertEqual(1, info['counts'][1]) def _check_sequence_example_entries(self, entries, n_examples, n_features, feat_len=None): self.assertIn('num', entries) info = entries['num'] self.assertEqual(0, info['missing']) self.assertEqual(self.fs.fs_proto.INT, info['type']) for i in range(n_examples): self.assertEqual(n_features, info['counts'][i]) if feat_len is not None: self.assertEqual(feat_len, info['feat_lens'][i]) for i in range(n_examples * n_features): self.assertEqual(i, info['vals'][i]) if feat_len is None: self.assertEqual(0, len(info['feat_lens'])) def testParseExampleSequenceContext(self): # Tests parsing examples of integers in context field examples = [] for i in range(50): example = tf.train.SequenceExample() example.context.feature['num'].int64_list.value.append(i) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.context.feature, example.feature_lists.feature_list, entries, i) self._check_sequence_example_entries(entries, 50, 1) self.assertEqual(1, len(entries)) def testParseExampleSequenceFeatureList(self): examples = [] for i in range(50): example = tf.train.SequenceExample() feat = example.feature_lists.feature_list['num'].feature.add() feat.int64_list.value.append(i) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.context.feature, example.feature_lists.feature_list, entries, i) self._check_sequence_example_entries(entries, 50, 1, 1) def testParseExampleSequenceFeature
ListMultipleEntriesInner(self): examples = [] for i in range(2): example = tf.train.SequenceExample() feat = example.feature_lists.feature_list['num'].feature.add() for j in range(25): feat.int64_list.value.append(i * 25 + j) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.context.feature, example.feature_lists.feature_list, entries, i) self._check_sequence_example_entries(entries, 2, 25, 1) def testParseExampleSequenceFeatureListMultipleEntriesOuter(self): # Tests parsing examples of integers in context field examples = [] for i in range(2): example = tf.train.SequenceExample() for j in range(25): feat = example.feature_lists.feature_list['num'].feature.add() feat.int64_list.value.append(i * 25 + j) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.context.feature, example.feature_lists.feature_list, entries, i) self._check_sequence_example_entries(entries, 2, 25, 25) def testVaryingCountsAndMissing(self): # Tests parsing examples of when some examples have missing features examples = [] for i in range(5): example = tf.train.Example() example.features.feature['other'].int64_list.value.append(0) for _ in range(i): example.features.feature['num'].int64_list.value.append(i) examples.append(example) example = tf.train.Example() example.features.feature['other'].int64_list.value.append(0) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) info = entries['num'] self.assertEqual(2, info['missing']) self.assertEqual(4, len(info['counts'])) for i in range(4): self.assertEqual(i + 1, info['counts'][i]) self.assertEqual(10, len(info['vals'])) def testParseExampleStringsAndFloats(self): # Tests parsing examples of string and float features examples = [] for i in range(50): example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'hi') example.features.feature['float'].float_list.value.append(i) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) self.assertEqual(2, len(entries)) self.assertEqual(self.fs.fs_proto.FLOAT, entries['float']['type']) self.assertEqual(self.fs.fs_proto.STRING, entries['str']['type']) for i in range(len(examples)): self.assertEqual(1, entries['str']['counts'][i]) self.assertEqual(1, entries['float']['counts'][i]) self.assertEqual(i, entries['float']['vals'][i]) self.assertEqual('hi', entries['str']['vals'][i].decode( 'UTF-8', 'strict')) def testParseExamplesTypeMismatch(self): examples = [] example = tf.train.Example() example.features.feature['feat'].int64_list.value.append(0) examples.append(example) example = tf.train.Example() example.features.feature['feat'].bytes_list.value.append(b'str') examples.append(example) entries = {} self.fs._ParseExample(examples[0].features.feature, [], entries, 0) with self.assertRaises(TypeError): self.fs._ParseExample(examples[1].features.feature, [], entries, 1) def testGetDatasetsProtoFromEntriesLists(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 3], 'counts': [1, 1, 1], 'missing': 0, 'type': self.fs.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.fs.GetDatasetsProto(datasets) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeature', numfeat.name) self.assertEqual(self.fs.fs_proto.INT, numfeat.type) self.assertEqual(1, numfeat.num_stats.min) self.assertEqual(3, numfeat.num_stats.max) def testGetProtoNums(self): # Tests converting int examples into the feature stats proto examples = [] for i in range(50): example = tf.train.Example() example.features.feature['num'].int64_list.value.append(i) examples.append(example) example = tf.train.Example() example.features.feature['other'].int64_list.value.append(0) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}] p = self.fs.GetDatasetsProto(datasets) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('test', test_data.name) self.assertEqual(51, test_data.num_examples) numfeat = test_data.features[0] if ( test_data.features[0].name == 'num') else test_data.features[1] self.assertEqual('num', numfeat.name) self.assertEqual(self.fs.fs_proto.INT, numfeat.type) self.assertEqual(0, numfeat.num_stats.min) self.assertEqual(49, numfeat.num_stats.max) self.assertEqual(24.5, numfeat.num_stats.mean) self.assertEqual(24.5, numfeat.num_stats.median) self.assertEqual(1, numfeat.num_stats.num_zeros) self.assertAlmostEqual(14.430869689, numfeat.num_stats.std_dev, 4) self.assertEqual(1, numfeat.num_stats.common_stats.num_missing) self.assertEqual(50, numfeat.num_stats.common_stats.num_non_missing) self.assertEqual(1, numfeat.num_stats.common_stats.min_num_values) self.assertEqual(1, numfeat.num_stats.common_stats.max_num_values) self.assertAlmostEqual(1, numfeat.num_stats.common_stats.avg_num_values, 4) hist = numfeat.num_stats.common_stats.num_values_histogram buckets = hist.buckets self.assertEqual(self.fs.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(5, buckets[0].sample_count) self.assertEqual(1, buckets[9].low_value) self.assertEqual(1, buckets[9].high_value) self.assertEqual(5, buckets[9].sample_count) self.assertEqual(2, len(numfeat.num_stats.histograms)) buckets = numfeat.num_stats.histograms[0].buckets self.assertEqual(self.fs.histogram_proto.STANDARD, numfeat.num_stats.histograms[0].type) self.assertEqual(10, len(buckets)) self.assertEqual(0, buckets[0].low_value) self.assertEqual(4.9, buckets[0].high_value) self.assertEqual(5, buckets[0].sample_count) self.assertAlmostEqual(44.1, buckets[9].low_value) self.assertEqual(49, buckets[9].high_value) self.assertEqual(5, buckets[9].sample_count) buckets = numfeat.num_stats.histograms[1].buckets self.assertEqual(self.fs.histogram_proto.QUANTILES, numfeat.num_stats.histograms[1].type) self.assertEqual(10, len(buckets)) self.assertEqual(0, buckets[0].low_value) self.assertEqual(4.9, buckets[0].high_value) self.assertEqual(5, buckets[0].sample_count) self.assertAlmostEqual(44.1, buckets[9].low_value) self.assertEqual(49, buckets[9].high_value) self.assertEqual(5, buckets[9].sample_count) def testQuantiles(self): examples = [] for i in range(50): example = tf.train.Example() example.features.feature['num'].int64_list.value.append(i) examples.append(example) for i in range(50): example = tf.train.Example() example.features.feature['num'].int64_list.value.append(100) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}] p = self.fs.GetDatasetsProto(datasets) numfeat = p.datasets[0].features[0] self.assertEqual(2, len(numfeat.num_stats.histograms)) self.assertEqual(self.fs.histogram_proto.QUANTILES, numfeat.num_stats.histograms[1].type) buckets = numfeat.num_stats.histograms[1].buckets self.assertEqual(10, len(buckets)) self.assertEqual(0, buckets[0].low_value) self.assertEqual(9.9, buckets[0].high_value) self.assertEqual(10, buckets[0].sample_count) self.assertEqual(100, buckets[9].low_value) self.assertEqual(100, buckets[9].high_value) self.assertEqual(10, buckets[9].sample_count) def testInfinityAndNan(self): examples = [] for i in range(50): example = tf.train.Example() example.features.feature['num'].float_list.value.append(i) examples.append(example) example = tf.train.Example() example.features.feature['num'].float_list.value.append(float('inf')) examples.append(example) example = tf.train.Example() example.features.feature['num'].float_list.value.append(float('-inf')) examples.append(example) example = tf.train.Example() example.features.feature['num'].float_list.value.append(float('nan')) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}] p = self.fs.GetDatasetsProto(datasets) numfeat = p.datasets[0].features[0] self.assertEqual('num', numfeat.name) self.assertEqual(self.fs.fs_proto.FLOAT, numfeat.type) self.assertTrue(np.isnan(numfeat.num_stats.min)) self.assertTrue(np.isnan(numfeat.num_stats.max)) self.assertTrue(np.isnan(numfeat.num_stats.mean)) self.assertTrue(np.isnan(numfeat.num_stats.median)) self.assertEqual(1, numfeat.num_stats.num_zeros) self.assertTrue(np.isnan(numfeat.num_stats.std_dev)) self.assertEqual(53, numfeat.num_stats.common_stats.num_non_missing) hist = buckets = numfeat.num_stats.histograms[0] buckets = hist.buckets self.assertEqual(self.fs.histogram_proto.STANDARD, hist.type) self.assertEqual(1, hist.num_nan) self.assertEqual(10, len(buckets)) self.assertEqual(float('-inf'), buckets[0].low_value) self.assertEqual(4.9, buckets[0].high_value) self.assertEqual(6, buckets[0].sample_count) self.assertEqual(44.1, buckets[9].low_value) self.assertEqual(float('inf'), buckets[9].high_value) self.assertEqual(6, buckets[9].sample_count) def testInfinitysOnly(self): examples = [] example = tf.train.Example() example.features.feature['num'].float_list.value.append(float('inf')) examples.append(example) example = tf.train.Example() example.features.feature['num'].float_list.value.append(float('-inf')) examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}] p = self.fs.GetDatasetsProto(datasets) numfeat = p.datasets[0].features[0] hist = buckets = numfeat.num_stats.histograms[0] buckets = hist.buckets self.assertEqual(self.fs.histogram_proto.STANDARD, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(float('-inf'), buckets[0].low_value) self.assertEqual(0.1, buckets[0].high_value) self.assertEqual(1, buckets[0].sample_count) self.assertEqual(0.
9, buckets[9].low_value) self.assertEqual(float('inf'), buckets[9].high_value) self.assertEqual(1, buckets[9].sample_count) def testGetProtoStrings(self): # Tests converting string examples into the feature stats proto examples = [] for i in range(2): example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'hello') examples.append(example) for i in range(3): example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'hi') examples.append(example) example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'hey') examples.append(example) entries = {} for i, example in enumerate(examples): self.fs._ParseExample(example.features.feature, [], entries, i) datasets = [{'entries': entries, 'size': len(examples), 'name': 'test'}] p = self.fs.GetDatasetsProto(datasets) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('test', test_data.name) self.assertEqual(6, test_data.num_examples) strfeat = test_data.features[0] self.assertEqual('str', strfeat.name) self.assertEqual(self.fs.fs_proto.STRING, strfeat.type) self.assertEqual(3, strfeat.string_stats.unique) self.assertAlmostEqual(19 / 6.0, strfeat.string_stats.avg_length, 4) self.assertEqual(0, strfeat.string_stats.common_stats.num_missing) self.assertEqual(6, strfeat.string_stats.common_stats.num_non_missing) self.assertEqual(1, strfeat.string_stats.common_stats.min_num_values) self.assertEqual(1, strfeat.string_stats.common_stats.max_num_values) self.assertEqual(1, strfeat.string_stats.common_stats.avg_num_values) hist = strfeat.string_stats.common_stats.num_values_histogram buckets = hist.buckets self.assertEqual(self.fs.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(.6, buckets[0].sample_count) self.assertEqual(1, buckets[9].low_value) self.assertEqual(1, buckets[9].high_value) self.assertEqual(.6, buckets[9].sample_count) self.assertEqual(2, len(strfeat.string_stats.top_values)) self.assertEqual(3, strfeat.string_stats.top_values[0].frequency) self.assertEqual('hi', strfeat.string_stats.top_values[0].value) self.assertEqual(2, strfeat.string_stats.top_values[1].frequency) self.assertEqual('hello', strfeat.string_stats.top_values[1].value) buckets = strfeat.string_stats.rank_histogram.buckets self.assertEqual(3, len(buckets)) self.assertEqual(0, buckets[0].low_rank) self.assertEqual(0, buckets[0].high_rank) self.assertEqual(3, buckets[0].sample_count) self.assertEqual('hi', buckets[0].label) self.assertEqual(2, buckets[2].low_rank) self.assertEqual(2, buckets[2].high_rank) self.assertEqual(1, buckets[2].sample_count) self.assertEqual('hey', buckets[2].label) def testGetProtoMultipleDatasets(self): # Tests converting multiple datsets into the feature stats proto # including ensuring feature order is consistent in the protos. examples1 = [] for i in range(2): example = tf.train.Example() example.features.feature['str'].bytes_list.value.append(b'one') example.features.feature['num'].int64_list.value.append(0) examples1.append(example) examples2 = [] example = tf.train.Example() example.features.feature['num'].int64_list.value.append(1) example.features.feature['str'].bytes_list.value.append(b'two') examples2.append(example) entries1 = {} for i, example1 in enumerate(examples1): self.fs._ParseExample(example1.features.feature, [], entries1, i) entries2 = {} for i, example2 in enumerate(examples2): self.fs._ParseExample(example2.features.feature, [], entries2, i) datasets = [{ 'entries': entries1, 'size': len(examples1), 'name': 'test1' }, { 'entries': entries2, 'size': len(examples2), 'name': 'test2' }] p = self.fs.GetDatasetsProto(datasets) self.assertEqual(2, len(p.datasets)) test_data_1 = p.datasets[0] self.assertEqual('test1', test_data_1.name) self.assertEqual(2, test_data_1.num_examples) num_feat_index = 0 if test_data_1.features[0].name == 'num' else 1 self.assertEqual(0, test_data_1.features[num_feat_index].num_stats.max) test_data_2 = p.datasets[1] self.assertEqual('test2', test_data_2.name) self.assertEqual(1, test_data_2.num_examples) self.assertEqual(1, test_data_2.features[num_feat_index].num_stats.max) def testGetEntriesNoFiles(self): features, num_examples = self.fs._GetEntries(['test'], 10, lambda unused_path: []) self.assertEqual(0, num_examples) self.assertEqual({}, features) @staticmethod def get_example_iter(): def ex_iter(unused_filename): examples = [] for i in range(50): example = tf.train.Example() example.features.feature['num'].int64_list.value.append(i) examples.append(example.SerializeToString()) return examples return ex_iter def testGetEntries_one(self): features, num_examples = self.fs._GetEntries(['test'], 1, self.get_example_iter()) self.assertEqual(1, num_examples) self.assertTrue('num' in features) def testGetEntries_oneFile(self): unused_features, num_examples = self.fs._GetEntries(['test'], 1000, self.get_example_iter()) self.assertEqual(50, num_examples) def testGetEntries_twoFiles(self): unused_features, num_examples = self.fs._GetEntries(['test0', 'test1'], 1000, self.get_example_iter()) self.assertEqual(100, num_examples) def testGetEntries_stopInSecondFile(self): unused_features, num_examples = self.fs._GetEntries([ 'test@0', 'test@1', 'test@2', 'test@3', 'test@4', 'test@5', 'test@6', 'test@7', 'test@8', 'test@9' ], 75, self.get_example_iter()) self.assertEqual(75, num_examples) if __name__ == '__main__': googletest.main() <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Generated by the protocol buffer compiler. DO NOT EDIT! # source: feature_statistics.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='feature_statistics.proto', package='featureStatistics', syntax='proto3', serialized_pb=_b('\\n\\x18\\x66\\x65\\x61ture_statistics.proto\\x12\\x11\\x66\\x65\\x61tureStatistics\\"]\\n\\x1c\\x44\\x61tasetFeatureStatisticsList\\x12=\\n\\x08\\x64\\x61tasets\\x18\\x01 \\x03(\\x0b\\x32+.featureStatistics.DatasetFeatureStatistics\\"\\x99\\x01\\n\\x18\\x44\\x61tasetFeatureStatistics\\x12\\x0c\\n\\x04name\\x18\\x01 \\x01(\\t\\x12\\x14\\n\\x0cnum_examples\\x18\\x02 \\x01(\\x04\\x12\\x1d\\n\\x15weighted_num_examples\\x18\\x04 \\x01(\\x01\\x12:\\n\\x08\\x66\\x65\\x61tures\\x18\\x03 \\x03(\\x0b\\x32(.featureStatistics.FeatureNameStatistics\\"\\x8b\\x03\\n\\x15\\x46\\x65\\x61tureNameStatistics\\x12\\x0c\\n\\x04name\\x18\\x01 \\x01(\\t\\x12;\\n\\x04type\\x18\\x02 \\x01(\\x0e\\x32-.featureStatistics.FeatureNameStatistics.Type\\x12\\x39\\n\\tnum_stats\\x18\\x03 \\x01(\\x0b\\x32$.featureStatistics.NumericStatisticsH\\x00\\x12;\\n\\x0cstring_stats\\x18\\x04 \\x01(\\x0b\\x32#.featureStatistics.StringStatisticsH\\x00\\x12\\x39\\n\\x0b\\x62ytes_stats\\x18\\x05 \\x01(\\x0b\\x32\\".featureStatistics.BytesStatisticsH\\x00\\x12\\x38\\n\\x0c\\x63ustom_stats\\x18\\x06 \\x03(\\x0b\\x32\\".featureStatistics.CustomStatistic\\"1\\n\\x04Type\\x12\\x07\\n\\x03INT\\x10\\x00\\x12\\t\\n\\x05\\x46LOAT\\x10\\x01\\x12\\n\\n\\x06STRING\\x10\\x02\\x12\\t\\n\\x05\\x42YTES\\x10\\x03\\x42\\x07\\n\\x05stats\\"x\\n\\x18WeightedCommonStatistics\\x12\\x17\\n\\x0fnum_non_missing\\x18\\x01 \\x01(\\x01\\x12\\x13\\n\\x0bnum_missing\\x18\\x02 \\x01(\\x01\\x12\\x16\\n\\x0e\\x61vg_num_values\\x18\\x03 \\x01(\\x01\\x12\\x16\\n\\x0etot_num_values\\x18\\x04 \\x01(\\x01\\"w\\n\\x0f\\x43ustomStatistic\\x12\\x0c\\n\\x04name\\x18\\x01 \\x01(\\t\\x12\\r\\n\\x03num\\x18\\x02 \\x01(\\x01H\\x00\\x12\\r\\n\\x03str\\x18\\x03 \\x01(\\tH\\x00\\x12\\x31\\n\\thistogram\\x18\\x04 \\x01(\\x0b\\x32\\x1c.featureStatistics.HistogramH\\x00\\x42\\x05\\n\\x03val\\"\\xaa\\x02\\n\\x11NumericStatistics\\x12\\x39\\n\\x0c\\x63ommon_stats\\x18\\x01 \\x01(\\x0b\\x32#.featureStatistics.CommonStatistics\\x12\\x0c\\n\\x04mean\\x18\\x02 \\x01(\\x01\\x12\\x0f\\n\\x07std_dev\\x18\\x03 \\x01(\\x01\\x12\\x11\\n\\tnum_zeros\\x18\\x04 \\x01(\\x04\\x12\\x0b\\n\\x03min\\x18\\x05 \\x01(\\x01\\x12\\x0e\\n\\x06median\\x18\\x06 \\x01(\\x01\\x12\\x0b\\n\\x03max\\x18\\x07 \\x01(\\x01\\x12\\x30\\n\\nhistograms\\x18\\x08 \\x03(\\x0b\\x32\\x1c.featureStatistics.Histogram\\x12L\\n\\x16weighted_numeric_stats\\x18\\t \\x01(\\x0b\\x32,.featureStatistics.WeightedNumericStatistics\\"\\x8c\\x03\\n\\x10StringStatistics\\x12\\x39\\n\\x0c\\x63ommon_stats\\x18\\x01 \\x01(\\x0b\\x32#.featureStatistics.CommonStatistics\\x12\\x0e\\n\\x06unique\\x18\\x02 \\x01(\\x04\\x12\\x44\\n\\ntop_values
\\x18\\x03 \\x03(\\x0b\\x32\\x30.featureStatistics.StringStatistics.FreqAndValue\\x12\\x12\\n\\navg_length\\x18\\x04 \\x01(\\x02\\x12\\x38\\n\\x0erank_histogram\\x18\\x05 \\x01(\\x0b\\x32 .featureStatistics.RankHistogram\\x12J\\n\\x15weighted_string_stats\\x18\\x06 \\x01(\\x0b\\x32+.featureStatistics.WeightedStringStatistics\\x1aM\\n\\x0c\\x46reqAndValue\\x12\\x1b\\n\\x0f\\x64\\x65precated_freq\\x18\\x01 \\x01(\\x04\\x42\\x02\\x18\\x01\\x12\\r\\n\\x05value\\x18\\x02 \\x01(\\t\\x12\\x11\\n\\tfrequency\\x18\\x03 \\x01(\\x01\\"|\\n\\x19WeightedNumericStatistics\\x12\\x0c\\n\\x04mean\\x18\\x01 \\x01(\\x01\\x12\\x0f\\n\\x07std_dev\\x18\\x02 \\x01(\\x01\\x12\\x0e\\n\\x06median\\x18\\x03 \\x01(\\x01\\x12\\x30\\n\\nhistograms\\x18\\x04 \\x03(\\x0b\\x32\\x1c.featureStatistics.Histogram\\"\\x9a\\x01\\n\\x18WeightedStringStatistics\\x12\\x44\\n\\ntop_values\\x18\\x01 \\x03(\\x0b\\x32\\x30.featureStatistics.StringStatistics.FreqAndValue\\x12\\x38\\n\\x0erank_histogram\\x18\\x02 \\x01(\\x0b\\x32 .featureStatistics.RankHistogram\\"\\xa1\\x01\\n\\x0f\\x42ytesStatistics\\x12\\x39\\n\\x0c\\x63ommon_stats\\x18\\x01 \\x01(\\x0b\\x32#.featureStatistics.CommonStatistics\\x12\\x0e\\n\\x06unique\\x18\\x02 \\x01(\\x04\\x12\\x15\\n\\ravg_num_bytes\\x18\\x03 \\x01(\\x02\\x12\\x15\\n\\rmin_num_bytes\\x18\\x04 \\x01(\\x02\\x12\\x15\\n\\rmax_num_bytes\\x18\\x05 \\x01(\\x02\\"\\xed\\x02\\n\\x10\\x43ommonStatistics\\x12\\x17\\n\\x0fnum_non_missing\\x18\\x01 \\x01(\\x04\\x12\\x13\\n\\x0bnum_missing\\x18\\x02 \\x01(\\x04\\x12\\x16\\n\\x0emin_num_values\\x18\\x03 \\x01(\\x04\\x12\\x16\\n\\x0emax_num_values\\x18\\x04 \\x01(\\x04\\x12\\x16\\n\\x0e\\x61vg_num_values\\x18\\x05 \\x01(\\x02\\x12\\x16\\n\\x0etot_num_values\\x18\\x08 \\x01(\\x04\\x12:\\n\\x14num_values_histogram\\x18\\x06 \\x01(\\x0b\\x32\\x1c.featureStatistics.Histogram\\x12J\\n\\x15weighted_common_stats\\x18\\x07 \\x01(\\x0b\\x32+.featureStatistics.WeightedCommonStatistics\\x12\\x43\\n\\x1d\\x66\\x65\\x61ture_list_length_histogram\\x18\\t \\x01(\\x0b\\x32\\x1c.featureStatistics.Histogram\\"\\xc4\\x02\\n\\tHistogram\\x12\\x0f\\n\\x07num_nan\\x18\\x01 \\x01(\\x04\\x12\\x15\\n\\rnum_undefined\\x18\\x02 \\x01(\\x04\\x12\\x34\\n\\x07\\x62uckets\\x18\\x03 \\x03(\\x0b\\x32#.featureStatistics.Histogram.Bucket\\x12\\x38\\n\\x04type\\x18\\x04 \\x01(\\x0e\\x32*.featureStatistics.Histogram.HistogramType\\x12\\x0c\\n\\x04name\\x18\\x05 \\x01(\\t\\x1a\\x63\\n\\x06\\x42ucket\\x12\\x11\\n\\tlow_value\\x18\\x01 \\x01(\\x01\\x12\\x12\\n\\nhigh_value\\x18\\x02 \\x01(\\x01\\x12\\x1c\\n\\x10\\x64\\x65precated_count\\x18\\x03 \\x01(\\x04\\x42\\x02\\x18\\x01\\x12\\x14\\n\\x0csample_count\\x18\\x04 \\x01(\\x01\\",\\n\\rHistogramType\\x12\\x0c\\n\\x08STANDARD\\x10\\x00\\x12\\r\\n\\tQUANTILES\\x10\\x01\\"\\xc9\\x01\\n\\rRankHistogram\\x12\\x38\\n\\x07\\x62uckets\\x18\\x01 \\x03(\\x0b\\x32\\'.featureStatistics.RankHistogram.Bucket\\x12\\x0c\\n\\x04name\\x18\\x02 \\x01(\\t\\x1ap\\n\\x06\\x42ucket\\x12\\x10\\n\\x08low_rank\\x18\\x01 \\x01(\\x04\\x12\\x11\\n\\thigh_rank\\x18\\x02 \\x01(\\x04\\x12\\x1c\\n\\x10\\x64\\x65precated_count\\x18\\x03 \\x01(\\x04\\x42\\x02\\x18\\x01\\x12\\r\\n\\x05label\\x18\\x04 \\x01(\\t\\x12\\x14\\n\\x0csample_count\\x18\\x05 \\x01(\\x01\\x62\\x06proto3') ) _FEATURENAMESTATISTICS_TYPE = _descriptor.EnumDescriptor( name='Type', full_name='featureStatistics.FeatureNameStatistics.Type', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='INT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='STRING', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='BYTES', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=636, serialized_end=685, ) _sym_db.RegisterEnumDescriptor(_FEATURENAMESTATISTICS_TYPE) _HISTOGRAM_HISTOGRAMTYPE = _descriptor.EnumDescriptor( name='HistogramType', full_name='featureStatistics.Histogram.HistogramType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STANDARD', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='QUANTILES', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=2735, serialized_end=2779, ) _sym_db.RegisterEnumDescriptor(_HISTOGRAM_HISTOGRAMTYPE) _DATASETFEATURESTATISTICSLIST = _descriptor.Descriptor( name='DatasetFeatureStatisticsList', full_name='featureStatistics.DatasetFeatureStatisticsList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='datasets', full_name='featureStatistics.DatasetFeatureStatisticsList.datasets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=47, serialized_end=140, ) _DATASETFEATURESTATISTICS = _descriptor.Descriptor( name='DatasetFeatureStatistics', full_name='featureStatistics.DatasetFeatureStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='featureStatistics.DatasetFeatureStatistics.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_examples', full_name='featureStatistics.DatasetFeatureStatistics.num_examples', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weighted_num_examples', full_name='featureStatistics.DatasetFeatureStatistics.weighted_num_examples', index=2, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='features', full_name='featureStatistics.DatasetFeatureStatistics.features', index=3, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=143, serialized_end=296, ) _FEATURENAMESTATISTICS = _descriptor.Descriptor( name='FeatureNameStatistics', full_name='featureStatistics.FeatureNameStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='featureStatistics.FeatureNameStatistics.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='featureStatistics.FeatureNameStatistics.type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_stats', full_name='featureStatistics.FeatureNameStatistics.num_stats', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='string_stats', full_name='featureStatistics.FeatureNameStatistics.string_stats', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bytes_stats', full_name='featureStatistics.FeatureNameStatistics.bytes_stats', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='custom_stats', full_name='featureStatistics.FeatureNameStatistics.custom_stats', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=
None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _FEATURENAMESTATISTICS_TYPE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='stats', full_name='featureStatistics.FeatureNameStatistics.stats', index=0, containing_type=None, fields=[]), ], serialized_start=299, serialized_end=694, ) _WEIGHTEDCOMMONSTATISTICS = _descriptor.Descriptor( name='WeightedCommonStatistics', full_name='featureStatistics.WeightedCommonStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_non_missing', full_name='featureStatistics.WeightedCommonStatistics.num_non_missing', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_missing', full_name='featureStatistics.WeightedCommonStatistics.num_missing', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='avg_num_values', full_name='featureStatistics.WeightedCommonStatistics.avg_num_values', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tot_num_values', full_name='featureStatistics.WeightedCommonStatistics.tot_num_values', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=696, serialized_end=816, ) _CUSTOMSTATISTIC = _descriptor.Descriptor( name='CustomStatistic', full_name='featureStatistics.CustomStatistic', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='featureStatistics.CustomStatistic.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num', full_name='featureStatistics.CustomStatistic.num', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='str', full_name='featureStatistics.CustomStatistic.str', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='histogram', full_name='featureStatistics.CustomStatistic.histogram', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='val', full_name='featureStatistics.CustomStatistic.val', index=0, containing_type=None, fields=[]), ], serialized_start=818, serialized_end=937, ) _NUMERICSTATISTICS = _descriptor.Descriptor( name='NumericStatistics', full_name='featureStatistics.NumericStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='common_stats', full_name='featureStatistics.NumericStatistics.common_stats', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean', full_name='featureStatistics.NumericStatistics.mean', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='std_dev', full_name='featureStatistics.NumericStatistics.std_dev', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_zeros', full_name='featureStatistics.NumericStatistics.num_zeros', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min', full_name='featureStatistics.NumericStatistics.min', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='median', full_name='featureStatistics.NumericStatistics.median', index=5, number=6, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max', full_name='featureStatistics.NumericStatistics.max', index=6, number=7, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='histograms', full_name='featureStatistics.NumericStatistics.histograms', index=7, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weighted_numeric_stats', full_name='featureStatistics.NumericStatistics.weighted_numeric_stats', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=940, serialized_end=1238, ) _STRINGSTATISTICS_FREQANDVALUE = _descriptor.Descriptor( name='FreqAndValue', full_name='featureStatistics.StringStatistics.FreqAndValue', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='deprecated_freq', full_name='featureStatistics.StringStatistics.FreqAndValue.deprecated_freq', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001'))), _descriptor.FieldDescriptor( name='value', full_name='featureStatistics.StringStatistics.FreqAndValue.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='frequency', full_name='featureStatistics.StringStatistics.FreqAndValue.frequency', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1560, serialized_end=1637, ) _STRINGSTATISTICS = _descriptor.Descriptor( name='StringStatistics', full_name='featureStatistics.StringStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='common_stats', full_name='featureStatistics.StringStatistics.common_stats', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='unique', full_name='featureStatistics.StringStatistics.unique', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='top_values', full_name='featureStatistics.StringStatistics.top_values', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='avg_length', full_name='featureStatistics.StringStatistics.avg_length', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rank_histogram', full_name='featureStatistics.StringStatistics.rank_histogram', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weighted_string_stats', full_name='featureStatistics.StringStatistics.weighted_string_stats', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_STRINGSTATISTICS_FREQANDVALUE, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1241,
serialized_end=1637, ) _WEIGHTEDNUMERICSTATISTICS = _descriptor.Descriptor( name='WeightedNumericStatistics', full_name='featureStatistics.WeightedNumericStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='mean', full_name='featureStatistics.WeightedNumericStatistics.mean', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='std_dev', full_name='featureStatistics.WeightedNumericStatistics.std_dev', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='median', full_name='featureStatistics.WeightedNumericStatistics.median', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='histograms', full_name='featureStatistics.WeightedNumericStatistics.histograms', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1639, serialized_end=1763, ) _WEIGHTEDSTRINGSTATISTICS = _descriptor.Descriptor( name='WeightedStringStatistics', full_name='featureStatistics.WeightedStringStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='top_values', full_name='featureStatistics.WeightedStringStatistics.top_values', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rank_histogram', full_name='featureStatistics.WeightedStringStatistics.rank_histogram', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1766, serialized_end=1920, ) _BYTESSTATISTICS = _descriptor.Descriptor( name='BytesStatistics', full_name='featureStatistics.BytesStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='common_stats', full_name='featureStatistics.BytesStatistics.common_stats', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='unique', full_name='featureStatistics.BytesStatistics.unique', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='avg_num_bytes', full_name='featureStatistics.BytesStatistics.avg_num_bytes', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_num_bytes', full_name='featureStatistics.BytesStatistics.min_num_bytes', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_num_bytes', full_name='featureStatistics.BytesStatistics.max_num_bytes', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1923, serialized_end=2084, ) _COMMONSTATISTICS = _descriptor.Descriptor( name='CommonStatistics', full_name='featureStatistics.CommonStatistics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_non_missing', full_name='featureStatistics.CommonStatistics.num_non_missing', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_missing', full_name='featureStatistics.CommonStatistics.num_missing', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_num_values', full_name='featureStatistics.CommonStatistics.min_num_values', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_num_values', full_name='featureStatistics.CommonStatistics.max_num_values', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='avg_num_values', full_name='featureStatistics.CommonStatistics.avg_num_values', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tot_num_values', full_name='featureStatistics.CommonStatistics.tot_num_values', index=5, number=8, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_values_histogram', full_name='featureStatistics.CommonStatistics.num_values_histogram', index=6, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weighted_common_stats', full_name='featureStatistics.CommonStatistics.weighted_common_stats', index=7, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='feature_list_length_histogram', full_name='featureStatistics.CommonStatistics.feature_list_length_histogram', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2087, serialized_end=2452, ) _HISTOGRAM_BUCKET = _descriptor.Descriptor( name='Bucket', full_name='featureStatistics.Histogram.Bucket', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='low_value', full_name='featureStatistics.Histogram.Bucket.low_value', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='high_value', full_name='featureStatistics.Histogram.Bucket.high_value', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='deprecated_count', full_name='featureStatistics.Histogram.Bucket.deprecated_count', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001'))), _descriptor.FieldDescriptor( name='sample_count', full_name='featureStatistics.Histogram.Bucket.sample_count', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2634, serialized_end=2733, ) _HISTOGRAM = _descriptor.Descriptor( name='Histogram', full_name='featureStatistics.Histogram', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_nan', full_name='featureStatistics.Histogram.num_nan', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_undefined', full_name='featureStatistics.Histogram.num_undefined', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='buckets', full_name='featureStatistics.Histogram.buckets', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='featureStatistics.Histogram.type', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='featureStatistics.Histogram.name', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_HISTOGRAM_BUCKET, ], enum_types=[ _HISTOGRAM_HISTOGRAMTYPE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2455, serialized_end=2779, ) _RANKHISTOGRAM_BUCKET = _descriptor.Descriptor( name='Bucket', full_name='featureStatistics.RankHistogram.Bucket', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='low_rank', full_name='featureStatistics.RankHistogram.Bucket.low_rank', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='high_rank', full_name='featureStatistics.RankHistogram.Bucket.high_rank', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='deprecated_count', full_name='featureStatistics.RankHistogram.Bucket.deprecated_count', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001'))), _descriptor.FieldDescriptor( name='label', full_name='featureStatistics.RankHistogram.Bucket.label', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sample_count', full_name='featureStatistics.RankHistogram.Bucket.sample_count', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2871, serialized_end=2983, ) _RANKHISTOGRAM = _descriptor.Descriptor( name='RankHistogram', full_name='featureStatistics.RankHistogram', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='buckets', full_name='featureStatistics.RankHistogram.buckets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='featureStatistics.RankHistogram.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_RANKHISTOGRAM_BUCKET, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2782, serialized_end=2983, ) _DATASETFEATURESTATISTICSLIST.fields_by_name['datasets'].message_type = _DATASETFEATURESTATISTICS _DATASETFEATURESTATISTICS.fields_by_name['features'].message_type = _FEATURENAMESTATISTICS _FEATURENAMESTATISTICS.fields_by_name['type'].enum_type = _FEATURENAMESTATISTICS_TYPE _FEATURENAMESTATISTICS.fields_by_name['num_stats'].message_type = _NUMERICSTATISTICS _FEATURENAMESTATISTICS.fields_by_name['string_stats'].message_type = _STRINGSTATISTICS _FEATURENAMESTATISTICS.fields_by_name['bytes_stats'].message_type = _BYTESSTATISTICS _FEATURENAMESTATISTICS.fields_by_name['custom_stats'].message_type = _CUSTOMSTATISTIC _FEATURENAMESTATISTICS_TYPE.containing_type = _FEATURENAMESTATISTICS _FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append( _FEATURENAMESTATISTICS.fields_by_name['num_stats']) _FEATURENAMESTATISTICS.fields_by_name['num_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats'] _FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append( _FEATURENAMESTATISTICS.fields_by_name['string_stats']) _FEATURENAMESTATISTICS.fields_by_name['string_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats'] _FEATURENAMESTATISTICS.oneofs_by_name['stats'].fields.append( _FEATURENAMESTATISTICS.fields_by_name['bytes_stats']) _FEATURENAMESTATISTICS.fields_by_name['bytes_stats'].containing_oneof = _FEATURENAMESTATISTICS.oneofs_by_name['stats'] _CUSTOMSTATISTIC.fields_by_name['histogram'].message_type = _HISTOGRAM _CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append( _CUSTOMSTATISTIC.fields_by_name['num']) _CUSTOMSTATISTIC.fields_by_name['num'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val'] _CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append( _CUSTOMSTATISTIC.fields_by_name['str']) _CUSTOMSTATISTIC.fields_by_name['str'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val'] _CUSTOMSTATISTIC.oneofs_by_name['val'].fields.append( _CUSTOMSTATISTIC.fields_by_name['histogram']) _CUSTOMSTATISTIC.fields_by_name['histogram'].containing_oneof = _CUSTOMSTATISTIC.oneofs_by_name['val'] _NUMERICSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS _NUMERICSTATISTICS.fields_by_name['histograms'].message_type = _HISTOGRAM _NUMERICSTATISTICS.fields_by_name['weighted_numeric_stats'].message_type = _WEIGHTEDNUMERICSTATISTICS _STRINGSTATISTICS_FREQANDVALUE.containing_type = _STRINGSTATISTICS _STRINGSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS _STRINGSTATISTICS.fields_by_name['top_values'].message_type = _STRINGSTATISTICS_FREQANDVALUE _STRINGSTATISTICS.fields_by_name['rank_histogram'].message_type = _RANKHISTOGRAM _STRINGSTATISTICS.fields_by_name['weighted_string_stats'].message_type = _WEIGHTEDSTRINGSTATISTICS _WEIGHTEDNUMERICSTATISTICS.fields_by_name['histograms'].message_type = _HISTOGRAM _WEIGHTEDSTRINGSTATISTICS.fields_by_name['top_values'].message_type = _STRINGSTATISTICS_FREQANDVALUE _WEIGHTEDSTRINGSTATISTICS.fields_by_name['rank_histogram'].message_type = _RANKHISTOGRAM _BYTESSTATISTICS.fields_by_name['common_stats'].message_type = _COMMONSTATISTICS _COMMONSTATISTICS.fields_by_name['num_values_histogram'].message_type = _HISTOGRAM _COMMONSTATISTICS.fields_by_name['weighted_common_stats'].message_type = _WEIGHTEDCOMMONSTATISTICS _COMMONSTATISTICS.fields_by_name['feature_list_length_histogram'].message_type = _HISTOGRAM _HISTOGRAM_BUCKET.containing_type = _HISTOGRAM _HISTOGRAM.fields_by_name['buckets'].message_type = _HISTOGRAM_BUCKET _HISTOGRAM.fields_by_name['type'].enum_type = _HISTOGRAM_HISTOGRAMTYPE _HISTOGRAM_HISTOGRAMTYPE.containing_type = _HISTOGRAM _RANKHISTOGRAM_BUCKET.containing_type = _RANKHISTOGRAM _RANKHISTOGRAM.fields_by_name['buckets'].message_type = _RANKHISTOGRAM_BUCKET DESCRIPTOR.message_types_by_name['DatasetFeatureStatisticsList'] = _DATASETFEATURESTATISTICSLIST DESCRIPTOR.message_types_by_name['DatasetFeatureStatistics'] = _DATASETFEATURESTATISTICS DESCRIPTOR.message_types_by_name['FeatureNameStatistics'] = _FEATURENAMESTATISTICS DESCRIPTOR.message_types_by_name['WeightedCommonStatistics'] = _WEIGHTEDCOMMONSTATISTICS DESCRIPTOR.message_types_by_name['CustomStatistic'] = _CUSTOMSTATISTIC DESCRIPTOR.message_types_by_name['NumericStatistics'] = _NUMERICSTATISTICS DESCRIPTOR.message_types_by_name['StringStatistics'] = _STRINGSTATISTICS DESCRIPTOR.message_types_by_name['WeightedNumericStatistics'] = _WEIGHTEDNUMERICSTATISTICS DESCRIPTOR.message_types_by_name['WeightedStringStatistics'] = _WEIGHTEDSTRINGSTATISTICS DESCRIPTOR.message_types_by_name['BytesStatistics'] = _BYTESSTATISTICS DESCRIPTOR.message_types_by_name['CommonStatistics'] = _COMMONSTATISTICS DESCRIPTOR.message_types_by_name['Histogram'] = _HISTOGRAM DESCRIPTOR.message_types_by_name['RankHistogram'] = _RANKHISTOGRAM _sym_db.RegisterFileDescriptor(DESCRIPTOR) DatasetFeatureStatisticsList = _reflection.GeneratedProtocolMessageType('DatasetFeatureStatisticsList', (_message.Message,), dict( DESCRIPTOR = _DATASETFEATURESTATISTICSLIST, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.DatasetFeatureStatisticsList) )) _sym_db.RegisterMessage(DatasetFeatureStatisticsList) DatasetFeatureStatistics = _reflection.GeneratedProtocolMessageType('DatasetFeatureStatistics', (_message.Message,), dict( DESCRIPTOR = _DATASETFEATURESTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.DatasetFeatureStatistics) )) _sym_db.RegisterMessage(DatasetFeatureStatistics) FeatureNameStatistics = _reflection.GeneratedProtocolMessageType('FeatureNameStatistics', (_message.Message,), dict( DESCRIPTOR = _FEATURENAMESTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.FeatureNameStatistics) )) _sym_db.RegisterMessage(FeatureNameStatistics) WeightedCommonStatistics = _reflection.GeneratedProtocolMessageType('WeightedCommonStatistics', (_message.Message,), dict( DESCRIPTOR = _WEIGHTEDCOMMONSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.WeightedCommonStatistics) )) _sym_db.RegisterMessage(WeightedCommonStatistics) CustomStatistic = _reflection.GeneratedProtocolMessageType('CustomStatistic', (_message.Message,), dict( DESCRIPTOR = _CUSTOMSTATISTIC, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.CustomStatistic) )) _sym_db.RegisterMessage(CustomStatistic) NumericStatistics = _reflection.GeneratedProtocolMessageType('NumericStatistics', (_message.Message,), dict( DESCRIPTOR = _NUMERICSTATISTICS, __module__ = 'feature_statistics_pb2'
# @@protoc_insertion_point(class_scope:featureStatistics.NumericStatistics) )) _sym_db.RegisterMessage(NumericStatistics) StringStatistics = _reflection.GeneratedProtocolMessageType('StringStatistics', (_message.Message,), dict( FreqAndValue = _reflection.GeneratedProtocolMessageType('FreqAndValue', (_message.Message,), dict( DESCRIPTOR = _STRINGSTATISTICS_FREQANDVALUE, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.StringStatistics.FreqAndValue) )) , DESCRIPTOR = _STRINGSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.StringStatistics) )) _sym_db.RegisterMessage(StringStatistics) _sym_db.RegisterMessage(StringStatistics.FreqAndValue) WeightedNumericStatistics = _reflection.GeneratedProtocolMessageType('WeightedNumericStatistics', (_message.Message,), dict( DESCRIPTOR = _WEIGHTEDNUMERICSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.WeightedNumericStatistics) )) _sym_db.RegisterMessage(WeightedNumericStatistics) WeightedStringStatistics = _reflection.GeneratedProtocolMessageType('WeightedStringStatistics', (_message.Message,), dict( DESCRIPTOR = _WEIGHTEDSTRINGSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.WeightedStringStatistics) )) _sym_db.RegisterMessage(WeightedStringStatistics) BytesStatistics = _reflection.GeneratedProtocolMessageType('BytesStatistics', (_message.Message,), dict( DESCRIPTOR = _BYTESSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.BytesStatistics) )) _sym_db.RegisterMessage(BytesStatistics) CommonStatistics = _reflection.GeneratedProtocolMessageType('CommonStatistics', (_message.Message,), dict( DESCRIPTOR = _COMMONSTATISTICS, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.CommonStatistics) )) _sym_db.RegisterMessage(CommonStatistics) Histogram = _reflection.GeneratedProtocolMessageType('Histogram', (_message.Message,), dict( Bucket = _reflection.GeneratedProtocolMessageType('Bucket', (_message.Message,), dict( DESCRIPTOR = _HISTOGRAM_BUCKET, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.Histogram.Bucket) )) , DESCRIPTOR = _HISTOGRAM, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.Histogram) )) _sym_db.RegisterMessage(Histogram) _sym_db.RegisterMessage(Histogram.Bucket) RankHistogram = _reflection.GeneratedProtocolMessageType('RankHistogram', (_message.Message,), dict( Bucket = _reflection.GeneratedProtocolMessageType('Bucket', (_message.Message,), dict( DESCRIPTOR = _RANKHISTOGRAM_BUCKET, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.RankHistogram.Bucket) )) , DESCRIPTOR = _RANKHISTOGRAM, __module__ = 'feature_statistics_pb2' # @@protoc_insertion_point(class_scope:featureStatistics.RankHistogram) )) _sym_db.RegisterMessage(RankHistogram) _sym_db.RegisterMessage(RankHistogram.Bucket) _STRINGSTATISTICS_FREQANDVALUE.fields_by_name['deprecated_freq'].has_options = True _STRINGSTATISTICS_FREQANDVALUE.fields_by_name['deprecated_freq']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001')) _HISTOGRAM_BUCKET.fields_by_name['deprecated_count'].has_options = True _HISTOGRAM_BUCKET.fields_by_name['deprecated_count']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001')) _RANKHISTOGRAM_BUCKET.fields_by_name['deprecated_count'].has_options = True _RANKHISTOGRAM_BUCKET.fields_by_name['deprecated_count']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\\030\\001')) # @@protoc_insertion_point(module_scope) <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class for generating the feature_statistics proto. The proto is used as input for the Overview visualization. """ from facets_overview.base_feature_statistics_generator import BaseFeatureStatisticsGenerator import facets_overview.feature_statistics_pb2 as fs class FeatureStatisticsGenerator(BaseFeatureStatisticsGenerator): """Generator of stats proto from TF data.""" def __init__(self): BaseFeatureStatisticsGenerator.__init__(self, fs.FeatureNameStatistics, fs.DatasetFeatureStatisticsList, fs.Histogram) <s> # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class for generating the feature_statistics proto from generic data. The proto is used as input for the Overview visualization. """ import numpy as np import pandas as pd import sys class BaseGenericFeatureStatisticsGenerator(object): """Base class for generator of stats proto from generic data.""" def __init__(self, fs_proto, datasets_proto, histogram_proto): self.fs_proto = fs_proto self.datasets_proto = datasets_proto self.histogram_proto = histogram_proto def ProtoFromDataFrames(self, dataframes, histogram_categorical_levels_count=None): """Creates a feature statistics proto from a set of pandas dataframes. Args: dataframes: A list of dicts describing tables for each dataset for the proto. Each entry contains a 'table' field of the dataframe of the data and a 'name' field to identify the dataset in the proto. histogram_categorical_levels_count: int, controls the maximum number of levels to display in histograms for categorical features. Useful to prevent codes/IDs features from bloating the stats object. Defaults to None. Returns: The feature statistics proto for the provided tables. """ datasets = [] for dataframe in dataframes: table = dataframe['table'] table_entries = {} for col in table: table_entries[col] = self.NdarrayToEntry(table[col]) datasets.append({ 'entries': table_entries, 'size': len(table), 'name': dataframe['name'] }) return self.GetDatasetsProto( datasets, histogram_categorical_levels_count=histogram_categorical_levels_count) def DtypeToType(self, dtype): """Converts a Numpy dtype to the FeatureNameStatistics.Type proto enum.""" if dtype.char in np.typecodes['AllFloat']: return self.fs_proto.FLOAT elif (dtype.char in np.typecodes['AllInteger'] or dtype == bool or np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)): return self.fs_proto.INT else: return self.fs_proto.STRING def DtypeToNumberConverter(self, dtype): """Converts a Numpy dtype to a converter method if applicable. The converter method takes in a numpy array of objects of the provided dtype and returns a numpy array of the numbers backing that object for statistical analysis. Returns None if no converter is necessary. Args: dtype: The numpy dtype to make a converter for. Returns: The converter method or None. """ if np.issubdtype(dtype, np.datetime64): def DatetimesToNumbers(dt_list): return np.array([pd.Timestamp(dt).value for dt in dt_list]) return DatetimesToNumbers elif np.issubdtype(dtype, np.timedelta64): def TimedetlasToNumbers(td_list): return np.array([pd.Timedelta(td).value for td in td_list]) return TimedetlasToNumbers else: return None def NdarrayToEntry(self, x): """Converts an ndarray to the Entry format.""" row_counts = [] for row in x: try: rc = np.count_nonzero(~np.isnan(row)) if rc != 0: row_counts.append(rc) except TypeError: try: row_counts.append(row.size) except AttributeError: row_counts.append(1) data_type = self.DtypeToType(x.dtype) converter = self.DtypeToNumberConverter(x.dtype) flattened = x.ravel() orig_size = len(flattened) # Remove all None and nan values and count how many were removed. flattened = flattened[flattened != np.array(None)] if converter: flattened = converter(flattened) if data_type == self.fs_proto.STRING: flattened_temp = [] for x in flattened: try: if str(x) != 'nan': flattened_temp.append(x) except UnicodeEncodeError: if x.encode('utf-8') != 'nan': flattened_temp.append(x) flattened = flattened_temp else: flattened = flattened[~np.isnan(flattened)].tolist() missing = orig_size - len(flattened) return { 'vals': flattened, 'counts': row_counts, 'missing': missing, 'type': data_type } def GetDatasetsProto(self, datasets, features=None, histogram_categorical_levels_count=None): """Generates the feature stats proto from dictionaries of feature values. Args: datasets: An array of dictionaries, one per dataset, each one containing: - 'entries': The dictionary of features in the dataset from the parsed examples. - 'size': The number of examples parsed for the dataset. - 'name': The name of the dataset. features: A list of strings that is a whitelist of feature names to create feature statistics for. If set to None then all features in the dataset are analyzed. Defaults to None. histogram_categorical_levels_count: int, controls the maximum number of levels to display in histograms for categorical features. Useful to prevent codes/IDs features from bloating the stats object. Defaults to None. Returns: The feature statistics proto for the provided datasets. """ features_seen = set() whitelist_features = set(features) if features else None all_datasets = self.datasets_proto() # TODO(jwexler): Add ability to generate weighted feature stats # if there is a specified weight feature in the dataset. # Initialize each dataset for dataset in datasets: all_datasets.datasets.add( name=dataset['name'], num_examples=dataset['size']) # This outer loop ensures that for each feature seen in any of the provided # datasets, we check the feature once against all datasets. for outer_dataset in datasets: for key, value in outer_dataset['entries'].items(): # If we have a feature whitelist and this feature is not in the # whitelist then do not process it. # If we have processed this feature already, no need to do it again. if ((whitelist_features and key not in whitelist_features) or key in features_seen): continue features_seen.add(key) # Default to type int if no type is found, so that the fact that all # values are missing from this feature can be displayed. feature_type = value['type'] if 'type' in value else self.fs_proto.INT # Process the found feature for each dataset. for j, dataset in enumerate(datasets): feat = all_datasets.datasets[j].features.add( type=feature_type, name=key.encode('utf-8')) value = dataset['entries'].get(key) has_data = value is not None and (value['vals'].size != 0 if isinstance( value['vals'], np.ndarray) else value['vals']) commonstats = None # For numeric features, calculate numeric statistics. if feat.type in (self.fs_proto
.INT, self.fs_proto.FLOAT): featstats = feat.num_stats commonstats = featstats.common_stats if has_data: nums = value['vals'] featstats.std_dev = np.std(nums).item() featstats.mean = np.mean(nums).item() featstats.min = np.min(nums).item() featstats.max = np.max(nums).item() featstats.median = np.median(nums).item() featstats.num_zeros = len(nums) - np.count_nonzero(nums) nums = np.array(nums) num_nan = len(nums[np.isnan(nums)]) num_posinf = len(nums[np.isposinf(nums)]) num_neginf = len(nums[np.isneginf(nums)]) # Remove all non-finite (including NaN) values from the numeric # values in order to calculate histogram buckets/counts. The # inf values will be added back to the first and last buckets. nums = nums[np.isfinite(nums)] counts, buckets = np.histogram(nums) hist = featstats.histograms.add() hist.type = self.histogram_proto.STANDARD hist.num_nan = num_nan for bucket_count in range(len(counts)): bucket = hist.buckets.add( low_value=buckets[bucket_count], high_value=buckets[bucket_count + 1], sample_count=counts[bucket_count].item()) # Add any negative or positive infinities to the first and last # buckets in the histogram. if bucket_count == 0 and num_neginf > 0: bucket.low_value = float('-inf') bucket.sample_count += num_neginf elif bucket_count == len(counts) - 1 and num_posinf > 0: bucket.high_value = float('inf') bucket.sample_count += num_posinf if not hist.buckets: if num_neginf: hist.buckets.add( low_value=float('-inf'), high_value=float('-inf'), sample_count=num_neginf) if num_posinf: hist.buckets.add( low_value=float('inf'), high_value=float('inf'), sample_count=num_posinf) self._PopulateQuantilesHistogram(featstats.histograms.add(),nums.tolist()) elif feat.type == self.fs_proto.STRING: featstats = feat.string_stats commonstats = featstats.common_stats if has_data: strs = [] for item in value['vals']: strs.append(item if hasattr(item, '__len__') else item.encode('utf-8') if hasattr(item, 'encode') else str( item)) featstats.avg_length = np.mean(np.vectorize(len)(strs)) vals, counts = np.unique(strs, return_counts=True) featstats.unique = len(vals) sorted_vals = sorted(zip(counts, vals), reverse=True) sorted_vals = sorted_vals[:histogram_categorical_levels_count] for val_index, val in enumerate(sorted_vals): try: if (sys.version_info.major < 3 or isinstance(val[1], (bytes, bytearray))): printable_val = val[1].decode('UTF-8', 'strict') else: printable_val = val[1] except (UnicodeDecodeError, UnicodeEncodeError): printable_val = '__BYTES_VALUE__' bucket = featstats.rank_histogram.buckets.add( low_rank=val_index, high_rank=val_index, sample_count=(val[0].item()), label=printable_val) if val_index < 2: featstats.top_values.add( value=bucket.label, frequency=bucket.sample_count) # Add the common stats regardless of the feature type. if has_data: commonstats.num_missing = value['missing'] commonstats.num_non_missing = (all_datasets.datasets[j].num_examples - featstats.common_stats.num_missing) commonstats.min_num_values = int(np.min(value['counts']).astype(int)) commonstats.max_num_values = int(np.max(value['counts']).astype(int)) commonstats.avg_num_values = np.mean(value['counts']) if 'feat_lens' in value and value['feat_lens']: self._PopulateQuantilesHistogram( commonstats.feature_list_length_histogram, value['feat_lens']) self._PopulateQuantilesHistogram(commonstats.num_values_histogram, value['counts']) else: commonstats.num_non_missing = 0 commonstats.num_missing = all_datasets.datasets[j].num_examples return all_datasets def _PopulateQuantilesHistogram(self, hist, nums): """Fills in the histogram with quantile information from the provided array. Args: hist: A Histogram proto message to fill in. nums: A list of numbers to create a quantiles histogram from. """ if not nums: return num_quantile_buckets = 10 quantiles_to_get = [ x * 100 / num_quantile_buckets for x in range(num_quantile_buckets + 1) ] try: quantiles = np.percentile(nums, quantiles_to_get) except: quantiles = [0.0] hist.type = self.histogram_proto.QUANTILES quantiles_sample_count = float(len(nums)) / num_quantile_buckets for low, high in zip(quantiles, quantiles[1:]): hist.buckets.add( low_value=low, high_value=high, sample_count=quantiles_sample_count) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np import sys import math import markov_clustering as mc import os import networkx as nx import logging import json ## How far you'd like your random-walkers to go (bigger number -> more walking) EXPANSION_POWER = 2 ## How tightly clustered you'd like your final picture to be (bigger number -> more clusters) INFLATION_POWER = 2 ## If you can manage 100 iterations then do so - otherwise, check you've hit a stable end-point. ITERATION_COUNT = 100 def normalize(matrix): return matrix/np.sum(matrix, axis=0) def expand(matrix, power): return np.linalg.matrix_power(matrix, power) def inflate(matrix, power): for entry in np.nditer(matrix, op_flags=['readwrite']): entry[...] = math.pow(entry, power) return matrix class pattern: def __init__(self,modelFeatures,targetFeature): self.modelFeatures = modelFeatures.split(',') self.targetFeature = targetFeature self.log = logging.getLogger('eion') def training(self,df,outputLocation): df["code"] = df[self.targetFeature].astype("category") df['code'] = df.code.cat.codes df2 = df[[self.targetFeature,'code']] df2 = df2.drop_duplicates() code_book = df2.to_dict('records') size = len(code_book) if self.targetFeature in self.modelFeatures: self.modelFeatures.remove(self.targetFeature) df['prev_code'] = df.groupby(self.modelFeatures)['code'].shift() df['prev_activity'] = df.groupby(self.modelFeatures)[self.targetFeature].shift() print(self.modelFeatures) df = df.dropna(axis=0, subset=['prev_code']) df['prev_code'] = df['prev_code'].astype('int32') matrix = np.zeros((size, size),float) np.set_printoptions(suppress=True) for index, row in df.iterrows(): matrix[int(row['prev_code'])][int(row['code'])] += 1 np.fill_diagonal(matrix, 1) matrix = normalize(matrix) pmatrix = matrix i = 0 records = [] for row in matrix: j = 0 for val in row: for event in code_book: if event['code'] == i: page = event[self.targetFeature] if event['code'] == j: nextpage = event[self.targetFeature] record = {} record['State'] = page record['NextState'] = nextpage record['Probability'] = round(val,2) records.append(record) j = j+1 i = i+1 df_probability = pd.DataFrame(records) self.log.info('Status:- |... StateTransition Probability Matrix') for _ in range(ITERATION_COUNT): matrix = normalize(inflate(expand(matrix, EXPANSION_POWER), INFLATION_POWER)) result = mc.run_mcl(matrix) # run MCL with default parameters c = 0 clusters = mc.get_clusters(matrix) # get clusters self.log.info('Status:- |... StateTransition Algorithm applied: MarkovClustering') clusterrecords = [] for cluster in clusters: clusterid = c clusterlist = '' for pageid in cluster: for event in code_book: if event['code'] == pageid: page = event[self.targetFeature] if clusterlist != '': clusterlist = clusterlist+',' clusterlist = clusterlist+page record = {} record['clusterid'] = c record['clusterlist'] = clusterlist clusterrecords.append(record) c = c+1 df_cluster = pd.DataFrame(clusterrecords) probabilityoutputfile = os.path.join(outputLocation, 'stateTransitionProbability.csv') self.log.info('-------> State Transition Probability Matrix:' + probabilityoutputfile) df_probability.to_csv(probabilityoutputfile,index=False) clusteringoutputfile = os.path.join(outputLocation, 'stateClustering.csv') self.log.info('-------> State Transition Probability Grouping:' + clusteringoutputfile) df_cluster.to_csv(clusteringoutputfile,index=False) datadetailsfile = os.path.join(outputLocation, 'datadetails.json') dataanalytics = {} dataanalytics['activity'] = self.targetFeature dataanalytics['sessionid'] = self.modelFeatures[0] updatedConfig = json.dumps(dataanalytics) with open(datadetailsfile, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() evaulatemodel = '{"Model":"MarkovClustering","Score":0}' return(evaulatemodel,probabilityoutputfile,clusteringoutputfile) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings warnings.filterwarnings("ignore") import json import os import sys import pandas as pd from pandas import json_normalize #from selector import selector #from inputprofiler import inputprofiler #from trained_model import trained_model #from output_format import output_format from autogluon.tabular import TabularDataset, TabularPredictor from autogluon.core.utils.utils import setup_outputdir from autogluon.core.utils.loaders import load_pkl from autogluon.core.utils.savers import save_pkl import os.path class MultilabelPredictor(): """ Tabular Predictor for predicting multiple columns in table. Creates multiple TabularPredictor objects which you can also use individually. You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)` Parameters ---------- labels : List[str] The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object. path : str Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors. problem_types : List[str] The ith element is the `problem_type` for the
ith TabularPredictor stored in this object. eval_metrics : List[str] The ith element is the `eval_metric` for the ith TabularPredictor stored in this object. consider_labels_correlation : bool Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others. If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion). Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels. kwargs : Arguments passed into the initialization of each TabularPredictor. """ multi_predictor_file = 'multilabel_predictor.pkl' def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs): if len(labels) < 2: raise ValueError("MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column).") self.path = setup_outputdir(path, warn_if_exist=False) self.labels = labels self.consider_labels_correlation = consider_labels_correlation self.predictors = {} # key = label, value = TabularPredictor or str path to the TabularPredictor for this label if eval_metrics is None: self.eval_metrics = {} else: self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))} problem_type = None eval_metric = None for i in range(len(labels)): label = labels[i] path_i = self.path + "Predictor_" + label if problem_types is not None: problem_type = problem_types[i] if eval_metrics is not None: eval_metric = self.eval_metrics[i] self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs) def fit(self, train_data, tuning_data=None, **kwargs): """ Fits a separate TabularPredictor to predict each of the labels. Parameters ---------- train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame See documentation for `TabularPredictor.fit()`. kwargs : Arguments passed into the `fit()` call for each TabularPredictor. """ if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) train_data_og = train_data.copy() if tuning_data is not None: tuning_data_og = tuning_data.copy() save_metrics = len(self.eval_metrics) == 0 for i in range(len(self.labels)): label = self.labels[i] predictor = self.get_predictor(label) if not self.consider_labels_correlation: labels_to_drop = [l for l in self.labels if l!=label] else: labels_to_drop = [labels[j] for j in range(i+1,len(self.labels))] train_data = train_data_og.drop(labels_to_drop, axis=1) if tuning_data is not None: tuning_data = tuning_data_og.drop(labels_to_drop, axis=1) print(f"Fitting TabularPredictor for label: {label} ...") predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs) self.predictors[label] = predictor.path if save_metrics: self.eval_metrics[label] = predictor.eval_metric self.save() def predict(self, data, **kwargs): """ Returns DataFrame with label columns containing predictions for each label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`. kwargs : Arguments passed into the predict() call for each TabularPredictor. """ return self._predict(data, as_proba=False, **kwargs) def predict_proba(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`. kwargs : Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call). """ return self._predict(data, as_proba=True, **kwargs) def evaluate(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`. kwargs : Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call). """ data = self._get_data(data) eval_dict = {} for label in self.labels: print(f"Evaluating TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) eval_dict[label] = predictor.evaluate(data, **kwargs) if self.consider_labels_correlation: data[label] = predictor.predict(data, **kwargs) return eval_dict def save(self): """ Save MultilabelPredictor to disk. """ for label in self.labels: if not isinstance(self.predictors[label], str): self.predictors[label] = self.predictors[label].path save_pkl.save(path=self.path+self.multi_predictor_file, object=self) print(f"MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')") @classmethod def load(cls, path): """ Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """ path = os.path.expanduser(path) if path[-1] != os.path.sep: path = path + os.path.sep return load_pkl.load(path=path+cls.multi_predictor_file) def get_predictor(self, label): """ Returns TabularPredictor which is used to predict this label. """ predictor = self.predictors[label] if isinstance(predictor, str): return TabularPredictor.load(path=predictor) return predictor def _get_data(self, data): if isinstance(data, str): return TabularDataset(data) return data.copy() def _predict(self, data, as_proba=False, **kwargs): data = self._get_data(data) if as_proba: predproba_dict = {} for label in self.labels: print(f"Predicting with TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) if as_proba: predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs) data[label] = predictor.predict(data, **kwargs) if not as_proba: return data[self.labels] else: return predproba_dict def predict(data): try: if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) #df0 = df.copy() #profilerobj = inputprofiler() #df = profilerobj.apply_profiler(df) #selectobj = selector() #df = selectobj.apply_selector(df) #modelobj = trained_model() #output = modelobj.predict(df,"") # Load the Test data for Prediction # ----------------------------------------------------------------------------# test_data = df#TabularDataset(data) #'testingDataset.csv' #subsample_size = 2 # ----------------------------------------------------------------------------# # Specify the corresponding target features to be used # ----------------------------------------------------------------------------# #labels = ['education-num','education','class'] configFile = os.path.join(os.path.dirname(os.path.abspath(__file__)),'etc','predictionConfig.json') with open(configFile, 'rb') as cfile: data = json.load(cfile) labels = data['targetFeature'] # ----------------------------------------------------------------------------# for x in labels: if x in list(test_data.columns): test_data.drop(x,axis='columns', inplace=True) # ----------------------------------------------------------------------------# #test_data = test_data.sample(n=subsample_size, random_state=0) #print(test_data) #test_data_nolab = test_data.drop(columns=labels) #test_data_nolab.head() test_data_nolab = test_data # ----------------------------------------------------------------------------# # Load the trained model from where it's stored # ----------------------------------------------------------------------------# model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'ModelPath') multi_predictor = MultilabelPredictor.load(model_path) # ----------------------------------------------------------------------------# # Start the prediction and perform the evaluation # ----------------------------------------------------------------------------# predictions = multi_predictor.predict(test_data_nolab) for label in labels: df[label+'_predict'] = predictions[label] #evaluations = multi_predictor.evaluate(test_data) #print(evaluations) #print("Evaluated using metrics:", multi_predictor.eval_metrics) # ----------------------------------------------------------------------------# # ----------------------------------------------------------------------------# #outputobj = output_format() #output = outputobj.apply_output_format(df0,output) outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} output = json.dumps(outputjson) print("predictions:",output) return(output) # ----------------------------------------------------------------------------# except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = predict(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings warnings.filterwarnings("ignore") import json import os import sys import pandas as pd import numpy as np from pandas import json_normalize from autogluon.text import TextPredictor import os.path def predict(data): try: if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'text_prediction') predictor = TextPredictor.load(model_path) predictions = predictor.predict(df) df['predict'] = predictions outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} output = json.dumps(outputjson) print("predictions:",output) return(output) except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = predict(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,20
23 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os.path import time import subprocess import sys from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe import installPackage from appbe import compute from appbe.models import getusercasestatus import json import pandas as pd from os.path import expanduser import ntpath import shutil import platform from pathlib import Path home = expanduser("~") if platform.system() == 'Windows': LOG_FILE_PATH = os.path.join(home,'AppData','Local','HCLT','AION','logs') else: LOG_FILE_PATH = os.path.join(home,'HCLT','AION','logs') def convert(obj): if isinstance(obj, bool): return str(obj).capitalize() if isinstance(obj, (list, tuple)): return [convert(item) for item in obj] if isinstance(obj, dict): return {convert(key):convert(value) for key, value in obj.items()} return obj def fl_command(request,Existusecases,usecasedetails): command = request.POST.get('flsubmit') print(command) #kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() modelID = request.POST.get('modelID') p = Existusecases.objects.get(id=modelID) usecasename = p.ModelName.UsecaseName runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename) usecasedetail = usecasedetails.objects.get(id=p.ModelName.id) usecase = usecasedetails.objects.all() models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.modelType = outputconfig['data']['ModelType'] model.featuresused = eval(outputconfig['data']['featuresused']) model.targetFeature = outputconfig['data']['targetFeature'] model.modelParams = outputconfig['data']['params'] model.dataPath = os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv.gz') model.maacsupport = 'True' model.flserversupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Logistic Regression", "Naive Bayes","Decision Tree","Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Random Forest","Linear Regression","Lasso","Ridge","Extreme Gradient Boosting (XGBoost)","Light Gradient Boosting (LightGBM)","Categorical Boosting (CatBoost)"] if model.deploymodel in supportedmodels: model.maacsupport = 'True' else: model.maacsupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' except Exception as e: pass flserver = os.path.join(str(p.DeployPath),'publish','FedLearning') if command == 'startServer': flservicefile = os.path.join(flserver,'fedServer','aionfls.py') confilefile = os.path.join(flserver,'fedServer','config.json') if platform.system() == 'Windows': outputStr = subprocess.Popen([sys.executable, flservicefile,confilefile],creationflags = subprocess.CREATE_NEW_CONSOLE) else: outputStr = subprocess.Popen([sys.executable, flservicefile,confilefile]) Status = 'SUCCESS' Msg = 'Federated Learning Server Started' if command == 'saveflconfig': #print(command) fedserverPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedServer')) shutil.rmtree(flserver, ignore_errors=True) Path(flserver).mkdir(parents=True, exist_ok=True) flcopypath = os.path.join(flserver,'fedServer') shutil.copytree(fedserverPath,flcopypath) fedserverDataPath = os.path.join(flcopypath,'data') shutil.copy2(request.POST.get('flserver_datalocation'),fedserverDataPath) flcon = {} AlgorithmNames={'Logistic Regression':'LogisticRegression','Neural Network':'deeplearning','Linear Regression':'LinearRegression'} flcon['server_IP'] = request.POST.get('flserver_ipaddress') flcon['server_port'] = request.POST.get('flserver_port') flcon['model_name'] = AlgorithmNames[request.POST.get('flserver_model')] flcon['version'] = request.POST.get('flserver_Version') flcon['model_hyperparams'] = convert(eval(request.POST.get('flserver_params'))) dataLocation = request.POST.get('flserver_datalocation') dataPath,datafile = ntpath.split(dataLocation) flcon['data_location'] = 'data/'+datafile flcon['selected_feature'] = ",".join([model for model in eval(request.POST.get('flserver_trainingfeatures'))]) flcon['target_feature'] = request.POST.get('flserver_targetfeature') flcon['problem_type'] = request.POST.get('flserver_modelType') flcon['min_available_clients'] = request.POST.get('flserver_noofclient') flcon['min_fit_clients'] = 2 flcon['fl_round'] = request.POST.get('flserver_trainround') flcon['evaluation_required'] = request.POST.get('flserver_evaluation') flcon['model_store'] = "" flconfigfile = os.path.join(flcopypath,'config.json') flconjson = json.dumps(flcon) f = open(flconfigfile, "w+") f.seek(0) f.write(flconjson) f.truncate() f.close() nouc = 0 Status = 'Success' Msg = 'Federated Learning Server Configured' if command =='startClient': flconfigfile = os.path.join(str(model.DeployPath),'publish','FedLearning','fedServer','config.json') if os.path.isfile(flconfigfile): with open(flconfigfile) as file: flconfig = json.load(file) file.close() numberofclient = flconfig['min_available_clients'] for x in range(int(numberofclient)): flclientdirectory = os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1)) flclientpath = os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1),'fedClient.bat') if platform.system() == 'Windows': outputStr = subprocess.Popen([flclientpath],creationflags = subprocess.CREATE_NEW_CONSOLE,cwd=flclientdirectory) else: outputStr = subprocess.Popen([flclientpath],cwd=flclientdirectory) Status = 'SUCCESS' Msg = 'Federated Learning Client Started' if command == 'generateClient': flconfigfile = os.path.join(str(model.DeployPath),'publish','FedLearning','fedServer','config.json') if os.path.isfile(flconfigfile): with open(flconfigfile) as file: flconfig = json.load(file) file.close() numberofclient = flconfig['min_available_clients'] trainingDataLocation = os.path.join(str(p.DeployPath),'data','postprocesseddata.csv.gz') from utils.file_ops import read_df_compressed status,df = read_df_compressed(trainingDataLocation,encoding='utf8') for x in range(int(numberofclient)): flclientpath = os.path.join(str(model.DeployPath),'publish','FedLearning','fedClient_'+str(x+1)) logPath = os.path.join(flclientpath,'logs') modelsPath = os.path.join(flclientpath,'models') Path(flclientpath).mkdir(parents=True, exist_ok=True) Path(logPath).mkdir(parents=True, exist_ok=True) Path(modelsPath).mkdir(parents=True, exist_ok=True) flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','aionflc.py')) shutil.copy2(flclientor,flclientpath) flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','utils.py')) shutil.copy2(flclientor,flclientpath) flclientor = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','fedClient','dl_model.py')) shutil.copy2(flclientor,flclientpath) subset = df.sample(frac=0.8) dataPath = os.path.join(flclientpath,'data') Path(dataPath).mkdir(parents=True, exist_ok=True) datafile = os.path.join(dataPath,'data.dat') subset.to_csv(datafile, index=False) flclient = {} flclient['server_IP'] = flconfig['server_IP'] flclient['server_port'] = flconfig['server_port'] flclient['model_name'] = flconfig['model_name'] flclient['problem_type'] = flconfig['problem_type'] flclient['version'] = flconfig['version'] flclient['model_hyperparams'] = flconfig['model_hyperparams'] flclient['data_location'] = 'data\\data.dat' flclient['selected_feature'] = flconfig['selected_feature'] flclient['target_feature'] = flconfig['target_feature'] flclient['train_size'] = 80 #flclient['deploy_location'] = flconfig['deploy_location'] flclient['num_records_per_round'] = request.POST.get('flserver_recordperround') flclient['wait_time'] = request.POST.get('flserver_roundtime') flclient['model_overwrite'] = request.POST.get('model_overwritelabel') configPath = os.path.join(flclientpath,'config') Path(configPath).mkdir(parents=True, exist_ok=True) configFile = os.path.join(configPath,'config.json') flconjson = json.dumps(flclient) f = open(configFile, "w+") f.seek(0) f.write(flconjson) f.truncate() f.close() locate_python = sys.exec_prefix bathfilePath = os.path.join(flclientpath,'fedClient.bat') batfilecontent=''' @ECHO OFF GOTO weiter :setenv SET "Path={python_path}\\;%Path%;" GOTO :EOF :weiter IF "%1" EQU "setenv" ( ECHO. ECHO Setting environment for AION Federated Learning Client. CALL :setenv python %CD%\\\\aionflc.py %CD%\\config\\config.json ) ELSE ( SETLOCAL EnableDelayedExpansion TITLE ION Federated Learning Client PROMPT %username%@%computername%$S$P$_#$S IF EXIST aion.config (FOR /F "delims=" %%A IN (aion.config) DO SET "%%A") START "" /B %COMSPEC% /K "%~f0" setenv ) '''.format(python_path=str(locate_python)) f = open(bathfilePath, "w",encoding="utf-8") f.write(str(batfilecontent)) f.close() Status = 'Success' Msg = 'Federated Learning Client Code Generated' nouc = 0 #selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) from appbe.pages import get_usecase_page status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['Msg'] = Msg return(context) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import csv import logging import pandas as pd class csv_validator: def __init__(self): self.log = logging.getLogger('eion') def __text_header(self, filename, threshold=0.75): df = pd.read_csv(filename, header=None,nrows=1000) numeric_columns = df.dtypes[df.dtypes != object] if not len(numeric_columns): first_row_len = df.iloc[0].str.len() index = 0 for c in df
: if (df[c].map(len).mean() * threshold <= first_row_len[index]): return False index += 1 return True return False def validate_header(self, filename,delimiter,textqualifier,threshold=0.75): with open(filename, 'rt',encoding='utf-8') as csvfile: has_header = csv.Sniffer().has_header(csvfile.read(8192)) csvfile.seek(0) if not has_header: has_header = self.__text_header(filename, threshold) reader = csv.reader(csvfile, delimiter=delimiter,quotechar=textqualifier) good_csv = True col_len = len(next(reader)) bad_lines = [] offset = 2 # +1 for first read and +1 for python index start at 0 for index, row in enumerate(reader): if len(row) != col_len: good_csv = False if(index == 1 and has_header): offset += 1 bad_lines.append(index + offset) return has_header, good_csv, bad_lines if __name__ == '__main__': import sys val = csv_validator() print(val.validate_header(sys.argv[1])) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from typing import Tuple, Union, List import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from flwr.common.logger import log from logging import INFO TRUE_FALSE_MAPPING = {'True':'False','true':'false',True:False,'y':'n','Y':'N','Yes':'No','yes':'no','YES':'NO'} XY = Tuple[np.ndarray, np.ndarray] Dataset = Tuple[XY, XY] LogRegParams = Union[XY, Tuple[np.ndarray]] XYList = List[XY] modelUsed=None modelname=None def setmodelName(modelselected): try: modelname=str(modelselected) print("setmodelName ,given modelname: \\n",modelname) if (modelname.lower() == 'logisticregression'): modelUsed=LogisticRegression() return True elif (modelname.lower() == "naivebayes"): modelUsed = GaussianNB() return True elif (modelname.lower() == "sgdclassifier"): #from sklearn.linear_model import SGDClassifier modelUsed=SGDClassifier() return True elif (modelname.lower() == "knn"): modelUsed = KNeighborsClassifier() return True elif (modelname.lower() == "decisiontreeclassifier"): modelUsed = DecisionTreeClassifier() return True else: return False except Exception as e: log(INFO, "set fl model name fn issue: ",e) def get_model_parameters(model:modelUsed) -> LogRegParams: """Returns the paramters of a sklearn LogisticRegression model.""" model_name=model.__class__.__name__ if model.fit_intercept: params = (model.coef_, model.intercept_) else: params = (model.coef_,) return params def set_model_params( model:modelUsed, params: LogRegParams ) -> modelUsed: """Sets the parameters of a sklean LogisticRegression model.""" model.coef_ = params[0] model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = params[1] except Exception as e: log(INFO, "set_model_params fn issue: ",e) pass return model def set_initial_params(model,no_classes,no_features): """Sets initial parameters as zeros Required since model params are uninitialized until model.fit is called. But server asks for initial parameters from clients at launch. Refer to sklearn.linear_model.LogisticRegression documentation for more information. """ n_classes = no_classes n_features = no_features model.classes_ = np.array([i for i in range(n_classes)]) model.coef_ = np.zeros((n_classes, n_features)) model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = np.zeros((n_classes,)) except Exception as e: log(INFO, "set_initial_params fn issue: ",e) pass def shuffle(X: np.ndarray, y: np.ndarray) -> XY: """Shuffle X and y.""" rng = np.random.default_rng() idx = rng.permutation(len(X)) return X[idx], y[idx] def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList: """Split X and y into a number of partitions.""" return list( zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions)) ) def get_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if v in TRUE_FALSE_MAPPING.keys(): return k return default_value def get_true_options( d): options = [] if isinstance(d, dict): for k,v in d.items(): if v in TRUE_FALSE_MAPPING.keys(): options.append(k) return options def set_true_option(d, key=None, value='True'): if key in d.keys(): if value in TRUE_FALSE_MAPPING.keys(): for k in d.keys(): d[ k] = TRUE_FALSE_MAPPING[ value] d[key] = value return d <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import pandas as pd import requests from io import StringIO import json import time import shutil import sys from appbe import compute from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage from appbe.aion_config import eda_setting from appbe.s3bucketsDB import read_s3_bucket from appbe.gcsbucketsDB import read_gcs_bucket from appbe.azureStorageDB import read_azureStorage from appbe.validatecsv import csv_validator import time from appbe.dataPath import LOG_LOCATION from appbe.dataPath import DATA_FILE_PATH from appbe.log_ut import logg import logging def langchain_splittext(filename): try: from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter loader = PyPDFLoader(filename) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) texts = text_splitter.split_documents(pages) return(texts) except Exception as e: print(e) def pd_lanfchain_textsplitter(datalocation,data): try: document=[] for i in range(len(data)): filename = os.path.join(datalocation,data.loc[i,"File"]) out = langchain_splittext(filename) for doc in out: print(doc.page_content) document.append(doc.page_content) my_data = pd.DataFrame({'instruction': document}) n = 1 my_data["response"] = my_data["instruction"].tolist()[n:] + my_data["instruction"].tolist()[:n] filetimestamp = str(int(time.time())) filename = os.path.join(DATA_FILE_PATH, 'LLMTuning_' + filetimestamp+'.csv') my_data.to_csv(filename,index=False) return(filename) except Exception as e: print(e) def getimpfeatures(dataFile, numberoffeatures,delimiter,textqualifier): imp_features = [] if numberoffeatures > 20: try: from appbe.eda import ux_eda eda_obj = ux_eda(dataFile,delimiter,textqualifier,optimize=1) if eda_obj.getNumericFeatureCount() >= 2: pca_map = eda_obj.getPCATop10Features() imp_features = pca_map.index.values.tolist() except Exception as e: print(e) pass return imp_features def pdf2text(inpFileName): try: from pypdf import PdfReader reader = PdfReader(inpFileName) number_of_pages = len(reader.pages) text="" OrgTextOutputForFile="" for i in range(number_of_pages) : page = reader.pages[i] text1 = page.extract_text() text=text+text1 import nltk tokens = nltk.sent_tokenize(text) for sentence in tokens: sentence=sentence.replace("\\n", " ") if len(sentence.split()) < 4 : continue if len(str(sentence.split(',')).split()) < 8 : continue if any(chr.isdigit() for chr in sentence) : continue OrgTextOutputForFile= OrgTextOutputForFile+str(sentence.strip()) #print("\\n\\n\\n\\nOrgTextOutputForFile------------->\\n\\n\\n",OrgTextOutputForFile) return (OrgTextOutputForFile) except Exception as e: print("Encountered exception. {0}".format(e)) def getcommonfields(): computeinfrastructure = compute.readComputeConfig() from appbe.aion_config import settings usecasetab = settings() kafkaSetting = kafka_setting() ruuningSetting = running_setting() context = {'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab,'azurestorage':get_azureStorage()} return context def getusercasestatus(request): if 'UseCaseName' in request.session: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' return selected_use_case,ModelVersion,ModelStatus def delimitedsetting(delimiter='',textqualifier='',other=''): if delimiter != '': if delimiter.lower() == 'tab' or delimiter.lower() == '\\t': delimiter = '\\t' elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';': delimiter = ';' elif delimiter.lower() == 'comma' or delimiter.lower() == ',': delimiter = ',' elif delimiter.lower() == 'space' or delimiter.lower() == ' ': delimiter = ' ' elif delimiter.lower() == 'other' or other.lower() != '': if other != '': delimiter = other else: delimiter = ',' elif delimiter != '': delimiter = delimiter else: delimiter = ',' else: delimiter = ',' if textqualifier == '': textqualifier = '"' return delimiter,textqualifier def multipleZipExtraction(data,DATA_FILE_PATH): from zipfile import ZipFile try: import glob filetimestamp = str(int(time.time())) extracted_data = os.path.join(DATA_FILE_PATH, 'extracted_' + filetimestamp) os.mkdir(extracted_data) with ZipFile(data, 'r') as zObject: zObject.extractall(extracted_data) csv_files = glob.glob(r'{}\\*.{}'.format(extracted_data,'csv')) df_csv_append = pd.DataFrame() for file in csv_files: df = pd.read_csv(file) df_csv_append = df_csv_append.append(df, ignore_index=True) for f in os.listdir(extracted_data): os.remove(os.path.join(extracted_data, f)) #os.mkdir(extracted_data) combined_data = os.path.join(extracted_data,filetimestamp+'.csv') df_csv_append.to_csv(combined_data) return combined_data except Exception as e: if os.path.exists(extracted_data): shutil.rmtree(extracted_data) #print (e) return '' def tarFileExtraction(data,DATA_FILE_PATH): try: import tarfile filetimestamp = str(int(time.time())) extracted_data = os.path.join(DATA_FILE_PATH, 'extracted_' + filetimestamp) os.mkdir(extracted_data) if data.endswith('tar'): file = tarfile.open(data) file.extractall(extracted_data) file.close() for f in os.listdir(extracted_data): if f.endswith('csv') or f.endswith('tsv'): dataFile = os.path.join(extracted_data,f) return dataFile except Exception as e: if os.path.exists(extracted_data): shutil.rmtree(extracted_data) print (e) return '' # ------ changes for the bug 1
0379 starts---------------- By Usnish ------ def checkRamAfterLoading(dataPath): import psutil availableRam = psutil.virtual_memory()[1]/1e9 filesize = os.path.getsize(dataPath)/1e9 return availableRam < 2*filesize def checkRamBeforeLoading(dataPath): import psutil filesize = os.path.getsize(dataPath)/1e9 totalRam = psutil.virtual_memory()[0] / 1e9 if( filesize > 0.8 * totalRam): return "File size is larger than the 80% of Total RAM." return "" # ------ changes for the bug 10379 ends---------------- By Usnish ------ # ---------- 10012:Decision Threshold related Changes S T A R T ---------- # This method is used to check If -> # 80% of available RAM size is greater than ingested data (or not). def checkRAMThreshold(dataPath): import psutil availableRam = psutil.virtual_memory()[1]/1e9 filesize = os.path.getsize(dataPath)/1e9 return (0.8 * availableRam) > filesize # ---------------------- E N D ---------------------- # Text Data Labelling using LLM related changes # -------------------------------------------------------- def ingestTextData(request, DATA_FILE_PATH): log = logging.getLogger('log_ux') try: Datapath = request.FILES['DataFilePath'] from appbe.eda import ux_eda ext = str(Datapath).split('.')[-1] request.session['uploadfiletype'] = 'Local' request.session['datatype'] = 'Normal' filetimestamp = str(int(time.time())) if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() dataPath = dataFile request.session['textdatapath'] = dataPath # import pdb # pdb.set_trace() # check_df = pd.read_csv(dataPath) eda_obj = ux_eda(dataPath) check_df = eda_obj.getdata() df_top = check_df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) # featuresList = check_df.columns.tolist() features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures() noTextFeature = False if len(textFeature) == 0: noTextFeature = True context = {'raw_data':df_json, 'featuresList':textFeature, 'selected':'DataOperations', 'noTextFeature':noTextFeature} return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'error': 'Failed to read data','emptycsv' : 'emptycsv'} log.info('Text Data Ingestion -- Error : Failed to read data, '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context # ---------------------- E N D --------------------------- def ingestDataFromFile(request,DATA_FILE_PATH): log = logging.getLogger('log_ux') delimiter,textqualifier = delimitedsetting(request.POST.get('delimiters'),request.POST.get('qualifier'),request.POST.get('delimiters_custom_value')) request.session['delimiter'] = delimiter request.session['textqualifier'] = textqualifier context = getcommonfields() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) context.update({'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,}) try: t1 = time.time() request.session['uploadfiletype'] = '' request.session['uploadLocation'] = '' data_is_large = False check_df = pd.DataFrame() if request.method == 'POST': if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelName' not in request.session: movenext = False request.session['currentstate'] = 0 context.update({'tab': 'tabconfigure', 'error': 'Please Create/Select the Use Case First', 'movenext': movenext,'currentstate': request.session['currentstate']}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please Create/Select the Use Case First') return context else: type = request.POST.get("optradio") if type == "s3Bucket": try: request.session['uploadfiletype'] = 'S3Bucket' bucketname = request.POST.get('s3bucketname') fileName = request.POST.get('s3file') if fileName != '': status,msg,check_df = read_s3_bucket(bucketname,fileName,DATA_FILE_PATH) if status == 'Success': filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') check_df.to_csv(dataFile, index=False) request.session['datalocation'] = dataFile else : request.session['currentstate'] = 0 #usnish context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error : ' + str(msg)) return context else: #usnish request.session['currentstate'] = 0 context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name') return context except Exception as e: request.session['currentstate'] = 0 context.update({'error': str(e),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+ str(e)) return context '''request.session['datalocation'] = "S3"''' # -------------------------------- Graviton-Integration Changes S T A R T -------------------------------- elif type == "graviton": try: dataServiceId = request.POST.get('dataservice') metadataId = request.POST.get('metadata') data = [] from appbe.aion_config import get_graviton_data graviton_url,graviton_userid = get_graviton_data() gravitonURL = graviton_url gravitonUserId = graviton_userid # url = 'https://xenius.azurewebsites.net/api/getdata?userid=1&dataserviceid='+str(dataserviceId) +'&metadataid=' +str(metadataId) url = gravitonURL + 'getdata?userid=' + gravitonUserId +'&dataserviceid='+str(dataServiceId) +'&metadataid=' +str(metadataId) print(url) response = requests.get(url) statuscode = response.status_code if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['result'] firstElement = next(iter(data[0].keys())) check_df = pd.DataFrame.from_dict(data[0][firstElement]) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') check_df.to_csv(dataFile, index=False) request.session['uploadfiletype'] = 'Graviton' request.session['datalocation'] = str(dataFile) except Exception as e: print(e) request.session['currentstate'] = 0 context.update({'error':'Check log file for more details','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error :'+str(e)) return context # ------------------------------------------------ E N D ------------------------------------------------- elif type == "azurestorage": try: request.session['uploadfiletype'] = 'AzureStorage' azurename = request.POST.get('azurename') directoryname = request.POST.get('azuredirectory') if directoryname != '': status,msg,check_df = read_azureStorage(azurename,directoryname,DATA_FILE_PATH) if status == 'Success': filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') check_df.to_csv(dataFile, index=False) '''request.session['datalocation'] = "S3"''' request.session['datalocation'] = dataFile else : request.session['currentstate'] = 0 #usnish context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : ' +str(msg)) return context else: #usnish request.session['currentstate'] = 0 context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name') return context except Exception as e: print(e) request.session['currentstate'] = 0 context.update({'error': 'File does not exist','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : File does not exist, '+str(e)) return context elif type == "googleBucket": try: request.session['uploadfiletype'] = 'GCPBucket' bucketname = request.POST.get('gcpbucketname') fileName = request.POST.get('file1') if fileName != '': status,msg,check_df = read_gcs_bucket(bucketname,fileName,DATA_FILE_PATH) if status == 'Success': filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') check_df.to_csv(dataFile, index=False) '''request.session['datalocation'] = "S3"''' request.session['datalocation'] = dataFile else : request.session['currentstate'] = 0 #usnish context.update({'error': str(msg),'ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : '+str(msg)) return context else: #usnish request.session['currentstate'] = 0 context.update({'error': 'Please provide a file name','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please provide a file name') return context except Exception as e: request.session['currentstate'] = 0 context.update({'error': 'File does not exist','ModelVersion': ModelVersion,'emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : File does not exist, ' + str(e)) return context elif type == "url": try: request.session['uploadfiletype'] = 'URL' url_text = request.POST.get('urlpathinput') log.info('Data ingesttion from URL..') request.session['uploadLocation'] = url_text url = url_text check_df = pd.read_csv(url) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') check_df.to_csv(dataFile,index=False) request.session['datalocation'] = dataFile except Exception as e: request.session['currentstate'] = 0 e = str(e) print(e) if e.find("tokenizing")!=-1: error
= "This is not an open source URL to access data" context.update({'error': error, 'ModelVersion': ModelVersion, 'emptycsv': 'emptycsv'}) elif e.find("connection")!=-1: error =
(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str( round(t2 - t1)) + ' sec' + ' : ' + 'Success') # EDA Subsampling changes context.update({'range':range(1,101),'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList,'tab': 'tabconfigure', 'data': df_json, 'status_msg': statusmsg, 'selected': 'modeltraning','imp_features':imp_features,'numberoffeatures':numberoffeatures, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'exploratory': False}) if msg!="": context.update({'data_size_alert': msg}) return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) request.session['currentstate'] = 0 context.update({'error': 'Failed to read data','emptycsv' : 'emptycsv'}) log.info('Data Ingestion : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + ' sec' + ' : ' + 'Error : Failed to read data, '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from pathlib import Path import sqlite3 class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem db_file = str(location / self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() def table_exists(self, name): query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() return len(listOfTables) > 0 def read_data(self, table_name, condition = None): if condition: query = f"SELECT * FROM {table_name} WHERE "+condition else: query = f"SELECT * FROM {table_name}" row = self.cursor.execute(query).fetchall() return list(row) def column_names(self, table_name): query = f"SELECT * FROM {table_name}" row = self.cursor.execute(query).fetchall() column_names = list(map(lambda x:x[0],self.cursor.description)) return column_names # return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self, name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def delete_record(self, table_name, col_name, col_value): try: query = f"DELETE FROM {table_name} WHERE {col_name}='{col_value}'" self.conn.execute(query) self.conn.commit() return 'success' except Exception as e: print(str(e)) print("Deletion Failed") return 'error' def drop_table(self,table_name): query = f"DROP TABLE {table_name}" self.cursor.execute(query) print("Table dropped... ") # Commit your changes in the database self.conn.commit() def get_data(self, table_name, col_name, col_value): query = f"SELECT * FROM {table_name} WHERE {col_name}='{col_value}'" row = self.cursor.execute(query).fetchone() if (row == None): return [] return list(row) def execute_query(self,query): self.cursor.execute(query) self.conn.commit() def write_data(self, data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def update_dict_data(self,data:dict,condition,table_name): if not data: return if not table_name: raise ValueError('Database table name is not provided') updates = '' #TODO validation of keys for i,kv in enumerate(data.items()): if i: updates += ',' updates += f'"{kv[0]}"="{kv[1]}"' if condition == '': update_query = f'UPDATE {table_name} SET {updates}' else: update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() def update_data(self,updates,condition,table_name): if condition == '': update_query = f'UPDATE {table_name} SET {updates}' else: update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() def close(self): self.conn.close()<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import shutil import subprocess import sys import time import glob import re from appbe.pages import get_usecase_page import json from django.http import FileResponse def startIncrementallearning(request,usecasedetails,Existusecases,DATA_FILE_PATH): try: modelid = request.POST.get('modelid') #incfilepath = request.POST.get('incfilepath') Datapath = request.FILES['incfilepath'] filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.csv') with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) # destination.close()#bugfix 11656 incfilepath = dataFile p = Existusecases.objects.get(id=modelid) deployPath = str(p.DeployPath) scriptPath = os.path.abspath(os.path.join(deployPath,'aion_inclearning.py')) request.session['IsRetraining'] = 'No' if not os.path.exists(scriptPath): status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Msg'] = 'Incremental/Online learning not supported for this model.For online training select Online Training in basic configuration page and provide with training' else: outputStr = subprocess.check_output([sys.executable, scriptPath, incfilepath]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status,context,action = get_usecase_page(request,usecasedetails,Existusecases) if decoded_data['status'] == 'SUCCESS': msg = decoded_data['Msg'] context['Status'] = 'SUCCESS' context['Msg'] = msg else: msg = decoded_data['Msg'] context['Status'] = 'SUCCESS' context['Msg'] = msg except Exception as e: print(e) try: status,context,action = get_usecase_page(request,usecasedetails,Existusecases) except Exception as msg: context['errorMsg'] = msg return action,context <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import sqlite3 from pathlib import Path import json import os import rsa import boto3 #usnish import pandas as pd import time import sqlite3 class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() def table_exists(self, name): query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() return len(listOfTables) > 0 def read_data(self, table_name): query = f"SELECT * FROM {table_name}" row = self.cursor.execute(query).fetchall() return list(row) #return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def delete_record(self,table_name,col_name, col_value): try: query = f"DELETE FROM {table_name} WHERE {col_name}='{col_value}'" self.conn.execute(query) self.conn.commit() return 'success' except Exception as e : print(str(e)) print("Deletion Failed") return 'error' def get_data(self,table_name,col_name,col_value): query = f"SELECT * FROM {table_name} WHERE {col_name}='{col_value}'" row = self.cursor.execute(query).fetchone() if(row == None): return [] return list(row) def write_data(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def close(self): self.conn.close() def add_new_GCSBucket(request): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') print(request.POST["aionreferencename"]) print(request.POST["serviceaccountkey"]) print(request.POST["bucketname"]) if request.POST["aionreferencename"] =='' or request.POST["serviceaccountkey"] == '' or request.POST["bucketname"] == '' : return 'error' newdata = {} newdata['Name'] = [request.POST["aionreferencename"]] newdata['GCSServiceAccountKey'] = [request.POST["serviceaccountkey"]] newdata['GCSbucketname'] = [request.POST["bucketname"]] name = request.POST["aionreferencename"] if sqlite_obj.table_exists("gcsbucket"): if(len(sqlite_obj.get_data("gcsbucket",'Name',name))>0): return 'error1' sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'gcsbucket') except: return 'error' def get_gcs_bucket(): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') temp_data = sqlite_obj.read_data('gcsbucket') data = [] for x in temp_data: data_dict = {} data_dict['Name'] = x[0] data_dict['GCSServiceAccountKey'] = x[1] data_dict['GCSbucketname'] = x[2] data.append(data_dict) except Exception as e: print(e) data = [] return data def read_gcs_
bucket(name,filename,DATA_FILE_PATH): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') data = sqlite_obj.get_data("gcsbucket",'Name',name) except: data = [] found = False if len(data)!=0: GCSServiceAccountKey = data[1] GCSbucketname = data[2] found = True #print(found) #print(name) try: if found: import io from google.cloud import storage #print(GCSServiceAccountKey) #print(GCSbucketname) try: storage_client = storage.Client.from_service_account_json(GCSServiceAccountKey) bucket = storage_client.get_bucket(GCSbucketname) blob = bucket.blob(filename) data = blob.download_as_string() df = pd.read_csv(io.BytesIO(data), encoding = 'utf-8', sep = ',',encoding_errors= 'replace') except Exception as e: return "Error",str(e), pd.DataFrame() return 'Success',"",df except Exception as e: print(e) return 'Error',"Please check bucket configuration",pd.DataFrame() def remove_gcs_bucket(name): from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') return sqlite_obj.delete_record('gcsbucket','Name',name) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import sqlite3 from pathlib import Path import json import os import rsa import boto3 #usnish import pandas as pd import time class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() def table_exists(self, name): query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() return len(listOfTables) > 0 def read_data(self, table_name): query = f"SELECT * FROM {table_name}" row = self.cursor.execute(query).fetchall() return list(row) #return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def delete_record(self,table_name,col_name, col_value): try: query = f"DELETE FROM {table_name} WHERE {col_name}='{col_value}'" self.conn.execute(query) self.conn.commit() return 'success' except Exception as e : print(str(e)) print("Deletion Failed") return 'error' def get_data(self,table_name,col_name,col_value): query = f"SELECT * FROM {table_name} WHERE {col_name}='{col_value}'" row = self.cursor.execute(query).fetchone() if(row == None): return [] return list(row) def write_data(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def close(self): self.conn.close() def add_new_s3bucket(request): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if request.POST["aionreferencename"] =='' or request.POST["s3bucketname"] == '' or request.POST["awsaccesskey"] == '' : return 'error' pkeydata='''-----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1AfnrMv fVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw0m4e wQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2PM4Re n0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHyKxlq i/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhxWrs/ lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQAB -----END RSA PUBLIC KEY-----''' pubkey = rsa.PublicKey.load_pkcs1(pkeydata) awssecretaccesskey = rsa.encrypt(request.POST["awssecretaccesskey"].encode(), pubkey) newdata = {} newdata['Name'] = [request.POST["aionreferencename"]] newdata['AWSAccessKeyID'] = [request.POST["awsaccesskey"]] newdata['AWSSecretAccessKey'] = [str(awssecretaccesskey)] newdata['S3BucketName'] = [request.POST["s3bucketname"]] name = request.POST["aionreferencename"] if sqlite_obj.table_exists("s3bucket"): if(len(sqlite_obj.get_data("s3bucket","Name",name)) > 0): return 'error1' sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'s3bucket') except Exception as e: print(e) return 'error' def get_s3_bucket(): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') temp_data = sqlite_obj.read_data('s3bucket') data = [] for x in temp_data: data_dict = {} data_dict['Name'] = x[0] data_dict['AWSAccessKeyID'] = x[1] data_dict['AWSSecretAccessKey'] = x[2] data_dict['S3BucketName'] = x[3] data.append(data_dict) except Exception as e: print(e) data = [] return data def remove_s3_bucket(name): from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') return sqlite_obj.delete_record('s3bucket','Name',name) def read_s3_bucket(name,filename,DATA_FILE_PATH): privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqQIBAAKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1Af nrMvfVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw 0m4ewQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2P M4Ren0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHy Kxlqi/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhx Wrs/lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQABAoIBAC/VbNfQPEqJSO3f VFPqfR73q2MbGdgiMQOTgeDvLxiF1QdizJ+j/I5mgiIAMviXuOpPU+NbdMHbZZWd D15kNlD8UCXVg6yyiOuHStjmjK4uHe8I86E1nxTb0hbyZCWZlbk/WizlDHInu+dT KdIZcq2AIidU6tAxtwA0ingHaRSoXDlSGwOTEigNqmWOKnDTVg0SMscoHOD7siXF DHm1/lkvD3uvcZk6c7fGxC8SgNX2dj6n/Nbuy0Em+bJ0Ya5wq4HFdLJn3EHZYORF ODUDYoGaSxeXqYsGg/KHJBc8J7xW9FdN9fGbHfw1YplrmiGL3daATtArjMmAh0EQ H8Sj7+ECgYkA3oWMCHi+4t8txRPkg1Fwt8dcqYhGtqpAus3NESVurAdi0ZPqEJcQ 4cUbflwQPhX0TOaBlkgzdP8DMdcW/4RalxHsAh5N8ezx/97PQMb3Bht0WsQUBeYJ xLV7T2astjTRWactGCG7dwTaUYRtU3FqL6//3CysmA12B5EMX0udNBOTKwmaYKww AwJ5AOISS7f12Q0fgTEVY0H8Zu5hHXNOA7DN92BUzf99iPx+H+codLet4Ut4Eh0C cFmjA3TC78oirp5mOOQmYxwaFaxlZ7Rs60dlPFrhz0rsHYPK1yUOWRr3RcXWSR13 r+kn+f+8k7nItfGi7shdcQW+adm/EqPfwTHM8QKBiQCIPEMrvKFBzVn8Wt2A+I+G NOyqbuC8XSgcNnvij4RelncN0P1xAsw3LbJTfpIDMPXNTyLvm2zFqIuQLBvMfH/q FfLkqSEXiPXwrb0975K1joGCQKHxqpE4edPxHO+I7nVt6khVifF4QORZHDbC66ET aTHA3ykcPsGQiGGGxoiMpZ9orgxyO3l5Anh92jmU26RNjfBZ5tIu9dhHdID0o8Wi M8c3NX7IcJZGGeCgywDPEFmPrfRHeggZnopaAfuDx/L182pQeJ5MEqlmI72rz8bb JByJa5P+3ZtAtzc2RdqNDIMnM7fYU7z2S279U3nZv0aqkk3j9UDqNaqvsZMq73GZ y8ECgYgoeJDi+YyVtqgzXyDTLv6MNWKna9LQZlbkRLcpg6ELRnb5F/dL/eB/D0Sx QpUFi8ZqBWL+A/TvgrCrTSIrfk71CKv6h1CGAS02dXorYro86KBLbJ0yp1T/WJUj rHrGHczglvoB+5stY/EpquNpyca03GcutgIi9P2IsTIuFdnUgjc7t96WEQwL -----END RSA PRIVATE KEY-----''' try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') data = sqlite_obj.get_data("s3bucket",'Name',name) except: data = [] awssecretaccesskey = '' found = False if len(data)!=0: aws_access_key_id = data[1] awssecretaccesskey = data[2] bucketName = data[3] found = True if found: privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') awssecretaccesskey = eval(awssecretaccesskey) awssecretaccesskey = rsa.decrypt(aws
secretaccesskey, privkey) awssecretaccesskey = awssecretaccesskey.decode('utf-8') #awssecretaccesskey = 'SGcyJavYEQPwTbOg1ikqThT+Op/ZNsk7UkRCpt9g'#rsa.decrypt(awssecretaccesskey, privkey) client_s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(awssecretaccesskey)) #print(bucketName,filename) try: response = client_s3.get_object(Bucket=bucketName, Key=filename) df = pd.read_csv(response['Body']) except Exception as e: print(str(e))#usnish return 'Error',str(e), pd.DataFrame() #return 'Error', pd.DataFrame() return 'Success','',df return 'Error',"Please check bucket configuration", pd.DataFrame()<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import plotly.figure_factory as ff from plotly.subplots import make_subplots import plotly.graph_objects as go from wordcloud import WordCloud, STOPWORDS import pandas as pd import numpy as np from appbe import distribution import io import urllib import os import sys import base64 from appbe import help_Text as ht import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from natsort import natsorted from sklearn.cluster import KMeans import json from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator from appbe.aion_config import eda_setting from dython.nominal import associations def calculateNumberofCluster(featureData): Sum_of_squared_distances = [] K = range(1, 15) for k in K: km = KMeans(n_clusters=k) km = km.fit(featureData) Sum_of_squared_distances.append(km.inertia_) x1, y1 = 1, Sum_of_squared_distances[0] x2, y2 = 15, Sum_of_squared_distances[len(Sum_of_squared_distances) - 1] distances = [] for inertia in range(len(Sum_of_squared_distances)): x0 = inertia + 2 y0 = Sum_of_squared_distances[inertia] numerator = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1) denominator = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2) distances.append(numerator / denominator) n_clusters = distances.index(max(distances)) + 2 #print(n_clusters) return (n_clusters) def get_eda(request): hopkins_val = '' hopkins_tip = '' if request.session['datatype'] == 'Normal': from appbe.eda import ux_eda # EDA Subsampling changes # ---------------------------- edasampleSize = request.POST.get('SubsampleSize') edasampleSize = str(int(edasampleSize)/100) sampleFile = str(request.session['datalocation']) repText = sampleFile[sampleFile.find('sub_'):sampleFile.find('_sampled_') + 9] if len(repText) == 30: dataLocation = sampleFile.replace(repText,"") else: dataLocation = sampleFile eda_obj = ux_eda(dataLocation,request.session['delimiter'],request.session['textqualifier']) df0 = eda_obj.getdata() if os.path.isfile(dataLocation): if(len(edasampleSize) > 0): df0 = df0.sample(frac = float(edasampleSize)) #EDA Performance change # ---------------------------- dflength = len(df0) # sample_size = int(eda_setting()) # if dflength >= sample_size: # eda_obj.subsampleData(sample_size) # else: eda_obj.subsampleData(dflength) # ---------------------------- TrainSampleSelected = request.POST.get('TrainSampleSize') if(TrainSampleSelected == 'EDASize'): from pathlib import Path filePath = Path(dataLocation) import datetime timestamp = datetime.datetime.now().replace(microsecond=0).isoformat() timestamp = str(timestamp.replace(":","")) sub_sampledFile = filePath.parent/("sub_" + timestamp + "_sampled_"+filePath.name) # sub_sampledFile = filePath.parent/(usename + "_sub_sampled_"+filePath.name) df0.to_csv(sub_sampledFile,index=False,) request.session['datalocation'] = str(sub_sampledFile) records = df0.shape[0] request.session['NoOfRecords'] = records edaFeatures = request.POST.getlist('InputFeatures') request.session['edaFeatures'] = edaFeatures if(len(edaFeatures) > 0): eda_obj.subsetFeatures(edaFeatures) # ---------------------------- features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures() request.session['edanumericCatFeatures'] = numericCatFeatures request.session['edatextFeature'] = textFeature categoricalfeatures = catfeatures numericfeaturecount = eda_obj.getNumericFeatureCount() cluster_details = [] dataCharts = [] # correlated_features=[] pca_details = [] if numericfeaturecount > 1: try: cluster_details,hopkins_val = eda_obj.getClusterDetails() if hopkins_val!='': if float(hopkins_val) <0.3: hopkins_tip = ht.hopkins_tip[0] elif float(hopkins_val)>0.7: hopkins_tip = ht.hopkins_tip[2] else: hopkins_tip = ht.hopkins_tip[1] else: hopkins_tip = '' except Exception as e: print("========================"+str(e)) pass try: pca_map = eda_obj.getPCATop10Features() pca_details = pca_map yaxis_data = pca_map.tolist() xaxis_data = pca_map.index.values.tolist() import plotly.graph_objects as go cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance')) cfig.update_layout(barmode='stack', xaxis_title='Features',yaxis_title='Explained Variance Ratio') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000) dataCharts.append(bargraph) except: pass df = eda_obj.getdata() # try: # top5highcorr = eda_obj.getHighlyCorrelatedFeatures(5) # correlated_features = getHighlyCorrelatedFeatureCharts(df,top5highcorr) # except: # pass else: df = eda_obj.getdata() # # EDA Subsampling changes # # ---------------------------- # if os.path.isfile(dataLocation): # if dflength < 10000: # if(len(edasampleSize) > 0): # df = df.sample(frac = float(edasampleSize)) # ---------------------------- if len(textFeature) > 0: commonfeatures = eda_obj.getTopTextFeatures(10) # comment_words = eda_obj.word_token() del eda_obj wordcloudpic = '' showtextFeature = False if len(textFeature) > 0: showtextFeature = True # try: # stopwords = set(STOPWORDS) # wordcloud = WordCloud(width=800, height=800, background_color='white', stopwords=stopwords, # min_font_size=10).generate(comment_words) # try: # plt.clf() # except: # pass # plt.imshow(wordcloud, interpolation='bilinear') # plt.axis("off") # plt.tight_layout(pad=0) # image = io.BytesIO() # plt.savefig(image, format='png') # image.seek(0) # string = base64.b64encode(image.read()) # wordcloudpic = 'data:image/png;base64,' + urllib.parse.quote(string) # except: # pass xaxis_data = commonfeatures['most_common_words'].tolist() yaxis_data = commonfeatures['freq'].tolist() import plotly.graph_objects as go cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance')) cfig.update_layout(barmode='stack', xaxis_title='Features',yaxis_title='Count') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000) dataCharts.append(bargraph) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) # if len(df) > 10000: # df1 = df.sample(n=10000, random_state=1) # else: # df1 = df df1 = df data_deep_json = df_top.to_json(orient='records') #df1.to_json(orient='records') try: gfsg = GenericFeatureStatisticsGenerator() proto = gfsg.ProtoFromDataFrames([{'name': 'train', 'table': df1}]) protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8") except Exception as e: protostr='' print('protostr '+str(e)) try: correlationgraph = getCorrelationMatrix(df) except Exception as e: print(e) try: dataDrift = 'onRequest' #getDriftDistribution(numericCatFeatures, df[numericCatFeatures]) except Exception as e: dataDrift = '' print(e) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] statusmsg = 'Successfully Done' DF_list = list() des1 = df.describe(include='all').T des1['missing count %'] = df.isnull().mean() * 100 des1['zero count %'] = df.isin([0]).mean() * 100 data = list(df.columns.values) des1.insert(0, 'Features', data) des1 = des1.to_json(orient="records") pca_df=pd.DataFrame() #print(pca_details) # if pca_details.empty: if len(pca_details) > 0: pca_df = pd.DataFrame({'Feature':pca_details.index, 'Explained Variance Ratio':pca_details.values}).round(4) pca_df = pca_df.to_json(orient="records") if len(df.columns) > 25: df3 = df[df.columns[0:24]] else: df3 = df.copy() #cor_mat = abs(df3.corr()) #cor_mat = cor_mat.round(2) try: if len(df3.columns) > 25: df3 = df3[df3.columns[0:24]] cor_mat= associations(df3,compute_only=True) cor_mat=cor_mat['corr'] #cor_mat = df3.corr() cor_mat = cor_mat.astype(float).round(2) except Exception as e: print("creating correlation mat issue: \\n",e) pass data = list(cor_mat.index) cor_mat.insert(0, 'Features', data) cor_mat = cor_mat.to_json(orient="records") cluster_df = pd.DataFrame.from_dict(cluster_details) cluster_df = cluster_df.to_json(orient="records") #textFeature = json.dumps(textFeature) # 2.2 patch changes #------------------------------------------------- request.session['edaRecords'] = df.shape[0] print(textFeature) context = {'data_deep_json': data_deep_json, 'sampleFile':sampleFile,'protostr': protostr, 'data': df_json, 'oneda': True, 'dataCharts': dataCharts,'dataDrift': dataDrift, 'drift_tip': ht.drift_tip,'des1':des1,'cluster_df':cluster_df,'hopkins_val':hopkins_val, 'pca_df':pca_df,'cor_mat':cor_mat,'correlationgraph': correlationgraph, 'centroids':cluster_details, 'wordcloudpic': wordcloudpic, 'showtextFeature': showtextFeature, 'textFeature': textFeature, # 'featurepairgraph': correlated_features, 'data_overview_tip': ht.data_overview_tip,'timeseries_analysis_tip':ht.timeseries_analysis_tip, 'feature_importance_tip': ht.feature_importance_tip,'hopkins_tip':hopkins_tip, 'correlation_analysis_tip': ht.correlation_analysis_tip, 'exploratory_analysis_tip': ht.exploratory_analysis_tip, 'data_deep_drive_tip': ht.data_deep_drive_tip,'status_msg': statusmsg,'selected_use_case': selected_use_case, 'pair
_graph_tip':ht.pair_graph_tip, 'fair_metrics_tip':ht.fair_metrics_tip, 'categoricalfeatures':categoricalfeatures, 'numericCatFeatures':numericCatFeatures, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':True,'NumericFeatureList':numericFeature,'dateFeature':dateFeature,'targetFeature':targetFeature} return(context) # EDA Visualization changes # ---------------------------- def get_edaGraph(request): if request.session['datatype'] == 'Normal': from appbe.eda import ux_eda df_temp = dict(request.GET).get('features[]') graphType = request.GET.get('graphType') d3_url = request.GET.get('d3_url') mpld3_url = request.GET.get('mpld3_url') dataLocation = request.session['datalocation'] eda_obj = ux_eda(dataLocation) # 2.2 patch changes #------------------------------------------------- edaRecords = request.session['edaRecords'] #df = df.sample(n=int(edaRecords), random_state=1) eda_obj.subsampleData(edaRecords) eda_obj.subsetFeatures(df_temp) features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature, catfeatures = eda_obj.getFeatures() numericfeaturecount = eda_obj.getNumericFeatureCount() correlated_features=[] df = eda_obj.getdata() if numericfeaturecount > 1: try: if graphType == 'Default': top5highcorr = eda_obj.getHighlyCorrelatedFeatures(5) correlated_features = getHighlyCorrelatedFeatureCharts(df,top5highcorr) else: correlated_features = getFeatureCharts(df,graphType,d3_url,mpld3_url) except: pass return correlated_features # ---------------------------- # ---------------------- 12686:Data Distribution related Changes S T A R T ---------------------- def get_DataDistribution(request): selectedFeature = request.GET.get('selected_feature') _featureItem = [] _featureItem.append(selectedFeature) from appbe.eda import ux_eda dataLocation = request.session['datalocation'] eda_obj = ux_eda(dataLocation) df = eda_obj.getdata() numericCatFeatures = request.session['edanumericCatFeatures'] textFeature = request.session['edatextFeature'] # features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures() dataDrift = '' if selectedFeature in numericCatFeatures: dataDrift = getDriftDistribution(_featureItem, df[numericCatFeatures]) elif selectedFeature in textFeature: try: comment_words = eda_obj.word_token_for_feature(selectedFeature, df[_featureItem]) stopwords = set(STOPWORDS) wordcloud = WordCloud(width=800, height=800, background_color='white', stopwords=stopwords, min_font_size=10).generate(comment_words) try: plt.clf() except: pass plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.tight_layout(pad=0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) # wordcloudpic = 'data:image/png;base64,' + urllib.parse.quote(string) dataDrift = urllib.parse.quote(string) except: dataDrift = '' del eda_obj return dataDrift # -------------------------------------------- E N D -------------------------------------------- def get_DeepDiveData(request): if request.session['datatype'] == 'Normal': from appbe.eda import ux_eda dataLocation = request.session['datalocation'] eda_obj = ux_eda(dataLocation) edaRecords = request.session['edaRecords'] edaFeatures = request.session['edaFeatures'] eda_obj.subsampleData(edaRecords) eda_obj.subsetFeatures(edaFeatures) df = eda_obj.getdata() data_deep_json = df.to_json(orient='records') return (data_deep_json) # Fairness Metrics changes # ---------------------------- def get_fairmetrics(request): import mpld3 if request.session['datatype'] == 'Normal': from appbe.eda import ux_eda df_temp = dict(request.GET).get('features[]') d3_url = request.GET.get('d3_url') mpld3_url = request.GET.get('mpld3_url') global metricvalue metricvalue = request.GET.get('metricvalue') dataLocation = request.session['datalocation'] # dataLocation = 'C:\\\\MyFolder\\\\AION\\\\AION Datasets\\\\AIF360\\\\database.csv' eda_obj = ux_eda(dataLocation, optimize=1) features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures() # data = eda_obj.getdata() data = pd.read_csv(dataLocation, na_values=['Unknown', ' ']) features_toEncode = features from sklearn.preprocessing import MinMaxScaler, LabelEncoder data_encoded = data.copy() categorical_names = {} encoders = {} # Use Label Encoder for categorical columns (including target column) for feature in features_toEncode: le = LabelEncoder() le.fit(data_encoded[feature]) data_encoded[feature] = le.transform(data_encoded[feature]) categorical_names[feature] = le.classes_ encoders[feature] = le data_perp = data_encoded protected_feature = df_temp[0] #'Victim Race' target_feature = df_temp[1] #'Perpetrator Sex' # ------Theil index----- Task->13843 from aif360.sklearn.metrics import generalized_entropy_index Ti_List = [] for items in categorical_names[protected_feature]: df = data[data[protected_feature]==items] le = LabelEncoder() le.fit(df[target_feature]) df[target_feature] = le.transform(df[target_feature]) tf = generalized_entropy_index(df[target_feature], alpha = 1) tf = round(tf, 4) Ti_List.append(tf) global Thi_idx Thi_idx = Ti_List #claas_size = categorical_names[protected_feature].size new_list = [item for item in categorical_names[protected_feature] if not(pd.isnull(item)) == True] claas_size = len(new_list) if claas_size > 10: return 'HeavyFeature' metrics = fair_metrics(categorical_names, data_perp, protected_feature, target_feature, claas_size) figure = plot_fair_metrics(metrics) html_graph = mpld3.fig_to_html(figure,d3_url=d3_url,mpld3_url=mpld3_url) return html_graph def fair_metrics(categorical_names, data_perp, protected_feature, target_feature, claas_size): import aif360 from aif360.datasets import StandardDataset from aif360.metrics import BinaryLabelDatasetMetric cols = [metricvalue] obj_fairness = [[0]] fair_metrics = pd.DataFrame(data=obj_fairness, index=['objective'], columns=cols) for indx in range(claas_size): priv_group = categorical_names[protected_feature][indx] privileged_class = np.where(categorical_names[protected_feature] == priv_group)[0] data_orig = StandardDataset(data_perp, label_name=target_feature, favorable_classes=[1], protected_attribute_names=[protected_feature], privileged_classes=[privileged_class]) dataset_pred = data_orig attr = dataset_pred.protected_attribute_names[0] idx = dataset_pred.protected_attribute_names.index(attr) privileged_groups = [{attr:dataset_pred.privileged_protected_attributes[idx][0]}] unprivileged_size = dataset_pred.unprivileged_protected_attributes[0].size unprivileged_groups = [] for idx2 in range(unprivileged_size): unprivileged_groups.extend([{attr:dataset_pred.unprivileged_protected_attributes[idx][idx2]}]) metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) if metricvalue == "Theil Index": row = pd.DataFrame([Thi_idx[indx]], columns = cols , index = [priv_group]) elif metricvalue == "Disparate Impact": row = pd.DataFrame([[metric_pred.disparate_impact()]], columns = cols , index = [priv_group]) elif metricvalue == "Statistical Parity Difference": row = pd.DataFrame([[metric_pred.mean_difference()]], columns = cols , index = [priv_group]) #fair_metrics = fair_metrics.append(row) fair_metrics = pd.concat([fair_metrics,row]) return fair_metrics def plot_fair_metrics(fair_metrics): import matplotlib.patches as patches plt.style.use('default') import seaborn as sns fig, ax = plt.subplots(figsize=(10,4), ncols=1, nrows=1) plt.subplots_adjust( left = 0.125, bottom = 0.1, right = 0.9, top = 0.9, wspace = .5, hspace = 1.1 ) y_title_margin = 1.2 plt.suptitle("Fairness metrics", y = 1.09, fontsize=20) sns.set(style="dark") cols = fair_metrics.columns.values obj = fair_metrics.loc['objective'] if metricvalue == "Theil Index": size_rect = [0.5] rect = [-0.1] bottom = [-0.1] top = [2] bound = [[-0.1,0.1]] elif metricvalue == "Disparate Impact": size_rect = [0.4] rect = [0.8] bottom = [0] top = [2] bound = [[-0.1,0.1]] elif metricvalue == "Statistical Parity Difference": size_rect = [0.2] rect = [-0.1] bottom = [-1] top = [1] bound = [[-0.1,0.1]] #display(Markdown("### Check bias metrics :")) #display(Markdown("A model can be considered bias if just one of these five metrics show that this model is biased.")) for attr in fair_metrics.index[0:len(fair_metrics)].values: #display(Markdown("#### For the %s attribute :"%attr)) check = [bound[i][0] < fair_metrics.loc[attr][i] < bound[i][1] for i in range(0,1)] #display(Markdown("With default thresholds, bias against unprivileged group detected in **%d** out of 5 metrics"%(5 - sum(check)))) for i in range(0,1): plt.subplot(1, 1, i+1) xx = fair_metrics.index[1:len(fair_metrics)].values.tolist() yy = fair_metrics.iloc[1:len(fair_metrics)][cols[i]].values.tolist() palette = sns.color_palette('husl', len(xx)) ax = sns.pointplot(x=fair_metrics.index[1:len(fair_metrics)], y=yy, palette=palette, hue=xx) index = 0 for p in zip(ax.get_xticks(), yy): if (p[1] > 2.0): _color = palette.as_hex()[index] _val = 'Outlier(' + str(round(p[1],3)) + ')' ax.text(p[0]-0.5, 0.02, _val, color=_color) else: ax.text(p[0], p[1]+0.05, round(p[1],3), color='k') index = index + 1 plt.ylim(bottom[i], top[i]) plt.setp(ax.patches, linewidth=0) ax.get_xaxis().set_visible(False) ax.legend(loc='right', bbox_to_anchor=(1, 0.8), ncol=1) ax.add_patch(patches.Rectangle((-5,rect[i]), 10, size_rect[i], alpha=0.3, facecolor="green", linewidth=1, linestyle='solid')) # plt.axhline(obj[i], color='black', alpha=0.3) plt.title(cols[i], fontname="Times New Roman", size=20,fontweight="bold") ax.set_ylabel('') ax.set_xlabel('') return fig # ---------------------------- def getDriftDistribution(feature, dataframe, newdataframe=pd.DataFrame()): try: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import scipy from scipy import stats from scipy.stats import norm import matplotlib.gridspec as gridspec import math import io, base64, urllib np.seterr(divide='ignore', invalid='ignore') from appbe.eda import ux_eda
eda_obj = ux_eda() try: plt.clf() except: pass plt.rcParams.update({'figure.max_open_warning': 0}) sns.set(color_codes=True) pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] if len(feature) > 4: numneroffeatures = len(feature) plt.figure(figsize=(10, numneroffeatures*2)) else: plt.figure(figsize=(10,5)) for i in enumerate(feature): dataType = dataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: dataframe[i[1]] = pd.Categorical(dataframe[i[1]]) dataframe[i[1]] = dataframe[i[1]].cat.codes dataframe[i[1]] = dataframe[i[1]].astype(int) dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mode()[0]) else: dataframe[i[1]] = dataframe[i[1]].fillna(dataframe[i[1]].mean()) plt.subplots_adjust(hspace=0.5, wspace=0.7, top=1) plt.subplot(math.ceil((len(feature) / 2)), 2, i[0] + 1) distname, sse = eda_obj.DistributionFinder(dataframe[i[1]]) try: ax = sns.distplot(dataframe[i[1]], label=distname) ax.legend(loc='best') if newdataframe.empty == False: dataType = newdataframe[i[1]].dtypes if dataType not in pandasNumericDtypes: newdataframe[i[1]] = pd.Categorical(newdataframe[i[1]]) newdataframe[i[1]] = newdataframe[i[1]].cat.codes newdataframe[i[1]] = newdataframe[i[1]].astype(int) newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mode()[0]) else: newdataframe[i[1]] = newdataframe[i[1]].fillna(newdataframe[i[1]].mean()) distname, sse = distribution.DistributionFinder(newdataframe[i[1]]) ax = sns.distplot(newdataframe[i[1]], label=distname) ax.legend(loc='best') except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) pass buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) string = base64.b64encode(buf.read()) uri = urllib.parse.quote(string) return uri except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def getCategoryWordCloud(df): labels = df.Label.unique() df_output = pd.DataFrame() tcolumns=['text'] for label in labels: df2 = df[df['Label'] == label] df2 = df2.reset_index() wordcloud,df_text = getWordCloud(df2,tcolumns) newrow = {'Label':label,'wordCloud':wordcloud} df_output = df_output.append(newrow,ignore_index=True) return(df_output) def getHighlyCorrelatedFeatureCharts(df, df_top): numOfRows = df.shape[0] cratio = 0.01 if (numOfRows < 1000): cratio = 0.2 elif (numOfRows < 10000): cratio = 0.1 elif (numOfRows < 100000): cratio = 0.01 barcolor = ["red", "green", "blue", "goldenrod", "magenta"] ffig = make_subplots(rows=2, cols=3) height = 800 rowno = 1 colno = 1 featureCharts = [] try: for index, row in df_top.iterrows(): feature1 = row['FEATURE_1'] feature2 = row['FEATURE_2'] df_temp = df[[feature1, feature2]] feature1data = df_temp[feature1] feature2data = df_temp[feature2] nUnique = len(feature1data.unique().tolist()) if nUnique / numOfRows >= cratio: feature1type = 'Continous' else: feature1type = 'Category' nUnique = len(feature2data.unique().tolist()) if nUnique / numOfRows >= cratio: feature2type = 'Continous' else: feature2type = 'Category' charttype = 0 if feature1type == 'Continous' and feature2type == 'Continous': df_temp[feature1] = pd.qcut(df_temp[feature1], q=8, duplicates='drop',precision=0) df_temp[feature1] = df_temp[feature1].astype(str).str.strip('()[]') feature1type = 'Category' xaxis = feature1 yaxis = feature2 charttype = 1 if feature1type == 'Category' and feature2type == 'Continous': xaxis = feature1 yaxis = feature2 charttype = 1 if feature1type == 'Continous' and feature2type == 'Category': xaxis = feature1 #xaxis = feature2 yaxis = feature2 #yaxis = feature1 charttype = 1 if feature1type == 'Category' and feature2type == 'Category': if (len(feature1data.unique().tolist()) < len(feature2data.unique().tolist())): xaxis = feature1 #xaxis = feature2 yaxis = feature2 #yaxis = feature1 else: xaxis = feature1 yaxis = feature2 if (len(df_temp[xaxis].unique().tolist()) > 5): df_temp[xaxis] = pd.qcut(df_temp[xaxis], q=5, duplicates='drop',precision=0) df_temp[xaxis] = df_temp[xaxis].astype(str).str.strip('()[]') if (len(df_temp[yaxis].unique().tolist()) > 5): df_temp[yaxis] = pd.qcut(df_temp[yaxis], q=3, duplicates='drop',precision=0) df_temp[yaxis] = df_temp[yaxis].astype(str).str.strip('()[]') charttype = 2 # if feature1type == 'Category' and feature2type == 'Category': if charttype == 2: uniqueclasses = df_temp[yaxis].unique().tolist() cfig = go.Figure() i = 1 for x in uniqueclasses: df_temp3 = df_temp.loc[df_temp[yaxis] == x] df_temp2 = df_temp3.groupby(xaxis, as_index=False)[yaxis].count() if df_temp2[xaxis].dtypes == "object": df_temp2 = df_temp2.set_index(xaxis).reindex( natsorted(df_temp2[xaxis].tolist(), key=lambda y: y.lower())).reset_index() xaxis_data = df_temp2[xaxis].tolist() yaxis_data = df_temp2[yaxis].tolist() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name=x, marker_color=barcolor[i])) i = i + 1 if i == 5: break cfig.update_layout(barmode='stack', xaxis_title=xaxis, yaxis_title=yaxis) bargraph = cfig.to_html(full_html=False, default_height=450, default_width=400) featureCharts.append(bargraph) if charttype == 1: df_temp2 = df_temp.groupby(xaxis, as_index=False)[yaxis].mean() if df_temp2[xaxis].dtypes == "object": df_temp2 = df_temp2.set_index(xaxis).reindex( natsorted(df_temp2[xaxis].tolist(), key=lambda y: y.lower())).reset_index() xaxis_data = df_temp2[xaxis].tolist() yaxis_data = df_temp2[yaxis].tolist() cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Primary Product', marker_color='blue')) cfig.update_layout(xaxis_title=xaxis, yaxis_title=yaxis) bargraph = cfig.to_html(full_html=False, default_height=450, default_width=400) featureCharts.append(bargraph) colno += 1 if colno > 3: colno = 1 rowno += 1 except Exception as e: print(e) return (featureCharts) # EDA Visualization changes # ---------------------------- def getFeatureCharts(df, graphType, d3_url,mpld3_url): featureCharts = [] feature1 = df.columns[0] feature2 = df.columns[1] import seaborn as sns import mpld3 fig, ax = plt.subplots(figsize=[10,5]) if graphType == 'marker': df.plot(ax=ax, marker='o') # df[['age','education-num']].plot(ax=ax, marker='o') if graphType == 'area': df.plot(ax=ax, kind ="area") # df[['education-num','age']].plot(ax=ax, kind ="area") # UIprb if graphType == 'hexbin': df.plot.hexbin(ax=ax, x=feature1, y=feature2, gridsize=2) if graphType == 'boxplot': plt.boxplot(df) if graphType == 'scatter': ax.scatter(df[feature1], df[feature2]) if graphType == 'regplot': ax = sns.regplot(x= feature1, y=feature2, data= df, fit_reg = False, scatter_kws={"alpha": 0.5}) if graphType == 'lineplot': ax = sns.lineplot(x= feature1, y=feature2, data= df) if graphType == 'barplot': ax = sns.barplot(x= feature1, y=feature2, data= df) # ax = sns.barplot(x= 'age', y='fnlwgt', data= df) #Start_prb ax.legend() ax.set_xlabel(feature1) ax.set_ylabel(feature2) #print(d3_url) #print(mpld3_url) html_graph = mpld3.fig_to_html(fig,d3_url=d3_url,mpld3_url=mpld3_url) if graphType == 'kde': ax = sns.pairplot(df, kind="kde", height=4, x_vars=feature1,y_vars = feature2) # ax = sns.pairplot(df[['age','fnlwgt']], kind="kde") html_graph = mpld3.fig_to_html(ax.fig) if graphType == 'relplot': sns.set(style ="darkgrid") ax = sns.relplot(x =feature1, y =feature2, data = df) html_graph = mpld3.fig_to_html(ax.fig) featureCharts.append(html_graph) return (featureCharts) # ---------------------------- def MostCommonWords(stopwords, inputCorpus, num_of_words=10): try: from collections import Counter new = inputCorpus.str.split() new = new.values.tolist() corpus = [word for i in new for word in i if word not in stopwords] counter = Counter(corpus) most = counter.most_common() x, y = [], [] for word, count in most[: num_of_words + 1]: x.append(word) y.append(count) return pd.DataFrame([x, y], index=['most_common_words', 'freq']).T except: print("exception", sys.exc_info()) return False def removeFeature(df): featuresList = df.columns.values.tolist() modelFeatures = featuresList.copy() datetimeFeatures = [] sequenceFeatures = [] unimportantFeatures = [] featuresRatio = {} for i in featuresList: check = match_date_format(df[i]) if check == True: modelFeatures.remove(i) continue seq_check = check_seq_feature(df[i]) if seq_check == True: modelFeatures.remove(i) continue ratio = check_category(df[i]) if ratio != 0: featuresRatio[i] = ratio else: modelFeatures.remove(i) return featuresList, modelFeatures def check_category(data): total_record = len(data) nUnique = len(data.unique().tolist()) if nUnique == 1: return 0 ratio = nUnique / total_record return (ratio) def check_seq_feature(data): if data.dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: total_record = data.count() count = (data - data.shift() == 1).sum() if ((total_record - count) == 1): return True return False def match_date_format(data): data = data.astype(str) beforecheckcount = (data.count()*80)/100 #####YYYY-MM-DD HH:MM:SS#### check1 = data[data.str.match( r'(^\\d\\d\\d\\d-(0?[1-9]|1[0-2
])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check1.count() if (beforecheckcount <= aftercheckcount): return True #####MM/DD/YYYY HH:MM#### check2 = data[data.str.match( r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\\d\\d\\d\\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check2.count() if (beforecheckcount <= aftercheckcount): return True #####DD-MM-YYYY HH:MM#### check2 = data[data.str.match( r'(^(0?[1-9]|[12][0-9]|3[01])-(0?[1-9]|1[0-2])-(\\d\\d\\d\\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check2.count() if (beforecheckcount <= aftercheckcount): return True #####YYYY/MM/DD#### check2 = data[data.str.match(r'(^\\d\\d\\d\\d/(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])$)') == True] aftercheckcount = check2.count() if (beforecheckcount <= aftercheckcount): return True #####MM/DD/YYYY#### check2 = data[data.str.match(r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\\d\\d\\d\\d)$)') == True] aftercheckcount = check2.count() if (beforecheckcount <= aftercheckcount): return True return False def check_text_features(df, modelFeatures): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] textFeature = [] for i in enumerate(modelFeatures): dataType = df[i[1]].dtypes numOfRows = df.shape[0] if dataType not in aionNumericDtypes: if dataType != 'bool': nUnique = len(df[i[1]].unique().tolist()) textnumbericratio = 0.01 if (numOfRows < 1000): textnumbericratio = 0.2 elif (numOfRows < 10000): textnumbericratio = 0.1 elif (numOfRows < 100000): textnumbericratio = 0.01 if nUnique / numOfRows >= textnumbericratio: textFeature.append(i[1]) return (textFeature) def getWordCloud(df, text_columns): df_text = pd.DataFrame() stopwords = set(STOPWORDS) if (len(text_columns) > 1): df_text['combined'] = df[text_columns].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) features = ['combined'] else: df_text[['combined']] = df[text_columns] features = ['combined'] df_text[features[0]] = df_text[features[0]].fillna("NA") textCorpus = df_text[features[0]] from text import TextProcessing tp = TextProcessing.TextProcessing() preprocessed_text = tp.transform(textCorpus) df_text['combined'] = preprocessed_text df_text_list = df_text.values.tolist() comment_words = "" for val in df_text_list: val = str(val) tokens = val.split() for i in range(len(tokens)): tokens[i] = tokens[i].lower() comment_words += " ".join(tokens) + " " wordcloud = WordCloud(stopwords=stopwords).generate(comment_words) try: plt.clf() except: pass try: plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.tight_layout(pad=0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image_64='' return (image_64, df_text) def getTopTextFeatures(df_text): stopwords = set(STOPWORDS) commonfeatures = MostCommonWords(stopwords, df_text['combined']) xaxis_data = commonfeatures['most_common_words'].tolist() yaxis_data = commonfeatures['freq'].tolist() import plotly.graph_objects as go cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance')) cfig.update_layout(barmode='stack', xaxis_title='Features') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000) return (bargraph) def getPCATop10Features(df, modelFeatures): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] categorial_features = [] for i in enumerate(modelFeatures): dataType = df[i[1]].dtypes if dataType not in aionNumericDtypes: categorial_features.append(i[1]) df[i[1]] = pd.Categorical(df[i[1]]) df[i[1]] = df[i[1]].cat.codes df[i[1]] = df[i[1]].astype(int) df[i[1]] = df[i[1]].fillna(df[i[1]].mode()[0]) else: df[i[1]] = df[i[1]].fillna(df[i[1]].mean()) from sklearn.decomposition import PCA pca = PCA(n_components=2).fit(df) map = pd.DataFrame(pca.components_, columns=modelFeatures) map = map.diff(axis=0).abs() map = map.iloc[1] map = map.sort_values(ascending=False).head(10) yaxis_data = map.tolist() xaxis_data = map.index.values.tolist() import plotly.graph_objects as go cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data, y=yaxis_data, name='Feature Importance')) cfig.update_layout(barmode='stack', xaxis_title='Features') bargraph = cfig.to_html(full_html=False, default_height=450, default_width=1000) return (bargraph) def getCorrelationMatrix(df): try: #from dython.nominal import associations if len(df.columns) > 25: df3 = df[df.columns[0:24]] else: df3 = df.copy() cor_mat= associations(df3,compute_only=True) cor_mat=cor_mat['corr'] #cor_mat = df3.corr() cor_mat = cor_mat.astype(float).round(2) #print(cor_mat) z = cor_mat.values.tolist() fig = ff.create_annotated_heatmap(z, x=cor_mat.columns.tolist(), y=cor_mat.index.tolist(), annotation_text=z, colorscale='Blues') fig.layout.yaxis.automargin = True correlationgraph = fig.to_html(full_html=True, default_height=450, default_width=1000) except Exception as e: print(e) correlationgraph = '' return (correlationgraph) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from appbe import exploratory_Analysis as ea import pandas as pd from appbe.checkConfiguration import start_check import json import os import ast import time import numpy as np from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases # from modelTraining.models import view from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe.s3buckets import get_s3_bucket from appbe.gcsbuckets import get_gcs_bucket from appbe import help_Text as ht def is_value_na( value): if isinstance( value, str): return value.strip().lower() in ['','na','none'] return not value def set_ts_preprocessing(request,configSettingsJson): #Task 13052 Timeseries Preprocessing interpolationType = request.POST.get('interpolationType') ts_config = configSettingsJson['basic']['preprocessing']['timeSeriesForecasting'] for key in ts_config['interpolation']: configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['interpolation'][ key] = 'False' if interpolationType != 'na': configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['interpolation'][ interpolationType] = 'True' ts_config['rollingWindow'] = request.POST.get('rollingWindow') if ts_config['rollingWindow'] == 'True': ts_config['rollingWindowSize'] = request.POST.get('rollWindowsize') aggregation = request.POST.get('aaggregationType') for key in ts_config['aggregation']['type']: ts_config['aggregation']['type'][key]='False' if is_value_na(aggregation) == False: ts_config['aggregation']['type'][aggregation] = 'True' granularityType = request.POST.get('unitType') granularitySize = request.POST.get('garnularitysize') for key in ts_config['aggregation']['granularity']['unit']: ts_config['aggregation']['granularity']['unit'][key] = 'False' ts_config['aggregation']['granularity']['unit'][granularityType]='True' ts_config['aggregation']['granularity']['size'] = granularitySize configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']= ts_config return configSettingsJson def update_granularity(configSettingsJson,datapath=None): try: from AION.appbe.utils import set_true_option import pandas as pd from pathlib import Path MINUTES = 60 if not is_value_na(configSettingsJson['basic']['dateTimeFeature']): if not datapath: datapath = configSettingsJson['basic']['dataLocation'] if Path( datapath).exists(): df = pd.read_csv(datapath, nrows=2) if isinstance( configSettingsJson['basic']['dateTimeFeature'], list): datetime_feature = configSettingsJson['basic']['dateTimeFeature'][0] else: datetime_feature = configSettingsJson['basic']['dateTimeFeature'] datetime = pd.to_datetime(df[ datetime_feature]) if len(datetime) > 1: time_delta = (datetime[1] - datetime[0]).total_seconds() granularity_unit = configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['unit'] if time_delta < (1 * MINUTES): set_true_option(granularity_unit, key='second') elif time_delta < (60 * MINUTES): set_true_option(granularity_unit, key='minute') elif time_delta < (24 * 60 * MINUTES): set_true_option(granularity_unit, key='hour') elif time_delta < (7 * 24 * 60 * MINUTES): set_true_option(granularity_unit, key='day') elif time_delta < (30 * 24 * 60 * MINUTES): set_true_option(granularity_unit, key='week') elif time_delta < (365 * 24 * 60 * MINUTES): set_true_option(granularity_unit, key='month') else: set_true_option(granularity_unit, key='year') return configSettingsJson except Exception as e: print(f'\\nIgnoring error during granularity unit conversion\\n:{str(e)}') return configSettingsJson def save(request): try: status = 'pass' msg = "" DEPLOY_LOCATION = request.session['deploylocation'] if request.method == 'POST': submittype = request.POST.get('BasicSubmit') if submittype != 'BasicDefault': filterjson = 'NA' timegroupingjson = 'NA' groupingjson = 'NA' if request.POST.get('filters') != '': filterjson = str(json.loads(request.POST.get('filters'))) if request.POST.get('timegroup') != '': timegroupingjson = str(json.loads(request.POST.get('timegroup'))) if request.POST.get('idgroup') != '': groupingjson = str(json.loads(request.POST.get('idgroup'))) configFile = request.session['config_json'] f = open(configFile, "r") configSettings = f.read() f.close() configSettings
Json = json.loads(configSettings) temp = {} # Retraing settings changes # -------- S T A R T -------- prbType = request.POST.get('ProblemType') if prbType is None: prbType = request.POST.get('tempProblemType') # temp['ProblemType'] = request.POST.get('ProblemType') # request.session['Problem'] = request.POST.get('ProblemType') temp['ProblemType'] = prbType request.session['Problem'] = request.POST.get('ProblemType') # --------------------------- temp['ModelName'] = request.session['usecaseid'] temp['Version'] = str(request.session['ModelVersion']) temp['InputFeatures'] = request.POST.getlist('IncInputFeatures') temp['dataLocation'] = str(request.session['datalocation']) onlinelearning=request.POST.get('onlineLearning',None) if (onlinelearning is not None): if onlinelearning.lower() == 'onlinelearning': configSettingsJson['basic']['onlineLearning'] = 'True' if onlinelearning.lower() == 'distributedlearning': configSettingsJson['basic']['distributedLearning'] = 'True' temp['InputFeatures'] = request.POST.getlist('IncInputFeatures') temp['TargetFeatures'] = request.POST.getlist('TargetFeatures') temp['DateTimeFeatures'] = '' temp['IndexFeatures'] = '' for x in configSettingsJson['advance']['profiler']['normalization'].keys(): configSettingsJson['advance']['profiler']['normalization'][x] = 'False' configSettingsJson['advance']['profiler']['normalization']['standardScaler'] = 'True' for x in configSettingsJson['advance']['profiler']['numericalFillMethod'].keys(): configSettingsJson['advance']['profiler']['numericalFillMethod'][x] = 'False' configSettingsJson['advance']['profiler']['numericalFillMethod']['Mean'] = 'True' if onlinelearning.lower() == 'distributedlearning': for x in configSettingsJson['advance']['profiler']['categoricalFillMethod'].keys(): configSettingsJson['advance']['profiler']['categoricalFillMethod'][x] = 'False' configSettingsJson['advance']['profiler']['categoricalFillMethod']['MostFrequent'] = 'True' for x in configSettingsJson['advance']['profiler']['categoryEncoding'].keys(): configSettingsJson['advance']['profiler']['categoryEncoding'][x] = 'False' configSettingsJson['advance']['profiler']['categoryEncoding']['OneHotEncoding'] = 'True' configSettingsJson['advance']['profiler']['normalization']['standardScaler'] = 'False' for x in configSettingsJson['advance']['selector']['featureEngineering'].keys(): if x != 'numberofComponents': configSettingsJson['advance']['selector']['featureEngineering'][x] = 'False' elif prbType == 'llmFineTuning': if configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'False': temp['InputFeatures'] = request.POST.getlist('IncInputFeatures') temp['TargetFeatures'] = request.POST.getlist('TargetFeatures') contextFeatures = request.POST.getlist('contextFeatures') configSettingsJson['basic']['contextFeature'] = ",".join([model for model in contextFeatures]) temp['DateTimeFeatures'] = '' temp['IndexFeatures'] = '' if request.POST.get('promptfriendlyname') != '': configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt'] = request.POST.get('promptfriendlyname') else: configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt'] = 'Instruction' if request.POST.get('responsefriendlyname') != '': configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response'] = request.POST.get('responsefriendlyname') else: configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response'] = '' else: if request.session['datatype'] == 'LLM_Document': for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'].keys(): configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'][x] = 'False' configSettingsJson['basic']['preprocessing']['llmFineTuning']['document'][request.POST.get('dataPreprocessing')] = 'True' if request.session['datatype'] == 'LLM_Code': for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'].keys(): configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'][x] = 'False' configSettingsJson['basic']['preprocessing']['llmFineTuning']['objective'][request.POST.get('llmObjective')] = 'True' for x in configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'].keys(): configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'][x] = 'False' configSettingsJson['basic']['preprocessing']['llmFineTuning']['code'][request.POST.get('dataPreprocessing')] = 'True' else: configSettingsJson['basic']['onlineLearning'] = 'False' configSettingsJson['basic']['distributedLearning'] = 'False' temp['InputFeatures'] = request.POST.getlist('InputFeatures') temp['TargetFeatures'] = request.POST.getlist('TargetFeatures') temp['DateTimeFeatures'] = request.POST.getlist('DateTimeFeatures') temp['IndexFeatures'] = request.POST.getlist('IndexFeatures') if (configSettingsJson['basic']['algorithms']['timeSeriesAnomalyDetection']['AutoEncoder'] == 'True'):#task 11997 if (request.POST.get('analysis') == 'MultiVariate'): configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] = 'True' #task 11997 configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] = 'False' #task 11997 else: #print(configSettingsJson) configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] = 'True' configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] = 'False' #task 11997 temp['UserID'] = '' temp['ItemID'] = '' temp['rating'] = '' temp['secondDocFeature'] = '' temp['firstDocFeature'] = '' temp['invoiceNoFeature'] = '' temp['itemFeature'] = '' model = '' if temp['ProblemType'].lower() == 'recommendersystem': model = request.POST.get('MachineLearningModels') if model == 'ItemRating': temp['ProblemType'] = 'RecommenderSystem' temp['MachineLearningModels'] = ['ItemRating'] temp['DeepLearningModels'] = '' temp['UserID'] = request.POST.get('UserID') temp['ItemID'] = request.POST.get('ItemID') temp['rating'] = request.POST.get('rating') temp['InputFeatures'] = [] temp['InputFeatures'].append(temp['UserID']) temp['InputFeatures'].append(temp['ItemID']) temp['InputFeatures'].append(temp['rating']) if model == 'TextSimilarity-Siamese': temp['ProblemType'] = 'recommenderSystem' temp['MachineLearningModels'] = ['TextSimilarity-Siamese'] temp['secondDocFeature'] = request.POST.get('secondDocFeature') temp['firstDocFeature'] = request.POST.get('firstDocFeature') temp['InputFeatures'] = [] temp['InputFeatures'].append(temp['secondDocFeature']) temp['InputFeatures'].append(temp['firstDocFeature']) if model == 'AssociationRules-Apriori': temp['ProblemType'] = 'recommenderSystem' temp['DeepLearningModels'] = '' temp['MachineLearningModels'] = ['AssociationRules-Apriori'] temp['invoiceNoFeature'] = request.POST.get('associationRuleInvoiceNo') temp['itemFeature'] = request.POST.get('associationRuleItem') temp['InputFeatures'] = [] temp['InputFeatures'].append(temp['invoiceNoFeature']) temp['InputFeatures'].append(temp['itemFeature']) temp['ScoringCriteria'] = request.POST.get('ScoringCriteria') if temp['ProblemType'].lower() not in ['recommendersystem','textsimilarity','associationrules','llmfinetuning']: temp['MachineLearningModels'] = request.POST.getlist('MachineLearningModels') temp['DeepLearningModels'] = request.POST.getlist('SelectDeepLearningModels') elif temp['ProblemType'].lower() == 'llmfinetuning': temp['MachineLearningModels'] = request.POST.getlist('MachineLearningModels') model = temp['MachineLearningModels'][0] supportedModelsSize = configSettingsJson['basic']['modelSize'][temp['ProblemType']][model] selectedModelSize = request.POST.get('modelSize') for x in supportedModelsSize.keys(): configSettingsJson['basic']['modelSize'][temp['ProblemType']][model][x] = 'False' configSettingsJson['basic']['modelSize'][temp['ProblemType']][model][selectedModelSize] = 'True' temp['noofforecasts'] = request.POST.get('noofforecasts') temp['inlierLabels'] = request.POST.get('inlierLabels') #temp['filterExpression'] = request.POST.get('filterExpression') if temp['ProblemType'].lower() in ['clustering','topicmodelling','similarityidentification','contextualsearch']: temp['TargetFeatures'] = '' configSettingsJson['basic']['modelName'] = temp['ModelName'] configSettingsJson['basic']['modelVersion'] = temp['Version'] configSettingsJson['basic']['dataLocation'] = str(temp['dataLocation']) configSettingsJson['basic']['deployLocation'] = DEPLOY_LOCATION if configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'False': configSettingsJson['basic']['trainingFeatures'] = ",".join([model for model in temp['InputFeatures']]) configSettingsJson['basic']['dateTimeFeature'] = ",".join([model for model in temp['DateTimeFeatures']]) configSettingsJson['basic']['targetFeature'] = ",".join([model for model in temp['TargetFeatures']]) configSettingsJson['basic']['indexFeature'] = ",".join([model for model in temp['IndexFeatures']]) if filterjson == 'NA': configSettingsJson['basic']['filter'] = 'NA' else: configSettingsJson['basic']['filter'] = eval(filterjson) if timegroupingjson == 'NA': configSettingsJson['basic']['timegrouper'] = 'NA' else: configSettingsJson['basic']['timegrouper'] = eval(timegroupingjson) if groupingjson == 'NA': configSettingsJson['basic']['group'] = 'NA' else: configSettingsJson['basic']['group'] = eval(groupingjson) problemtyp = configSettingsJson['basic']['analysisType'] for i in list(problemtyp.keys()): configSettingsJson['basic']['analysisType'][i]='False' algorithm = configSettingsJson['basic']['algorithms'] for i in list(algorithm.keys()): for x in list(configSettingsJson['basic']['algorithms'][i].keys()): if x not in ['textSimilarityConfig','itemRatingConfig','associationRulesConfig','textSummarization']: configSettingsJson['basic']['algorithms'][i][x] = 'False' configSettingsJson['basic']['analysisType'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]] = 'True' # configSettingsJson['basic']['problem_type'] = temp['ProblemType'] scoring = configSettingsJson['basic']['scoringCriteria'] for i in list(scoring.keys()): for x in list(configSettingsJson['basic']['scoringCriteria'][i].keys()): configSettingsJson['basic']['scoringCriteria'][i][x] = 'False' if temp['ProblemType'].lower() in ["classification","regression","survivalanalysis","similarityidentification","timeseriesforecasting","contextualsearch"]: #task 11997 configSettingsJson['basic']['scoringCriteria'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][temp['ScoringCriteria']] = 'True' # configSettingsJson['basic']['problem_type'] = temp['ProblemType'] # configSettingsJson['basic']['scoringCriteria'] = temp['ScoringCriteria'] configSettingsJson['basic']['noofforecasts'] = temp['noofforecasts'] configSettingsJson['basic']['inlierLabels'] = temp['inlierLabels'] #configSettingsJson['basic']['filterExpression'] = temp['filterExpression'] configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['userID'] = temp['UserID'] configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['itemID'] = temp['ItemID'] configSettingsJson['basic']['algorithms']['recommenderSystem']['itemRatingConfig']['rating'] = temp['rating'] configSettingsJson['basic']['algorithms']['recommenderSystem']['textSimilarityConfig']['baseFeature'] = temp['firstDocFeature'] configSettingsJson['basic']['algorithms']['recommenderSystem']['textSimilarityConfig']['comparisonFeature'] = temp['secondDocFeature'] configSettingsJson['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] = temp['invoiceNoFeature'] configSettingsJson['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'] = temp['itemFeature'] for x in temp['MachineLearningModels']: if temp['ProblemType'].lower() =='associationrules' or temp['ProblemType'].lower() == 'textsimilarity': temp['ProblemType'] = 'recommenderSystem' if request.POST.get('SearchType') != 'NAS' and request.POST.get('SearchType') != 'GoogleModelSearch'and request.POST.get('SearchType') != 'AutoGluon': configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][x] = 'True' #for y in temp['DeepLearningModels']: # configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][y] = 'True' configSettingsJson['basic']['output']['profilerStage'] = 'True' config
SettingsJson['basic']['output']['selectorStage'] = 'True' for key in configSettingsJson['advance']['profiler']['textConversionMethod']: configSettingsJson['advance']['profiler']['textConversionMethod'][key] = 'False' if temp['ProblemType'].lower() != 'topicmodelling': configSettingsJson['advance']['profiler']['textConversionMethod']['TF_IDF'] ='True' else: configSettingsJson['advance']['profiler']['textConversionMethod']['CountVectors'] ='True' #print('============================') #print(temp['ProblemType'].lower()) #print('============================') if temp['ProblemType'].lower() == 'textsummarization': configSettingsJson['basic']['algorithms']['textSummarization']['Text Summarization'] = 'True' configSettingsJson['basic']['textSummarization']['KeyWords'] = str(request.POST.get('addKeywordsForSummarization')) configSettingsJson['basic']['textSummarization']['pathForKeywordFile'] = str(request.POST.get('DataFilePath')) if temp['ProblemType'].lower() not in ['recommendersystem','textsummarization','llmfinetuning']: if configSettingsJson['basic']['onlineLearning'] != 'True' and configSettingsJson['basic']['distributedLearning'] != 'True': jsonarr =request.POST.get('jsonarr') res = ast.literal_eval(jsonarr) for x in res: if x['type'].lower() == 'text': configSettingsJson['advance']['selector']['featureSelection']['allFeatures'] = 'False' configSettingsJson['advance']['selector']['featureSelection']['statisticalBased'] = 'True' configSettingsJson['advance']['selector']['featureSelection']['modelBased'] = 'False' if len(request.POST.get('traindfeatures').split(',')) > 30: configSettingsJson['advance']['selector']['featureSelection']['allFeatures'] = 'False' configSettingsJson['advance']['selector']['featureSelection']['statisticalBased'] = 'True' configSettingsJson['advance']['selector']['featureSelection']['modelBased'] = 'False' configSettingsJson['advance']['profiler']['featureDict'] = res configSettingsJson['basic']['indexFeature'] = request.POST.get('indexfeatures') configSettingsJson['basic']['trainingFeatures'] = request.POST.get('traindfeatures') configSettingsJson['basic']['dateTimeFeature'] = request.POST.get('datefeatures') if request.POST.get('SearchType') == 'GoogleModelSearch': configSettingsJson['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]]['GoogleModelSearch_DNN'] = 'True' configSettingsJson['basic']['output']['profilerStage']= 'True' #---------- Time series Changes Task 13052 ----------------- if temp['ProblemType'].lower() == 'timeseriesforecasting': configSettingsJson = set_ts_preprocessing(request,configSettingsJson) status,msg= start_check(configSettingsJson) updatedConfigSettings = json.dumps(configSettingsJson) updatedConfigFile = request.session['config_json'] with open(updatedConfigFile, "w") as fpWrite: fpWrite.write(updatedConfigSettings) fpWrite.close() request.session['ModelStatus'] = 'Not Trained' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 1 from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'ProblemType',prbType) UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Configured') context = {'tab': 'configure', 'temp': temp,'advconfig': configSettingsJson, 'basic_status_msg': 'Configuration Done', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'], 'selected': 'modeltraning','training':True,'basic_help':ht.basic_help} # return render(request, 'basicconfig.html', context) if submittype == 'BasicDefault': temp = {} temp['ModelName'] = request.session['UseCaseName'] temp['Version'] = request.session['ModelVersion'] dataLocation = str(request.session['datalocation']) df = pd.read_csv(dataLocation, encoding='latin1') featuresList = df.columns.values.tolist() datetimeFeatures = [] sequenceFeatures = [] unimportantFeatures = [] featuresRatio = {} for i in featuresList: check = ea.match_date_format(df[i]) if check == True: datetimeFeatures.append(i) unimportantFeatures.append(i) seq_check = ea.check_seq_feature(df[i]) if seq_check == True: sequenceFeatures.append(i) unimportantFeatures.append(i) ratio = ea.check_category(df[i]) if ratio != 0: featuresRatio[i] = ratio else: unimportantFeatures.append(i) targetFeature = min(featuresRatio, key=featuresRatio.get) unimportantFeatures.append(targetFeature) config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = datetimeFeatures config['sequenceFeatures'] = sequenceFeatures config['FeaturesList'] = featuresList config['unimportantFeatures'] = unimportantFeatures config['targetFeature'] = targetFeature request.session['currentstate'] = 1 context = {'tab': 'configure', 'temp': temp, 'config': config, 'currentstate': request.session['currentstate'], 'selected': 'modeltraning'} except Exception as e: print(e) import sys exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return status,msg,context def openbasicconf(request): # 10012:Decision Threshold related Changes data_is_under_RAM_threshold = True updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) temp = {} # temp['ModelName'] = request.session['UseCaseName'] # temp['Version'] = request.session['ModelVersion'] if request.session['datatype'] == 'Video' or request.session['datatype'] == 'Image' or request.session['datatype'] == 'Document': folderLocation = str(request.session['datalocation']) dataFile = os.path.join(folderLocation, request.session['csvfullpath']) else: dataFile = str(request.session['datalocation']) # -------------------------------- 10012:Decision Threshold related Changes S T A R T ------------------------------- from appbe.dataIngestion import checkRAMThreshold data_is_under_RAM_threshold = checkRAMThreshold(request.session['datalocation']) # ------------------------------------------------------ E N D ------------------------------------------------------ # Retraing settings changes # -------- S T A R T -------- IsReTrainingCase = False if request.session['IsRetraining'] == 'Yes': IsReTrainingCase = True IsSameFeatures = True # --------------------------- featuresList = configSettingsJson['basic']['featureList'] unimportantFeatures = [] modelfeatures = configSettingsJson['basic']['trainingFeatures'] for x in featuresList: if x not in modelfeatures: unimportantFeatures.append(x) config = {} config['ModelName'] = request.session['usecaseid'] config['Version'] = request.session['ModelVersion'] config['datetimeFeatures'] = configSettingsJson['basic']['dateTimeFeature'] # .split(",") if configSettingsJson['basic']['indexFeature']: config['sequenceFeatures'] = configSettingsJson['basic']['indexFeature'] # .split(",") config['FeaturesList'] = featuresList config['unimportantFeatures'] = unimportantFeatures config['targetFeature'] = configSettingsJson['basic']['targetFeature'].split(",") problemtypes = configSettingsJson['basic']['analysisType'] onlineLearning = configSettingsJson['basic']['onlineLearning'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break #print('123',problem_type) config['ProblemType'] = problem_type # config['ProblemType'] = configSettingsJson['basic']['problem_type'] scoring = configSettingsJson['basic']['scoringCriteria'] scoringCriteria = "" for k in scoring.keys(): if configSettingsJson['basic']['scoringCriteria'][k] == 'True': scoringCriteria = k break config['ScoringCriteria'] = scoringCriteria # config['ProblemType'] = configSettingsJson['basic']['problem_type'] # config['ScoringCriteria'] = configSettingsJson['basic']['scoringCriteria'] selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] if 'NoOfRecords' in request.session: records = request.session['NoOfRecords'] else: records = 'NA' if request.session['finalstate'] <= 1: request.session['finalstate'] = 1 request.session['currentstate'] = 1 # dataFile = str(request.session['datalocation']) # df = pd.read_csv(dataFile,encoding='utf8') if 'NoOfRecords' in request.session: noofforecast = 20 else: noofforecast = 20 config['noofforecasts'] = noofforecast if 'numericFeature' in request.session: numericFeature = request.session['numericFeature'] else: numericFeature = '' problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break scoringCreteria = 'NA' if problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997 for key in configSettingsJson['basic']['scoringCriteria'][problemType]: if configSettingsJson['basic']['scoringCriteria'][problemType][key] == 'True': scoringCreteria = key break selectAlgo = "" if problemType in ['classification','regression','timeSeriesForecasting', 'timeSeriesAnomalyDetection', 'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition','llmFineTuning']: #task 11997 for key in configSettingsJson['basic']['algorithms'][problemType]: if configSettingsJson['basic']['algorithms'][problemType][key] == 'True': if selectAlgo != "": selectAlgo += ',' selectAlgo += key modelSize = '' if problemType == 'llmFineTuning': for key in configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo].keys(): if configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo][key] == 'True': modelSize = key break featuresdict = [feature['feature'] for feature in configSettingsJson['advance']['profiler']['featureDict']] context = {'tab': 'tabconfigure','modelSize':modelSize,'featuresdict':featuresdict, 'configsettings': configSettingsJson, 'temp': temp, 'config': config,'numericFeature':numericFeature,'onlineLearning':onlineLearning, 'noOfRecords': records, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'problemType':problemType,'scoringCreteria':scoringCreteria,'selectAlgo':selectAlgo, 'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','IsSameFeatures':IsSameFeatures,'IsReTrainingCase':IsReTrainingCase,'basic_help':ht.basic_help # 10012:Decision Threshold related changes , 'DLCheckpoint':data_is_under_RAM_threshold} return context def gotoconf(request): selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] try: # 10012:Decision Threshold related Changes data_is_under_RAM_threshold = True ModelName = usecasedetails.objects.get(id=request.session['ModelName']) Version = request.session['ModelVersion'] import os if request.session['datatype'] in ['Video', 'Image','Document','Object']: folderLocation = str(request.session['datalocation']) dataFile = os.path.join(folderLocation, request.session['csvfullpath']) else: dataFile = str(request.session['datalocation']) # -------------------------------- 10012:Decision Threshold related Changes S T A R T ------------------------------- from appbe.dataIngestion import checkRAMThreshold data_is_under_RAM_threshold = checkRAMThreshold(request.session['datalocation']) # ------------------------------------------------------ E N D ------------------------------------------------------ if request.session['datatype'] not in ['LLM_Document','LLM_Code']: from appbe.eda import ux_eda if 'delimiter' not in request.session: request.session['delimiter'] = ',' if 'textqualifier' not in request.session: request.session['textqualifier'] = '"' eda_obj = ux_eda(dataFile,request.session['delimiter'],request.session['textqualifier'],optimize=1) featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catFeatures = eda_obj.getFeatures() else: featuresList = [] featuresList.append('Instruction') datetimeFeatures=[] sequenceFeatures=[] constantFeature=[] textFeature=[] targetFeature='Response' numericCatFeatures = [] numericFeature=[] catFeatures=[] featuresListJson = [] for x in featuresList: featureOperation={} featureOperation['feature'] = x if x in datetimeFeatures: featureOperation['type'] = 'date' featureOperation['fillMethod'] = 'na'
featureOperation['categoryEncoding'] = 'na' elif x in textFeature: featureOperation['type'] = 'text' featureOperation['fillMethod'] = 'na' featureOperation['categoryEncoding'] = 'na' elif x in sequenceFeatures: featureOperation['type'] = 'index' featureOperation['fillMethod'] = 'median' featureOperation['categoryEncoding'] = 'na' elif (x in catFeatures) or (x in constantFeature): featureOperation['type'] = 'categorical' featureOperation['fillMethod'] = 'mode' featureOperation['categoryEncoding'] = 'targetEncoding' else: featureOperation['type'] = 'numerical' featureOperation['fillMethod'] = 'medium' featureOperation['categoryEncoding'] = 'na' featureOperation['outlierDetection'] = 'disable' featureOperation['outlierOperation'] = 'nochange' featureOperation['normalizer'] = 'none' featuresListJson.append(featureOperation) request.session['numericFeature'] = numericFeature records = 0 import os if os.path.isfile(dataFile): for chunk in pd.read_csv(dataFile, chunksize=20000,encoding="utf-8",encoding_errors= 'replace'): records = records+len(chunk) request.session['NoOfRecords'] = records filetimestamp = str(int(time.time())) CONFIG_FILE_PATH = request.session['configfilepath'] config_json_filename = os.path.join(CONFIG_FILE_PATH, 'AION_' + filetimestamp + '.json') outputfile = os.path.join(CONFIG_FILE_PATH, 'AION_OUTPUT_' + filetimestamp + '.json') request.session['outputfilepath'] = str(outputfile) modelname = request.session['usecaseid'] modelname = modelname.replace(" ", "_") DEPLOY_LOCATION = request.session['deploylocation'] request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION, modelname,str(Version),'log','model_training_logs.log') request.session['config_json'] = config_json_filename #request.session['ModelVersion'] = Version request.session['ModelStatus'] = 'Not Trained' # p = Existusecases(DataFilePath=dataFile, DeployPath=DEPLOY_LOCATION, Status='Not Trained', # ConfigPath=config_json_filename, Version=Version, ModelName=ModelName, # TrainOuputLocation=outputfile) # p.save() # from AION_UX import telemetry # telemetry.telemetry_data('UseCaseCreated',modelname+'_'+str(Version),'UseCaseCreated') # request.session['modelid'] = p.id temp = {} temp['ModelName'] = request.session['usecaseid'] temp['Version'] = request.session['ModelVersion'] ''' featuresList = features #df.columns.values.tolist() datetimeFeatures = datetimeFeatures = [] sequenceFeatures = [] unimportantFeatures = [] featuresRatio = {} for i in featuresList: check = ea.match_date_format(df[i]) if check == True: datetimeFeatures.append(i) unimportantFeatures.append(i) seq_check = ea.check_seq_feature(df[i]) if seq_check == True: sequenceFeatures.append(i) unimportantFeatures.append(i) ratio = ea.check_category(df[i]) if ratio != 0: featuresRatio[i] = ratio else: unimportantFeatures.append(i) targetFeature = min(featuresRatio, key=featuresRatio.get) unimportantFeatures.append(targetFeature) ''' unimportantFeatures = list(datetimeFeatures) unimportantFeatures.extend(sequenceFeatures) #unimportantFeatures = list(set(unimportantFeatures) + set(sequenceFeatures)) unimportantFeatures.append(targetFeature) config = {} noofforecast = 20 config['ModelName'] = request.session['usecaseid'] config['Version'] = request.session['ModelVersion'] config['datetimeFeatures'] = datetimeFeatures config['sequenceFeatures'] = sequenceFeatures config['FeaturesList'] = featuresList config['unimportantFeatures'] = unimportantFeatures config['targetFeature'] = targetFeature config['noofforecasts'] = noofforecast DEFAULT_FILE_PATH = request.session['defaultfilepath'] # Retraing settings changes # -------- S T A R T -------- IsReTrainingCase = False if request.session['IsRetraining'] == 'Yes': id = request.session['ModelName'] p = usecasedetails.objects.get(id=id) model = Existusecases.objects.filter(ModelName=p) indexVal = model.count() - 1 configFile = str(model[indexVal].ConfigPath) # configFile = str(model[0].ConfigPath) # request.session['IsRetraining'] = 'No' IsReTrainingCase = True # --------------------------- else: configFile = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) # Retraing settings changes # -------- S T A R T -------- pickDefaultSettings = False IsSameFeatures = False if 'featureList' not in configSettingsJson['basic']: pickDefaultSettings = True IsSameFeatures = True else: if configSettingsJson['basic']['featureList'] == featuresList: pickDefaultSettings = False IsSameFeatures = True else: pickDefaultSettings = True if pickDefaultSettings: # --------------------------- configSettingsJson['basic']['featureList'] = featuresList configSettingsJson['basic']['dateTimeFeature'] = ",".join([feature for feature in datetimeFeatures]) configSettingsJson['basic']['indexFeature'] = sequenceFeatures trainingFeatures = list(set(featuresList) - set(unimportantFeatures)) configSettingsJson['basic']['trainingFeatures'] = ",".join([feature for feature in trainingFeatures]) configSettingsJson['basic']['targetFeature'] = targetFeature if request.session['datatype'].lower() in ['video','image','object','document','llm_document','llm_code']: for x in configSettingsJson['basic']['analysisType'].keys(): configSettingsJson['basic']['analysisType'][x] = 'False' configSettingsJson['basic']['folderSettings']['fileType'] = request.session['datatype'] configSettingsJson['basic']['folderSettings']['labelDataFile'] = request.session['csvfullpath'] configSettingsJson['basic']['folderSettings']['fileExtension'] = request.session['fileExtension'] if request.session['datatype'] in ['LLM_Document','LLM_Code']: configSettingsJson['basic']['analysisType']['llmFineTuning'] = 'True' configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['prompt']='Instruction' configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response']='Response' configSettingsJson['basic']['preprocessing']['llmFineTuning']['unstructuredData'] = 'True' elif request.session['datatype'] == 'Video': configSettingsJson['basic']['analysisType']['videoForecasting'] = 'True' elif request.session['datatype'] == 'Image': configSettingsJson['basic']['analysisType']['imageClassification'] = 'True' elif request.session['datatype'] == 'Object': configSettingsJson['basic']['analysisType']['objectDetection'] = 'True' elif request.session['datatype'].lower() == 'document': df = pd.read_csv(dataFile, encoding='utf8',sep=request.session['delimiter'],quotechar=request.session['textqualifier'],nrows=100) noOfEmotyLevels = 0 shape = df.shape if shape[1] == 2: noOfEmotyLevels = df['Label'].isnull().sum() #print(noOfEmotyLevels) if noOfEmotyLevels == 100: configSettingsJson['basic']['analysisType']['topicModelling'] = 'True' else: configSettingsJson['basic']['analysisType']['classification'] = 'True' else: if 'uploadfiletype' in request.session: configSettingsJson['basic']['folderSettings']['fileType'] = request.session['uploadfiletype'] configSettingsJson['basic']['folderSettings']['labelDataFile'] = request.session['uploadLocation'] try: if isinstance(datetimeFeatures, list): if len(datetimeFeatures) != 0: configSettingsJson = update_granularity(configSettingsJson,datapath=dataFile) elif isinstance(datetimeFeatures, str): if datetimeFeatures != '': configSettingsJson = update_granularity(configSettingsJson,datapath=dataFile) except: pass # Retraing settings changes # -------- S T A R T -------- tot_count=len(numericCatFeatures) #task 11997 if (tot_count > 1): configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] = 'True' configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] = 'False' else: configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['uniVariate'] = 'True' configSettingsJson['basic']['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder']['multiVariate'] = 'False' if 'delimiter' in request.session: configSettingsJson['basic']['fileSettings']['delimiters'] = request.session['delimiter'] else: configSettingsJson['basic']['fileSettings']['delimiters'] = ',' if 'textqualifier' in request.session: configSettingsJson['basic']['fileSettings']['textqualifier'] = request.session['textqualifier'] else: request.session['textqualifier'] = '"' configSettingsJson['advance']['profiler']['featureDict'] = featuresListJson configSettingsJson['basic']['onlineLearning'] = 'False' configSettingsJson['basic']['dataLocation'] = request.session['datalocation'] configSettingsJson['basic']['noOfRecords'] = request.session['NoOfRecords'] onlineLearning = configSettingsJson['basic']['onlineLearning'] updatedConfigSettings = json.dumps(configSettingsJson) with open(config_json_filename, "w") as fpWrite: fpWrite.write(updatedConfigSettings) fpWrite.close() ''' p = Existusecases(DataFilePath=dataFile, DeployPath=DEPLOY_LOCATION, Status='Not Trained', ConfigPath=config_json_filename, Version=Version, ModelName=ModelName, TrainOuputLocation=outputfile) p.save() ''' p = Existusecases.objects.get(ModelName=ModelName,Version=Version) p.DataFilePath = dataFile p.DeployPath = DEPLOY_LOCATION p.ConfigPath = config_json_filename p.TrainOuputLocation = outputfile p.save() #from appbe import telemetry #telemetry.telemetry_data('UseCaseCreated',modelname+'_'+str(Version),'UseCaseCreated') request.session['modelid'] = p.id # --------------------------- from appbe.compute import selectedInfratructure infra = selectedInfratructure() if infra.lower() in ['aws','gcp']: problemType = 'llmFineTuning' else: problemType = 'classification' #print(problemType) for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break scoringCreteria = 'NA' if problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997 for key in configSettingsJson['basic']['scoringCriteria'][problemType]: if configSettingsJson['basic']['scoringCriteria'][problemType][key] == 'True': scoringCreteria = key break selectAlgo = "" if problemType in ['classification','regression','timeSeriesForecasting','timeSeriesAnomalyDetection', 'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition','llmFineTuning']: #task 11997 for key in configSettingsJson['basic']['algorithms'][problemType]: if configSettingsJson['basic']['algorithms'][problemType][key] == 'True': if selectAlgo != "": selectAlgo += ',' selectAlgo += key modelSize = '' if problemType == 'llmFineTuning': for key in configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo].keys(): if configSettingsJson['basic']['modelSize']['llmFineTuning'][selectAlgo][key] == 'True': modelSize = key break movenext = True request.session['finalstate'] = 1 request.session['currentstate'] = 1 context = {'tab': 'tabconfigure','modelSize':modelSize,'tot_count':tot_count, 'temp': temp, 'configsettings': configSettingsJson, 'config': config,'numericFeature':numericFeature,'onlineLearning':onlineLearning, 'noOfRecords': records, 'selected_use_case': selected_use_case,'problemType':problemType,'scoringCreteria':scoringCreteria,'selectAlgo':selectAlgo,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'movenext': movenext, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','advance':True,'basic_help':ht.basic_help # Retraing settings changes ,'IsSameFeatures':IsSameFeatures,'IsReTrainingCase':IsReTrainingCase # 10012:Decision Threshold related ,'DLCheckpoint':data_is_under_RAM_threshold} return context except UnicodeDecodeError as e: print(e) context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'ModelStatus': ModelStatus,'selected': 'modeltraning','error': 'File Reading Error: '+str(e)} return context except Exception as e: print(e) import sys,os exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'tab': 'tabconfigure','selected_use_case': selected_use_case
,'ModelVersion': ModelVersion,'ModelStatus': ModelStatus,'selected': 'modeltraning','error': 'Config Error: '+str(e)} return context<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import kfp import kfp.dsl as dsl import json from pathlib import Path class aionpipelinets(): containerRegistry = str() containerLabel = str() containerSecret = str() pipelineName = 'AION MLOps Pipeline {0}' exeCmd = 'python' codeFile = 'aionCode.py' mntPoint = '/aion' inputArg = '-i' msIP = '0.0.0.0' port = '8094' cachingStrategy = 'P0D' deafultVolume = '2Gi' volName = 'aion-pvc' volMode = 'ReadWriteMany' fileExt = '.tar.gz' fileName = 'aion_mlops_pipeline_{0}' containerMM = 'modelmonitoring' containerDI = 'dataingestion' containerDT = 'datatransformation' containerFE = 'featureengineering' containerMR = 'modelregistry' containerMS = 'modelserving' containerImage = '{0}/{1}:{2}' models = {} nameSeprator = '-' modelsLiteral = 'models' modelNameLiteral = 'modelname' msTemplate = '{"apiVersion": "v1", "kind": "Pod", "metadata": {"name": "{{workflow.name}}-{0}"}, "spec": {"containers": [{"name": "{0}", "image": "{1}", "command": ["python"], "args": ["aionCode.py", "-ip", "{2}", "-pn", "{3}"],"volumeMounts": [{"name": "aion-pvc", "mountPath": "{4}"}], "ports": [{"name": "http", "containerPort": {3}, "protocol": "TCP"}]}], "imagePullSecrets": [{"name": "{5}"}], "volumes": [{"name": "aion-pvc", "persistentVolumeClaim": {"claimName": "{{workflow.name}}-{6}"}}]}}' def __init__(self, models, containerRegistry, containerLabel, containerSecret=str()): self.models = models self.containerRegistry = containerRegistry self.containerLabel = containerLabel self.containerSecret = containerSecret @dsl.pipeline( name=pipelineName.format(containerLabel), description=pipelineName.format(containerLabel), ) def aion_mlops(self, inputUri=str(), volSize=deafultVolume): vop = dsl.VolumeOp( name=self.volName + self.nameSeprator + self.containerLabel, resource_name=self.volName, modes=[self.volMode], size=volSize ) mm = dsl.ContainerOp( name=self.containerMM, image=self.containerImage.format(self.containerRegistry,self.containerMM,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, self.inputArg, inputUri, ], pvolumes={self.mntPoint: vop.volume} ) mm.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy di = dsl.ContainerOp( name=self.containerDI, image=self.containerImage.format(self.containerRegistry,self.containerDI,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: mm.pvolume} ) di.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy dt = dsl.ContainerOp( name=self.containerDT, image=self.containerImage.format(self.containerRegistry,self.containerDT,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: di.pvolume} ) dt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy fe = dsl.ContainerOp( name=self.containerFE, image=self.containerImage.format(self.containerRegistry,self.containerFE,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: dt.pvolume} ) fe.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy dictMT = {} listMTOps = [] for model in self.models[self.modelsLiteral]: modelName = model[self.modelNameLiteral] mt=dsl.ContainerOp( name=modelName, image=self.containerImage.format(self.containerRegistry,modelName,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: fe.pvolume}) mt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy listMTOps.append(mt) dictMT[self.mntPoint]=mt.pvolume mr = dsl.ContainerOp( name=self.containerMR, image=self.containerImage.format(self.containerRegistry,self.containerMR,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes=dictMT ).after(*tuple(listMTOps)) mr.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy msJson = self.msTemplate.replace(str({0}),self.containerMS).replace(str({1}),self.containerImage.format(self.containerRegistry,self.containerMS,self.containerLabel)).replace(str({2}),self.msIP).replace(str({3}),self.port).replace(str({4}),self.mntPoint).replace(str({5}),self.containerSecret).replace(str({6}),self.volName) ms = dsl.ResourceOp( name=self.containerMS + self.nameSeprator + self.containerLabel, k8s_resource=json.loads(msJson), ) ms.after(mr) def compilepl(self, targetPath=str()): filePath = self.fileName.format(self.containerLabel.lower()) + self.fileExt if targetPath != str(): filePath = Path(targetPath, filePath) kfp.compiler.Compiler().compile(self.aion_mlops, str(filePath)) def executepl(self, kfhost=str()): client = kfp.Client(kfhost) client.create_run_from_pipeline_func(self.aion_mlops,arguments={}) <s> import pandas as pd import numpy as np from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss from statsmodels.tsa.seasonal import seasonal_decompose import logging import os import warnings warnings.filterwarnings('ignore') ## Main class to find out seassonality and stationary in timeseries data. class StationarySeasonalityTest: def __init__(self,df,featurename,datetimefeature): self.df=df self.targetFeature=featurename self.datetimefeature=datetimefeature ## to get the timeseries data stationary information def stationary_model(self,df,target_feature,stationary_check_method): stationary_status=None if (stationary_check_method.lower()=='adfuller'): stats_model=adfuller(df[target_feature]) statistic, p_value, n_lags, num_bservations,critical_values,info_criterion_best=stats_model[0],stats_model[1],stats_model[2],stats_model[3],stats_model[4],stats_model[5] if (p_value>0.05): stationary_status=str("Non-Stationary") elif(p_value<0.05): stationary_status=str("Stationary") ##kpss is opposite to ADF in considering null hypothesis. In KPSS, if null hypothesis,then it is stationary as oppose to ADF. elif (stationary_check_method.lower()=='kpss'): from statsmodels.tsa.stattools import kpss stats_model = kpss(df[target_feature]) statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3] ##In kpss, the stationary condition is opposite to Adafuller. if (p_value>0.05): stationary_status=str("Stationary") else: stationary_status=str("Non-Stationary") return stats_model,n_lags,p_value,stationary_status ## Get stationary details def stationary_check(self,target_feature,time_col,method): df=self.df df[time_col]=pd.to_datetime(df[time_col]) df=df.set_index(time_col) try: stationary_check_method=method except: stationary_check_method='adfuller' if (len(target_feature) == 1): try: if isinstance(target_feature,list): target_feature=''.join(target_feature) elif isinstance(target_feature,int): target_feature=str(target_feature) elif isinstance(target_feature,str): pass except Exception as e: pass stationary_result={} stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,target_feature,stationary_check_method) # stationary_result[target_feature]=stationary_status stationary_result[target_feature]=stationary_status elif(len(target_feature) > 1): stationary_result={} for col in df.columns: stats_model,n_lags,p_value,stationary_status=self.stationary_model(df,col,stationary_check_method) stationary_result[col]=stationary_status else: pass stationary_val=None for v in stationary_result.values(): stationary_val=v stationary_combined_res=dict() c_dict=[k for k,v in stationary_result.items() if 'non-stationary' in v] if (len(c_dict)>=1): stationary_combined_res['dataframe_stationarity']='Non-Stationary' else: stationary_combined_res['dataframe_stationarity']='Stationary' return stats_model,n_lags,p_value,stationary_val,stationary_combined_res #Get seasonality by using seasonal_decompose lib. def seasonality_model(self,target_feature,df): seasonality_status=None try: try: stats_model = kpss(df[target_feature]) statistic, p_value, n_lags, critical_values=stats_model[0],stats_model[1],stats_model[2],stats_model[3] except: n_lags=1 pass try: df_target=self.df[target_feature] decompose_result_mult = seasonal_decompose(df_target,model='additive', extrapolate_trend='freq', period=n_lags) except Exception as e: ##If additive model (type of seasonal component) failed, use multiplicative decompose_result_mult = seasonal_decompose(df_target,model='multiplicative', extrapolate_trend='freq', period=1) trend = decompose_result_mult.trend observed=decompose_result_mult.observed seasonal = decompose_result_mult.seasonal residual = decompose_result_mult.resid try: if isinstance(df_target, pd.Series): auto_correlation = df_target.autocorr(lag=n_lags) elif isinstance(df_target, pd.DataFrame): df_target = df_target.squeeze() auto_correlation = df_target.autocorr(lag=n_lags) except: pass if (seasonal.sum()==0): seasonality_status="Non-Seasonal" else: seasonality_status="Seasonal" # #Please use the below plot for GUI show (seasonality components) # decompose_result_mult.plot().savefig('seasonality_plot.png') df['observed'] = decompose_result_mult.observed df['residual'] = decompose_result_mult.resid df['seasonal'] = decompose_result_mult.seasonal df['trend'] = decompose_result_mult.trend except Exception as e: print("Seasonality function exception: \\t",e) return df,decompose_result_mult,seasonality_status ##Main function to check seasonlity in data def seasonal_check(self,target_feature,time_col,seasonal_model): df=self.df try: df[time_col]=pd.to_datetime(df[time_col]) except Exception as e: pass df=df.set_index(time_col) if (len(target_feature)==1): try: if isinstance(target_feature,list): target_feature=''.join(target_feature) elif isinstance(target_feature,int): target_feature=str(target_feature) elif isinstance(target_feature,str): pass except Exception as e: ## Because of EDA, all log messages removed. (self.log.info ) pass ## Seasonal component for individual feature based. seasonality_result=dict() df,decompose_result_mult,seasonality_status = self.seasonality_model(target_feature,df) # seasonality_result[target_feature]=seasonality_status seasonality_result['Feature: '+str(target_feature)]=seasonality_status elif(len(target_feature) > 1): seasonality_result=dict() for col in df.columns: df,decompose_result_mult,seasonality_status = self.seasonality_model(col,df) seasonality_result[col]=seasonality_status else: pass # ## Seasonal component for whole dataset seasonality_val=None for v in seasonality_result.values(): seasonality_val=v seasonality_combined_res=dict() c
_dict=[k for k,v in seasonality_result.items() if 'non-seasonality' in v] if (len(c_dict)>=1): seasonality_combined_res['dataframe_seasonality']='No Seasonal elements' else: seasonality_combined_res['dataframe_seasonality']='contains seasonal elements.' return df,decompose_result_mult,seasonality_val,seasonality_combined_res #Main user defined caller for stationary and seasonality (SS) def analysis(self,seasonality_status,stationarity_status): seasonal_model="additive" time_col=self.datetimefeature stationary_method='adfuller' if (isinstance(self.targetFeature,list)): target=self.targetFeature pass elif (isinstance(self.targetFeature,str)): target=list(self.targetFeature.split(',')) if (stationarity_status.lower()=="true"): stats_model,n_lags,p_value,stationary_result,stationary_combined_res=self.stationary_check(target,time_col,stationary_method) return stationary_result if (seasonality_status.lower()=="true"): df,decompose_result_mult,seasonality_result,seasonality_combined_res=self.seasonal_check(target,time_col,seasonal_model) return seasonality_result #Main fn for standalone test purpose if __name__=='__main__': print("Inside seasonality-stationary test main function...") print("Below code used for standalone test purpose.") <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os.path import time import subprocess import sys from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe import installPackage from appbe import compute from appbe.models import getusercasestatus import json import pandas as pd import ntpath import shutil import platform from pathlib import Path from appbe.dataPath import DATA_DIR LOG_FILE_PATH = os.path.join(DATA_DIR,'logs') def encrptpackage_command(request,Existusecases,usecasedetails): command = request.POST.get('encryptedsubmit') kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() modelID = request.POST.get('modelID') p = Existusecases.objects.get(id=modelID) usecasename = p.ModelName.UsecaseName usecaseid = p.ModelName.usecaseid runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename) try: tacking_url =request.get_host() except Exception as e: tacking_url = '127.0.0.1' usecasedetail = usecasedetails.objects.get(id=p.ModelName.id) usecase = usecasedetails.objects.all() models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.modelType = outputconfig['data']['ModelType'] model.maacsupport = 'True' model.flserversupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Logistic Regression", "Naive Bayes","Decision Tree","Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Random Forest","Linear Regression","Lasso","Ridge","Extreme Gradient Boosting (XGBoost)","Light Gradient Boosting (LightGBM)","Categorical Boosting (CatBoost)"] if model.deploymodel in supportedmodels: model.maacsupport = 'True' else: model.maacsupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' except Exception as e: pass if command.lower() == 'secureclient': try: encryptedclient = os.path.join(str(p.DeployPath),'publish','SecureClient') shutil.rmtree(encryptedclient, ignore_errors=True) logPath = os.path.join(encryptedclient,'logs') scriptPath = os.path.join(encryptedclient,'script') modelPath = os.path.join(encryptedclient,'model') Path(modelPath).mkdir(parents=True, exist_ok=True) Path(encryptedclient).mkdir(parents=True, exist_ok=True) Path(logPath).mkdir(parents=True, exist_ok=True) Path(scriptPath).mkdir(parents=True, exist_ok=True) encryptedclientOrg = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','encryptedPackage')) modelProfiler = os.path.normpath(os.path.join(str(p.DeployPath),'script','inputprofiler.py')) modelselector = os.path.normpath(os.path.join(str(p.DeployPath),'aion_predict.py')) preprocessmodel = os.path.normpath(os.path.join(str(p.DeployPath),'model','preprocess_pipe.pkl')) # shutil.copy2(modelProfiler,scriptPath) # shutil.copy2(modelselector,scriptPath) ## For bug 15975 if os.path.exists(modelProfiler): shutil.copy2(modelProfiler,scriptPath) if os.path.exists(modelselector): shutil.copy2(modelselector,scriptPath) if os.path.exists(preprocessmodel): shutil.copy2(preprocessmodel,modelPath) if model.modelType.lower() == 'classification': try: opfile = os.path.normpath(os.path.join(encryptedclientOrg,'Readme.txt')) shutil.copy2(opfile,encryptedclient) opfile = os.path.normpath(os.path.join(encryptedclientOrg,'requirements.txt')) shutil.copy2(opfile,encryptedclient) except: #failed to copy readme,requirements.txt files pass opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','heMulticlass.py')) shutil.copy2(opfile,scriptPath) opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','aion_hemulticlient.py')) shutil.copy2(opfile,encryptedclient) os.rename(os.path.join(encryptedclient,'aion_hemulticlient.py'),os.path.join(encryptedclient,'aion_sclient.py')) elif model.modelType.lower() == 'regression': try: opfile = os.path.normpath(os.path.join(encryptedclientOrg,'Readme.txt')) shutil.copy2(opfile,encryptedclient) opfile = os.path.normpath(os.path.join(encryptedclientOrg,'requirements.txt')) shutil.copy2(opfile,encryptedclient) except Exception as e: print(e) #failed to copy readme,requirements.txt files pass opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','heRegression.py')) shutil.copy2(opfile,scriptPath) opfile = os.path.normpath(os.path.join(encryptedclientOrg,'client','aion_heregressionclient.py')) shutil.copy2(opfile,encryptedclient) os.rename(os.path.join(encryptedclient,'aion_hemulticlient.py'),os.path.join(encryptedclient,'aion_sclient.py')) except Exception as e: Status = 'Error' Msg = 'Secure client error: Check log file for more details' Status = 'SUCCESS' Msg = 'Secure Client Code Generated at '+encryptedclient path= encryptedclient #Task 9981 elif command.lower() == 'secureserver': try: configPath = os.path.join(str(p.DeployPath),'etc','secure_config.json') modelpath = usecasename+'_'+str(p.Version)+'.sav' config = {'model_name':modelpath} with open(configPath, "w") as outfile: json.dump(config, outfile) encryptedclientOrg = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','utilities','encryptedPackage')) if model.modelType.lower() == 'classification': opfile = os.path.normpath(os.path.join(encryptedclientOrg,'server','heMulticlass.py')) shutil.copy2(opfile,str(p.DeployPath)) try: os.remove(os.path.join(str(p.DeployPath),'aion_spredict.py')) except OSError: pass os.rename(os.path.join(str(p.DeployPath),'heMulticlass.py'),os.path.join(str(p.DeployPath),'aion_spredict.py')) Status = 'SUCCESS' Msg = 'Secure rest end point enabled http://'+str(tacking_url)+'/api/spredict?usecaseid='+usecaseid+'&version='+str(p.Version) except Exception as e: Status = 'Error' Msg = 'Secure rest end point error: Check log file for more details' nouc = 0 from appbe.pages import get_usecase_page status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['Msg'] = Msg if command.lower() == 'secureclient': #Task 9981 context['path'] = path ''' selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) context = {'tab': 'upload','nouc':nouc,'usecasedetail': usecase, 'models': models, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'installationStatus':installationStatus,'modelName':modelName,'modelVersion':modelVersion,'usecasename':usecasename,'pid':pid,'ip':ip,'port':port,'usecaseid':p.ModelName.id,'Status':Status,'Msg':Msg} ''' return(context) def download_sclient(request,context): #Task 9981 import os from django.http import HttpResponse, Http404 try: file_name = 'SecureClient_'+request.POST.get('modelsignature') path = context['path'] file_path = shutil.make_archive(file_name, 'zip', path) if os.path.exists(file_path): with open(file_path, 'rb') as fh: response = HttpResponse(fh.read(),content_type='application/x-zip-compressed') response['Content-Disposition'] = 'inline; filename=' + os.path.basename(file_path) os.remove(file_path) return response except: raise Http404<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys def read_service_url_params(request): hosturl =request.get_host() url='http://'+hosturl+'/api/' return url def read_monitoring_service_url_params(request): hosturl =request.get_host() file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config')) file = open(file_path, "r") data = file.read() file.close() service_url = '127.0.0.1' service_port='60050' for line in data.splitlines(): if 'aion_service_url=' in line: service_url= line.split('=',1)[1] if 'aion_service_port=' in line: service_port= line.split('=',1)[1] url='http://'+hosturl+'/api/' return url def read_performance_service_url_params(request): hosturl =request.get_host() file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config')) file = open(file_path, "r") data = file.read() file.close() service_url = '127.0.0.1' service_port='60050' for line in data.splitlines(): if 'aion_service_url=' in line: service_url= line.split('=',1)[1] if 'aion_service_port=' in line: service_port= line.split('=',1)[1] url='http://'+hosturl+'/api/' return url def read_pattern_an
omaly_url_params(request): hosturl =request.get_host() file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config')) file = open(file_path, "r") data = file.read() file.close() service_url = '127.0.0.1' service_port='60050' for line in data.splitlines(): if 'aion_service_url=' in line: service_url= line.split('=',1)[1] if 'aion_service_port=' in line: service_port= line.split('=',1)[1] url='http://'+hosturl+'/api/pattern_anomaly_predict/' return url def read_pattern_anomaly_setting_url_params(request): hosturl =request.get_host() file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','aion.config')) file = open(file_path, "r") data = file.read() file.close() service_url = '127.0.0.1' service_port='60050' for line in data.splitlines(): if 'aion_service_url=' in line: service_url= line.split('=',1)[1] if 'aion_service_port=' in line: service_port= line.split('=',1)[1] url='http://'+hosturl+'/api/pattern_anomaly_settings/' return url<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import os import sys import scipy.stats as st def DistributionFinder(data): try: distributionName = "" sse = 0.0 KStestStatic = 0.0 dataType = "" if (data.dtype == "float64"): dataType = "Continuous" elif (data.dtype == "int"): dataType = "Discrete" elif (data.dtype == "int64"): dataType = "Discrete" if (dataType == "Discrete"): distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson] index, counts = np.unique(data.astype(int), return_counts=True) if (len(index) >= 2): best_sse = np.inf y1 = [] total = sum(counts) mean = float(sum(index * counts)) / total variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1) dispersion = mean / float(variance) theta = 1 / float(dispersion) r = mean * (float(theta) / 1 - theta) for j in counts: y1.append(float(j) / total) pmf1 = st.bernoulli.pmf(index, mean) pmf2 = st.binom.pmf(index, len(index), p=mean / len(index)) pmf3 = st.geom.pmf(index, 1 / float(1 + mean)) pmf4 = st.nbinom.pmf(index, mean, r) pmf5 = st.poisson.pmf(index, mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1 - pmf5, 2.0)) sselist = [sse1, sse2, sse3, sse4, sse5] best_distribution = 'NA' for i in range(0, len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName = best_distribution sse = best_sse elif (dataType == "Continuous"): distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t, st.gamma, st.beta] best_distribution = st.norm.name best_sse = np.inf datamin = data.min() datamax = data.max() nrange = datamax - datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: params = distribution.fit(data.astype(float)) arg = params[:-2] loc = params[-2] scale = params[-1] pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if (best_sse > sse > 0): best_distribution = distribution.name best_sse = sse distributionName = best_distribution sse = best_sse except: response = str(sys.exc_info()[0]) message = 'Job has Failed' + response exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) print(message) return distributionName, sse<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import random import string from sklearn import datasets import pandas as pd import names # pip install names import time import numpy as np import argparse import json import os import platform import time import sys from appbe.dataPath import CONFIG_FILE_PATH def randStr(chars = 'XYZABCDE', N=2): return ''.join(random.choice(chars) for _ in range(N)) def load_json_config(file): with open(file, 'r') as openfile: json_object = json.load(openfile) for key, value in json_object.items(): print(key, value) return json_object def gen_data_classification(number_samples=10000, number_numerical_features=25, file_name='file_class.csv', number_categorical_features=2, number_text_features=2, missing_proportion=0.1, number_informative=20, number_class=2, weights=[0.5,0.5], shift=0.0, value_range_dict={0:(1, 2)}): # TO-DO: need to add min max vlinear/non-linear try: features, output = datasets.make_classification( n_samples=number_samples, n_features=number_numerical_features, n_informative=number_informative, n_classes=number_class, weights = weights, # 20% of the targets will be 0, 80% will be 1. default is 50/50 shift=shift, ) columns = [] # Numerical Features for i in range(number_numerical_features): columns.append('Feature_' + str(i)) features = pd.DataFrame(features, columns=columns) # Setting min max value for features for col_name in features.columns: for key, value in value_range_dict.items(): if (str(features.columns.get_loc(col_name)) == key): for item in features[col_name].values: if item < value[0]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) if item > value[1]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) df_list = [] df_list.append(features) # Add Categorical Features for j in range(number_categorical_features): categorical_feature1_list = [] number_categories_per_feature = random.randint(2, 5) for i in range(number_categories_per_feature): categorical_feature1_list.append(randStr(N=3)) print("Categories of Categorical Feature " + str(j) + ": ", categorical_feature1_list) categorical_feature1 = [] for k in range(number_samples): categorical_feature1.append(random.choice(categorical_feature1_list)) categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical'+str(j)]) df_list.append(categorical_feature1) # Add Text Features for l in range(number_text_features): text_feature = [] for k in range(number_samples): text_feature.append(names.get_full_name()) # text_feature.append(r.get_random_word()) text_feature = pd.DataFrame(text_feature, columns=['Name'+str(l)]) # text_feature = pd.DataFrame(text_feature, columns=['Word' + str(l)]) df_list.append(text_feature) output = pd.DataFrame(output, columns=['Target']) df_list.append(output) df_final = pd.concat(df_list, axis=1) for col in df_final.columns: # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN # Check to see proportion of NaN values: # df.isnull().sum() / len(df) df_final.to_csv(file_name) return True except Exception as e: print(e) return False def gen_data_regression( number_samples=10000, number_numerical_features=25, file_name='file_regress.csv', number_categorical_features=2, number_text_features=2, missing_proportion=0.1, number_informative=10, number_target=1, bias=0.0, noise=0.0, value_range_dict={1:(5, 10)} ): try: features, output = datasets.make_regression( n_samples=number_samples, n_features=number_numerical_features, n_informative=number_informative, n_targets=number_target, bias=bias, noise=noise, ) columns = [] for i in range(number_numerical_features): columns.append('Feature_' + str(i)) features = pd.DataFrame(features, columns=columns) for col_name in features.columns: for key, value in value_range_dict.items(): if (str(features.columns.get_loc(col_name)) == key): for item in features[col_name].values: if item < value[0]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) if item > value[1]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) df_list = [] df_list.append(features) for j in range(number_categorical_features): categorical_feature1_list = [] number_categories_per_feature = random.randint(2, 5) for i in range(number_categories_per_feature): categorical_feature1_list.append(randStr(N=3)) print("Categories of Categorical Feature " + str(j) + ": ", categorical_feature1_list) categorical_feature1 = [] for k in range(number_samples): categorical_feature1.append(random.choice(categorical_feature1_list)) categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical' + str(j)]) df_list.append(categorical_feature1) for l in range(number_text_features): text_feature = [] for k in range(number_samples): text_feature.append(names.get_full_name()) text_feature = pd.DataFrame(text_feature, columns=['Name'+str(l)]) df_list.append(text_feature) output = pd.DataFrame(output, columns=['Target']) df_list.append(output) df_final = pd.concat(df_list, axis=1) for col in df_final.columns: # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN # Check to see proportion of NaN values: # df.isnull().sum() / len(df) df_final.to_csv(file_name)
return True except Exception as e: print(e) return False def gen_data_series(univariate="True", start_time='2000-01-01 00:00', end_time='2022-12-31 00:00', number_samples=10000, number_numerical_features=25, file_name='file_regress.csv', number_categorical_features=2, # number_text_features=2, missing_proportion=0.1, number_informative=10, number_target=1, bias=0.0, noise=0.0, value_range_dict={1:(5, 10)} ): try: if univariate == "True": number_numerical_features = 1 number_categorical_features = 0 features, output = datasets.make_regression( n_samples=number_samples, n_features=number_numerical_features, n_informative=number_informative, n_targets=number_target, bias=bias, noise=noise, ) columns = [] # Numerical Features for i in range(number_numerical_features): columns.append('Feature_' + str(i)) features = pd.DataFrame(features, columns=columns) # Setting min max value for features for col_name in features.columns: for key, value in value_range_dict.items(): if (str(features.columns.get_loc(col_name)) == key): for item in features[col_name].values: if item < value[0]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) if item > value[1]: features.loc[features[col_name] == item, col_name] = random.uniform(value[0],value[1]) df_list = [] df_list.append(features) # Add Categorical Features for j in range(number_categorical_features): categorical_feature1_list = [] number_categories_per_feature = random.randint(2, 5) for i in range(number_categories_per_feature): categorical_feature1_list.append(randStr(N=3)) print("Categories of Categorical Feature " + str(j) + ": ", categorical_feature1_list) categorical_feature1 = [] for k in range(number_samples): categorical_feature1.append(random.choice(categorical_feature1_list)) categorical_feature1 = pd.DataFrame(categorical_feature1, columns=['Categorical'+str(j)]) df_list.append(categorical_feature1) # df2['date'] = pd.date_range(start='1890-01-01', freq="sec",periods=len(df2)) time_feature = pd.date_range(start=start_time, end=end_time, periods=number_samples) #freq="1sec" time_feature = pd.DataFrame(time_feature, columns=['Date']) # df_list.append(time_feature) df_list.insert(0, time_feature) output = pd.DataFrame(output, columns=['Feature_' + str(number_numerical_features)]) if univariate != "True": df_list.append(output) df_final = pd.concat(df_list, axis=1) for col in df_final.columns: # df_final.loc[df_final.sample(frac=0.1).index, col] = np.NaN df_final.loc[df_final[col].sample(frac=missing_proportion).index, col] = np.NaN # Check to see proportion of NaN values: # df.isnull().sum() / len(df) df_final.to_csv(file_name) return True except Exception as e: print(e) return False def data_generated_csv(): datajson = os.path.join(CONFIG_FILE_PATH, 'data_generated.json') with open(datajson, 'r+') as f: dictionary = json.load(f) # f.close() if dictionary.get('problemType') == 'classification': number_samples = dictionary.get("number_samples") number_numerical_features = dictionary.get("number_numerical_features") number_categorical_features = dictionary.get("number_categorical_features") number_text_features = dictionary.get("number_text_features") missing_proportion = dictionary.get("missing_proportion") number_informative = dictionary.get("number_informative") number_class = dictionary.get("number_class") weights = dictionary.get("weights") shift = dictionary.get("shift") data_path = dictionary.get("data_path") value_range_dict = dictionary.get("value_range_dict") gen_data_classification(number_samples=number_samples, number_numerical_features=number_numerical_features, file_name=data_path, number_categorical_features=number_categorical_features, number_text_features=number_text_features, missing_proportion=missing_proportion, number_informative=number_informative, number_class=number_class, weights=weights, shift=shift, value_range_dict=value_range_dict) elif dictionary.get('problemType') == 'regression': number_samples = dictionary.get("number_samples") number_numerical_features = dictionary.get("number_numerical_features") number_categorical_features = dictionary.get("number_categorical_features") number_text_features = dictionary.get("number_text_features") missing_proportion = dictionary.get("missing_proportion") number_informative = dictionary.get("number_informative") number_target = dictionary.get("number_target") bias = dictionary.get("bias") noise = dictionary.get("noise") data_path = dictionary.get("data_path") value_range_dict = dictionary.get("value_range_dict") gen_data_regression(number_samples=number_samples, number_numerical_features=number_numerical_features, file_name=data_path, number_categorical_features=number_categorical_features, number_text_features=number_text_features, missing_proportion=missing_proportion, number_informative=number_informative, number_target=number_target, bias=bias, noise=noise, value_range_dict=value_range_dict) elif dictionary.get('problemType') == 'timeseriesforecasting': #task 11997 data_path = dictionary.get("data_path") is_univariate = dictionary.get("univariate") number_samples = dictionary.get("number_samples") number_numerical_features = dictionary.get("number_numerical_features") number_categorical_features = dictionary.get("number_categorical_features") missing_proportion = dictionary.get("missing_proportion") number_informative = dictionary.get("number_informative") number_target = dictionary.get("number_target") bias = dictionary.get("bias") noise = dictionary.get("noise") value_range_dict = dictionary.get("value_range_dict") gen_data_series(univariate=is_univariate, number_samples=number_samples, number_numerical_features=number_numerical_features, file_name=data_path, number_categorical_features=number_categorical_features, # number_text_features=2, missing_proportion=missing_proportion, number_informative=number_informative, number_target=number_target, bias=bias, noise=noise, value_range_dict=value_range_dict) if __name__ == "__main__": data_generated_csv() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import os import rsa import boto3 #usnish import pandas as pd import time def add_new_azureStorage(request): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf')) with open(file_path, 'r') as f: data = json.load(f) f.close() if data == '': data = [] except: data = [] if request.POST["azurename"] =='' or request.POST["azureaccountkey"] == '' or request.POST["containername"] == '' : return 'error' newdata = {} newdata['azurename'] = request.POST["azurename"] newdata['azureaccountkey'] = request.POST["azureaccountkey"] newdata['containername'] = request.POST["containername"] data.append(newdata) with open(file_path, 'w') as f: json.dump(data, f) f.close() return 'success' def get_azureStorage(): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] return data def read_azureStorage(name,directoryname,DATA_FILE_PATH): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','azurestorage.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] found = False for x in data: if x['azurename'] == name: storage_account_name = str(x['azurename']) storage_account_key = str(x['azureaccountkey']) azure_container_name = x['containername'] found = True break try: if found: root_dir = str(directoryname) from azure.storage.filedatalake import DataLakeServiceClient import io import pandavro as pdx from detect_delimiter import detect try: service_client = DataLakeServiceClient(account_url="{}://{}.dfs.core.windows.net".format("https", storage_account_name), credential=storage_account_key) print(azure_container_name) file_system_client = service_client.get_file_system_client(azure_container_name) print(root_dir) file_paths = file_system_client.get_paths(path=root_dir) main_df = pd.DataFrame() for path in file_paths: if not path.is_directory: file_client = file_system_client.get_file_client(path.name) file_ext = os.path.basename(path.name).split('.', 1)[1] if file_ext in ["csv", "tsv"]: with open(csv_local, "wb") as my_file: download = file_client.download_file() download.readinto(my_file) with open(csv_local, 'r') as file: data = file.read() row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\\t']) processed_df = pd.read_csv(csv_local, sep=row_delimiter) if file_ext == "parquet": download = file_client.download_file() stream = io.BytesIO() download.readinto(stream) processed_df = pd.read_parquet(stream, engine='pyarrow') if file_ext == "avro": with open(avro_local, "wb") as my_file: download = file_client.download_file() download.readinto(my_file) processed_df = pdx.read_avro(avro_local) if not main_df.empty: main_df = main_df.append(processed_df, ignore_index=True) else: main_df = pd.DataFrame(processed_df) except Exception as e: print(e) return 'Success',main_df except Exception as e: print(e) return 'Error', pd.DataFrame()<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pyodbc as pyodbc import pandas as pd import json import sqlalchemy as db import pandas as pd import urllib def get_connection(request): dbType = request.session['dbType'] connection_string = "" if dbType.lower()=="sqlite": filepath = request.session['filepath'] #table = request.session["tablenamesql"] connection_string = "sqlite:///"+str(filepath) elif dbType.lower() in ["postgresql","mysql","mssql"]: db_name = request.session['dbname'] password = request.session['password'] user = request.session['username'] port = request.session['port'] host = request.session['host']
password=urllib.parse.quote_plus(password) if dbType.lower()=="postgresql": connection_string = "postgresql+psycopg2://" + user + ":" + password + "@" + host + ":" + port + "/" + db_name if dbType.lower()=="mysql": connection_string = "mysql+pyodbc://" + user + ":" + password + "@" + host + ":" + port + "/" + db_name if dbType.lower()=="mssql": driver=request.session['driver'] params = urllib.parse.quote_plus( 'Driver=%s;' % driver + 'Server=tcp:%s,' % host + '%s;' % port + 'Database=%s;' % db_name + 'Uid=%s;' % user + 'Pwd={%s};' % password + 'Encrypt=yes;' + 'TrustServerCertificate=no;' + 'Connection Timeout=30;') connection_string = 'mssql+pyodbc:///?odbc_connect=' + params return connection_string def list_tables(request): connection_string = get_connection(request) engine = db.create_engine(connection_string) connection = engine.connect() metadata = db.MetaData() metadata.reflect(engine) dt_list = [] try: dt_list= list(metadata.tables.keys()) print(dt_list) return dt_list except: print("Something went wrong") return dt_list def list_tables_fields(request,table_list): connection_string = get_connection(request) engine = db.create_engine(connection_string) connection = engine.connect() metadata = db.MetaData() metadata.reflect(engine) table_field_obj = {} table_field_obj['data'] = [] try: # filepath = request.session['filepath'] #table = request.session["tablenamesql"] table_list = json.loads(table_list) for table in table_list: tf_obj = {} tf_obj['TableName'] = str(table).strip() tf_obj['Fields']= [] table = db.Table(table, metadata, autoload=True, autoload_with=engine) col = table.columns.keys() tempdata = [] for x in col: my_list = {"column_name": x,"is_select":"false"} tempdata.append(my_list) tf_obj['Fields'] = tempdata table_field_obj['data'].append(tf_obj) return json.dumps(table_field_obj) except Exception as e: print("Something went wrong "+str(e)) return table_field_obj def get_data(connection_string,table): engine = db.create_engine(connection_string) connection = engine.connect() metadata = db.MetaData() metadata.reflect(engine) table = db.Table(table,metadata, autoload=True, autoload_with=engine) query = db.select([table]) ResultProxy = connection.execute(query) ResultSet = ResultProxy.fetchall() col = table.columns.keys() return pd.DataFrame(ResultSet, columns=col) def getDataFromSingleTable(request): dbType = request.session['dbType'] if dbType.lower() == "sqlite": table = request.session["tablenamesql"] else: table = request.session["tablename"] connection_string = get_connection(request) df = get_data(connection_string,table) return df def validatequery(request,table_details,join_details,where_details): resultdata = [] try: table_details = json.loads(table_details) join_details = json.loads(join_details) where_details = json.loads(where_details) connection_string = get_connection(request) engine = db.create_engine(connection_string) connection = engine.connect() metadata = db.MetaData() metadata.reflect(engine) sel_col = [] for item in table_details: table = item["TableName"] table = db.Table(table, metadata, autoload=True, autoload_with=engine) for ele in item["Fields"]: if str(ele["is_select"]).lower() == 'true': sel_col.append(table.columns[ele["column_name"]]) join_condition = [] where_clause = "" for item in join_details: table1 = item["Table1Name"] table1 = db.Table(table1, metadata, autoload=True, autoload_with=engine) left_join = table1.columns[item["Table1Field"]] table2 = item["Table2Name"] table2 = db.Table(table2, metadata, autoload=True, autoload_with=engine) right_join = table2.columns[item["Table2Field"]] join_condition = "{left_join} {Condition}= {right_join}".format(left_join=left_join, Condition=item["Condition"],right_join= right_join) '''dbType = request.session['dbType'] if dbType.lower()=="sqlite": for item in where_details: where_clause = "{table}.'{column}'{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) if dbType.lower()=="postgresql": for item in where_details: where_clause = "{table}.{column}{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) ''' if len(join_details)!=0: try: for item in where_details: where_clause = "{table}.'{column}'{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) query =db.select(sel_col).\\ select_from(table1.join(table2,db.text(join_condition))). \\ where(db.and_(db.text(where_clause))) ResultProxy = connection.execute(query) ResultSet = ResultProxy.fetchall() except: for item in where_details: where_clause = "{table}.{column}{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) query =db.select(sel_col).\\ select_from(table1.join(table2,db.text(join_condition))). \\ where(db.and_(db.text(where_clause))) ResultProxy = connection.execute(query) ResultSet = ResultProxy.fetchall() else: table = table_details[0]["TableName"] table = db.Table(table, metadata, autoload=True, autoload_with=engine) try: for item in where_details: where_clause = "{table}.'{column}'{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) query = db.select(sel_col). \\ select_from(table). \\ where(db.and_(db.text(where_clause))) ResultProxy = connection.execute(query) ResultSet = ResultProxy.fetchall() except: for item in where_details: where_clause = "{table}.{column}{condition}{value}".format(table=item["TableName"],column=str(item["FieldName"]),condition=item["Condition"],value=item["CompareValue"]) query = db.select(sel_col). \\ select_from(table). \\ where(db.and_(db.text(where_clause))) ResultProxy = connection.execute(query) ResultSet = ResultProxy.fetchall() if len(ResultSet) > 0: data = pd.DataFrame(ResultSet) data.columns = ResultSet[0].keys() print(data) return data,"query exectuted successfully" else: return pd.DataFrame(),"No rows returned" # conn = get_connection(server_url,username_actian,password_actian,database_actian) # sql_text = query # cur = conn.cursor() # resultdata = simple_select(cur, query) # cur.close() #df = pd.DataFrame(resultdata) #print(df) except Exception as e: print(e) return pd.DataFrame(), str(e) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from appbe.data_io import sqlite_db from os.path import expanduser import platform import pandas as pd import os from appbe.dataPath import DATA_DIR PUBLISH_PATH = os.path.join(DATA_DIR,'publish') DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite') def chech_publish_info(usecasename): version = 0 status = 'Not Published' inputDriftStatus = 'No Drift' MODEL_DEPLOY_DATABASE_PATH = os.path.join(PUBLISH_PATH,usecasename,'database') sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') if sqlite_dbObj.table_exists('publish'): data = sqlite_dbObj.read('publish',"usecase = '"+usecasename+"' and status = 'Published'") if data.shape[0] > 0: model_sqlite_dbObj = sqlite_db(MODEL_DEPLOY_DATABASE_PATH,'deploy.db') version = data['version'].iloc[0] status = 'Published' if model_sqlite_dbObj.table_exists('monitoring'): data = model_sqlite_dbObj.read('monitoring',"version = '"+str(version)+"'") if data.shape[0] > 0: msg = data['Msg'].iloc[-1] if 'Affected Columns' in msg: inputDriftStatus = 'Input Drift Found' return version,status,inputDriftStatus def check_input_data(usecasename): MODEL_DEPLOY_DATABASE_PATH = os.path.join(PUBLISH_PATH,usecasename,'database') sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') data = pd.DataFrame() if sqlite_dbObj.table_exists('publish'): dataa = sqlite_dbObj.read('publish',"usecase = '"+usecasename+"' and status = 'Published'") if dataa.shape[0] > 0: modelsqlite_dbObj = sqlite_db(MODEL_DEPLOY_DATABASE_PATH,'deploy.db') if modelsqlite_dbObj.table_exists('prodData'): data = modelsqlite_dbObj.read('prodData') return data <s> # -*- coding: utf-8 -*- import os # import glob from glob import glob import ast from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import json import time import logging from datetime import datetime """ Code clone detection based on user input files. """ class codeCloneDetectionSklearn: """ Detect code clones based on sklearn text vectorizer modules. Input params: files_dir: python files folder, deply_dir: logs,resultant dataframe stored location. chunk_size: max size split for the input text or code function. return values: report_dict which contains clone type, path and clones. """ def __init__(self,files_dir,deploy_dir, chunk_size): self.files_dir = files_dir self.deploy_dir = deploy_dir self.chunk_size = chunk_size try: self.ccdreportpath = os.path.join(self.deploy_dir, "codeCloneReport") os.makedirs(self.ccdreportpath, exist_ok = True) except OSError as error: print("Directory 'codeCloneReport' cann't be created.Error msg: ",error) try: current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") str_current_datetime = str(current_datetime) log_file_name = 'codeclonelog_sklearn'+f"_{str_current_datetime}"+".log" logpath = os.path.join(self.ccdreportpath,log_file_name) logging.basicConfig(level=logging.INFO,filename=logpath,filemode='w',format='%(message)s') self.log = logging.getLogger() except Exception as e: print("code clone log object creation error.",e) pass def get_function_names(self,filename): """ Get the function names from python files """ try: with open(filename, 'r') as file: content = file.read() tree = ast.parse(content) function_names = [] for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): function_names.append(node.name) except Exception as e: self.log.info("function name read error: "+str(e)) return function_names def get_function_code(self,filename, function_name): """ To get the function codes """ try: with open(filename, 'r') as file: content = file.read() tree = ast.
parse(content) function_code = "" for node in ast.walk(tree): if isinstance(node, ast.FunctionDef) and node.name == function_name: function_code = ast.unparse(node) except Exception as e: self.log.info("function name read error: "+str(e)) return function_code def get_python_files(self,root_dir): """ Walk thru the directory user given, get all py files. """ try: code_files = [y for x in os.walk(root_dir) for y in glob(os.path.join(x[0], '*.py'))] except Exception as e: self.log.info("Python file read error: "+str(e)) return code_files def chunk_functions(self,function_code, chunk_size): """ Check the function size based on chunk size. """ try: if (len(function_code) > 20): chunks = [function_code[i:i + chunk_size] for i in range(0, len(function_code), chunk_size)] else: chunks = list((function_code,)) except Exception as e: self.log.info("function chunk based on chunk_size error: "+str(e)) total_tokens = round(len(function_code)/4) return chunks,total_tokens def get_clone(self): """ Main code clone detection function using sklearn tfidf_vectorizer and cosine_similarity. return values:report_dict which contains total_clones, """ try: start_time = time.time() chunk_size = int(self.chunk_size) ccdreportpath = os.path.join(self.deploy_dir, "codeCloneReport") python_files = self.get_python_files(self.files_dir) total_files = len(python_files) # print('python_files: \\n',python_files) function_codes = [] function_n = [] file_name=[] # files_info=[] total_tokens_used = [] for file in python_files: function_names = self.get_function_names(file) for i,function_name in enumerate(function_names): file_name.append(file) function_n.append(function_name) function_code = self.get_function_code(file, function_name) chunks,total_tokens = self.chunk_functions(function_code, chunk_size) total_tokens_used.append(total_tokens) function_codes.extend(chunks) total_functions = len(function_n) files_info=list(zip(file_name, function_n,function_codes)) tfidf_vectorizer = TfidfVectorizer() ## we can use other vectorizer models also. # tfidf_vectorizer = HashingVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(function_codes) similarity_matrix = cosine_similarity(tfidf_matrix) #Uncomment if you want to send two different code clonne blocks at a time for similarity comparison # similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix) clone_d = dict() total_clones = 0 final_report=list() #getting funtion and next function for comparison for i in range(len(similarity_matrix)): for j in range(i + 1, len(similarity_matrix)): if(similarity_matrix[i, j] >= 0.90 and similarity_matrix[i, j] <= 0.95): clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone1_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone1_path':files_info[j][0]},'cloneType':'parametricClone'}}) report_json = json.dumps(clone_d, indent = 4) total_clones=total_clones+1 elif(similarity_matrix[i, j] > 0.95): clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone_path':files_info[j][0] },'cloneType':'exactClone'}}) report_json = json.dumps(clone_d, indent = 4) final_report.append(clone_d) total_clones=total_clones+1 elif(similarity_matrix[i, j] > 0.80 and similarity_matrix[i, j] < 0.90): clone_d.update({f'codeclone_{total_clones+1}':{f'function{i}':{'clone_fun_name':function_n[i],'clone_path':files_info[i][0]},f'function{j}':{'clone_fun_name':function_n[j],'clone_path':files_info[j][0] },'cloneType':'NearMissClones'}}) report_json = json.dumps(clone_d, indent = 4) final_report.append(clone_d) total_clones=total_clones+1 else: ##add other conditionas in future pass ## To get clone type clone_type = [list(item.values())[2] for item in list(clone_d.values())] report_str = json.dumps(final_report) json_l=json.loads(report_str) json_keys = list(json_l[0].keys()) json_values = list(json_l[0].values()) end_time = time.time() total_time_taken = end_time - start_time # self.log.info("ccd_report: \\n"+str(ccd_report)) f_df=pd.DataFrame(list(zip(json_keys, json_values,clone_type)), columns =['Clone', 'CloneDetails','CloneType']) codeclonereport_file = os.path.join(self.ccdreportpath,'clone_detection_report_sklearn.csv') f_df.to_csv(codeclonereport_file, index=False) ccd_report = f_df.to_markdown(tablefmt='psql') self.log.info("total_clones: \\n"+str(total_clones)) exact_clone_count = f_df['CloneType'].str.count("exactClone").sum() parametric_clone_count = f_df['CloneType'].str.count("parametricClone").sum() nearmiss_clone_count = f_df['CloneType'].str.count("NearMissClones").sum() total_tokens = sum(total_tokens_used) # nearmiss_clone_count =0 self.log.info("exact_clone_count: \\n"+str(exact_clone_count)) self.log.info("parametric_clone_count: \\n"+str(parametric_clone_count)) self.log.info("nearmiss_clone_count: \\n"+str(nearmiss_clone_count)) self.log.info("Total tokens used: \\n"+str(total_tokens)) self.log.info("Total time taken to excute code clone detction: \\t"+str(total_time_taken)) clone_info="1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces,\\ 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments and less similarity threshold (0.90-0.95), result in this clone,\\ 3. Near-miss clone: Near-miss clone are clones detected with less similarity threshold." clone_count = {"Exact Clone":exact_clone_count,"Parametric Clone":parametric_clone_count,"Nearmiss Clone":nearmiss_clone_count} report_str = f"""Code_directory: {self.files_dir} Files: {total_files} Functions: {total_functions} Total_code_clones_detected: {total_clones} Tokens used: {total_tokens} Three_types_of_clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments and less similarity threshold (0.90-0.95), result in this clone. 3. Near-miss clone: Near-miss clone are clones detected with less similarity threshold. Code_clones_count_by_clone_type: {clone_count} Clone_functions: {ccd_report} total_time_taken: {total_time_taken} """ codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt') with open(codeclonereport_txt, "w") as f: f.write(report_str) report_dict = {"clone_info":clone_info,"total_clones":total_clones,'total_files':total_files,"exact_clone_count":exact_clone_count,'total_functions':total_functions,"total_tokens":total_tokens, "parametric_clone_count":parametric_clone_count,"nearmiss_clone_count":nearmiss_clone_count,"result_df":f_df } self.log.info("ccd_report: \\n"+str(ccd_report)) # print("report_dict:\\n\\n",report_dict) # end_time = time.time() # total_time = (end_time - start_time) return report_dict except Exception as e: self.log.info("Clone detection function error. error msg: "+str(e)) # import traceback # print("traceback error: \\n",traceback.print_exc()) if __name__ == "__main__": print("code clone detection started....") ##Use this for standalone fn debuging.<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os from os.path import expanduser import platform import json import subprocess import re import sys import pandas as pd from django.http import HttpResponse from appbe.dataPath import DATA_DIR Usecaselocation = os.path.join(DATA_DIR,'Usecases') def mlstyles(request): try: from appbe.aion_config import settings usecasetab = settings() selectid = request.GET['usecaseid'] configFile = os.path.join(Usecaselocation, 'usecases.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) #usecase = configSettingsJson['usecaselist'] desciption="" usecasename="" found = False for v_id in configSettingsJson['verticallist']: for p_id in v_id['usecaselist']: usecaseid = p_id.get('usecaseid') if str(usecaseid) == str(selectid) : usecasename = p_id.get('usecasename') desciption = p_id.get('desciption') usecaseid = p_id.get('usecaseid') iconname = p_id.get('iconname') prediction_input = p_id.get('prediction_input') outputtype = p_id.get('outputtype') smalldescription = p_id.get('smalldescription') trainingFeatures = p_id.get('trainingFeatures','None') if trainingFeatures != 'None': trainingFeatures = trainingFeatures.split(',') found = True break if found == True: break #print(usecaseid,selectid) context ={'usecasename':usecasename,'desciption':desciption,'prediction_input':prediction_input,'usecaseid':usecaseid,'trainingFeatures':trainingFeatures,'iconname':iconname,'smalldescription':smalldescription,'outputtype':outputtype,'usecasetab':usecasetab} return context except Exception as inst: print(inst) context = { 'error3':'error3','error1': "No UseCases to show"} return context def getusecasedetails(selectid): configFile = os.path.join(Usecaselocation, 'usecases.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) #usecase = configSettingsJson['usecaselist'] desciption="" usecasename="" found = False for v_id in configSettingsJson['verticallist']: for p_id in v_id['usecaselist']: usecaseid = p_id.get('usecaseid') if str(usecaseid) == str(selectid) : usecasename = p_id.get('usecasename') desciption = p_id.get('desciption') usecaseid = p_id.get('usecaseid') modelConfig = p_id.get('modelConfig') folder = p_id.get('folder') prediction = p_id.get('prediction') prediction_input = p_id.get('prediction_input') ai_modeldata = p_id.get('modeldata') outputtype = p_id.get('outputtype') smalldescription = p_id.get('smalldescription') prediction_template = p_id.get('prediction_template') trainingFeatures = p_id.get('trainingFeatures','None') if trainingFeatures != 'None': trainingFeatures = trainingFeatures.split(',') found = True break if found == True: break #print(usecasename) return(usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,outputtype,smalldescription,prediction_template,trainingFeatures) def mlpredict(request): selectid=request.POST.get('usecaseid') mlpredict =request.POST.get('mlpredict') usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,output
type,smalldescription,prediction_template,trainingFeatures = getusecasedetails(selectid) from appbe.aion_config import settings usecasetab = settings() usecasename = usecasename desciption = desciption input='' for x in prediction_input: if input != '': input += ',' input = request.POST.get(x['name']) if mlpredict in ['prediction','predictsingle']: if mlpredict == 'prediction': dataFile = request.POST.get('predictfilePath') if(os.path.isfile(dataFile) == False) or dataFile=="": context = {'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption , 'error1': 'Please enter a valid csv filepath','usecasetab':usecasetab} return context, mlpredict else: inputFieldsDict = {} for feature in trainingFeatures: inputFieldsDict[feature] = request.POST.get(feature) dataFile = json.dumps(inputFieldsDict) try: predictionScriptPath= os.path.join(Usecaselocation,folder,'model',prediction) # predictionScriptPath = os.path.join(predictionscript, 'aion_prediction.py') outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile,input]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() predict_dict = json.loads(outputStr) #print(predict_dict) heading ='' timetaken='' print(predict_dict) if (predict_dict['status'] == 'SUCCESS'): predictionResults = predict_dict['data'] #print(predictionResults) if 'heading' in predict_dict: heading = predict_dict['heading'] if 'Time' in predict_dict: timetaken = round(predict_dict['Time'],2) if outputtype.lower() in ['similarityidentification','contextualsearch']: data = predictionResults[0] predictionResults= [] Results={} prediction = data['prediction'] i = 1 for x in prediction: te = '' for y in x: info = (str(x[y])[:100] + '...') if len(str(x[y])) > 100 else str(x[y]) te += y+': '+info+'\\n\\n' Results[i] = te i = i+1 predictionResults.append(Results) else: context = {'usecaseid':selectid ,'dataFile':dataFile,'prediction_input':prediction_input,'usecasename':usecasename,'desciption':desciption , 'error': 'Failed To perform prediction','usecasetab':usecasetab} return context, mlpredict print(heading) context = {'usecasename':usecasename,'desciption':desciption,'prediction_input':prediction_input,'usecaseid':selectid ,'dataFile':dataFile,'predictionResults': predictionResults,'outputtype':outputtype,'heading':heading,'timetaken':timetaken,'usecasetab':usecasetab,'trainingFeatures':trainingFeatures} return context, mlpredict except Exception as inst: print(inst) context = { 'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption ,'errorp': 'Failed To perform prediction','usecasetab':usecasetab} return context, mlpredict if mlpredict == 'download_predict': # predictionResults = 'C:\\\\DataSets\\\\Classification\\\\bug_severity_class.csv' try: csvdata= os.path.join(Usecaselocation,folder,'Data',prediction_template) if os.path.isfile(csvdata) and os.path.exists(csvdata): df = pd.read_csv(csvdata,encoding='utf8',encoding_errors= 'replace') downloadFileName = usecasename.replace(" ", "_") + '_predict.csv' response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename='+downloadFileName df.to_csv(response, index=False) return response,mlpredict else: context = {'usecaseid':selectid ,'dataFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'error': 'File not found','usecasetab':usecasetab} return context, mlpredict except Exception as inst: context = { 'usecaseid':selectid ,'usecasename':usecasename,'desciption':desciption, 'error3':'error3','error1': 'Failed To Download','usecasetab':usecasetab} return context, mltrain def process(data): cleaned_data = {"verticallist":[]} for vertical in data['verticallist']: updated_list = [] for usecase in vertical['usecaselist']: if usecase['prediction'] and usecase['prediction'] != "Not Implemented": updated_list.append(usecase) if updated_list: cleaned_data['verticallist'].append({'id':vertical['id'],'name':vertical['name'],'usecaselist':updated_list}) return cleaned_data def Aiusecases(request,selectedoption='Implemented'): try: from appbe.aion_config import settings usecasetab = settings() configFile = os.path.join(Usecaselocation, 'usecases.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) if selectedoption == 'Implemented': configSettingsJson = process(configSettingsJson) usecasedetails = configSettingsJson['verticallist'] context ={'desciption1':usecasedetails,'selected':'AIusecases','usecasetab':usecasetab} return context except Exception as e: print(e) context ={'error':"No Usecases to Show",'selected':'AIusecases','usecasetab':usecasetab} return context def mltrain(request): from appbe.aion_config import settings usecasetab = settings() selectid =request.POST.get('usecaseid1') mltrain =request.POST.get('mltrain') usecasename,desciption,usecaseid,modelConfig,folder,prediction,prediction_input,ai_modeldata,outputtype,smalldescription,prediction_template,trainingFeatures = getusecasedetails(selectid) usecasename = usecasename desciption = desciption if mltrain == 'training': dataFile = request.POST.get('trainfilePath') if(os.path.isfile(dataFile) == False) or dataFile=="": context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption ,'error3':'error3','error1': 'Please enter a valid csv filepath'} return context, mltrain try: scriptPath = os.path.join(Usecaselocation,folder,'config','aion_train.py') print(scriptPath,dataFile) outputStr = subprocess.check_output([sys.executable, scriptPath, dataFile]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() train = json.loads(outputStr) status = train['status'] DeployLocation = train['data']['deployLocation'] ModelType = train['data']['ModelType'] BestModel = train['data']['BestModel'] BestScore = train['data']['BestScore'] ScoreType = train['data']['ScoreType'] FeaturesUsed = train['data']['featuresused'] context={'result':train,'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption,'status':status,'DeployLocation':DeployLocation,'ModelType':ModelType,'BestModel':BestModel,'BestScore':BestScore,'ScoreType':ScoreType,'FeaturesUsed':FeaturesUsed,'result':'result','usecasetab':usecasetab} return context,mltrain except Exception as inst: context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'errort': 'Failed To perform Training','usecasetab':usecasetab} return context, mltrain if mltrain == 'download_train': try: csvdata= os.path.join(Usecaselocation,folder,'data',ai_modeldata) #print(csvdata) if os.path.isfile(csvdata) and os.path.exists(csvdata): df = pd.read_csv(csvdata,encoding='utf8',encoding_errors= 'replace') downloadFileName = usecasename.replace(" ", "_") + '_training.csv' response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename='+downloadFileName df.to_csv(response, index=False) return response,mltrain else: context = {'usecaseid':selectid ,'datatrainFile':dataFile,'usecasename':usecasename,'desciption':desciption, 'error': 'File not found','usecasetab':usecasetab} return context, mltrain except Exception as inst: context = { 'usecaseid':selectid ,'usecasename':usecasename,'desciption':desciption, 'error3':'error3','error1': 'Failed To Download','usecasetab':usecasetab} return context, mltrain <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import math import sys,os import pandas as pd from sklearn.cluster import KMeans from sklearn.decomposition import PCA import numpy as np import scipy.stats as st from sklearn.preprocessing import StandardScaler from dython.nominal import associations class ux_eda (): def __init__(self, dataPath=pd.DataFrame(),delimiter=',',textqualifier='"',optimize=None,): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.dataFrame = pd.DataFrame() if isinstance(dataPath, pd.DataFrame): self.dataFrame = dataPath if optimize == 1: self.dataFrame = self.dataFrame.sample(n=1000, random_state=1) else: if optimize == 1: self.dataFrame = pd.read_csv(dataPath,nrows=1000,encoding='utf-8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') else: self.dataFrame = pd.read_csv(dataPath, encoding='utf-8',sep=delimiter,quotechar=textqualifier,skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') self.dataFrame.rename(columns=lambda x: x.strip(), inplace=True) self.features = self.dataFrame.columns.tolist() self.indexFeature = [] self.dateFeature = [] self.categoricalFeature = [] self.constantFeature = [] self.textFeature = [] self.numericFeature = [] self.numericAndCatFeature = [] for feature, featureType in zip(self.features, self.dataFrame.dtypes): if self.__check_seq_feature(self.dataFrame[feature]): self.indexFeature.append(feature) elif self.__match_date_format(self.dataFrame[feature]): self.dateFeature.append(feature) elif self.__check_constant_features(self.dataFrame[feature]): self.constantFeature.append(feature) elif self.__check_category_features(self.dataFrame[feature]): self.categoricalFeature.append(feature) elif featureType == 'object': ''' numOfRows = self.dataFrame.shape[0] distinctCount = len(self.dataFrame[feature].unique()) tempDff = self.dataFrame[feature] self.dataFrame[feature]=self.dataFrame[feature].apply(lambda x: self.testNum(x)) tempDf = self.dataFrame[feature] tempDf = tempDf.dropna() numberOfNonNullVals = tempDf.count() numericRatio = 0.8 if(numberOfNonNullVals > int(numOfRows * numericRatio)): self.numericFeature.append(feature) else: self.dataFrame[feature] = tempDff ''' self.textFeature.append(feature) elif featureType in aionNumericDtypes: self.numericFeature.append(feature) # self.dataFrame[self.categoricalFeature] = self.dataFrame[self.categoricalFeature].apply(lambda x: x.cat.codes) self.numericAndCatFeature = self.numericFeature + self.categoricalFeature # EDA Performance change # ---------------------------- def subsampleData(self, subsampleData): self.dataFrame = self.dataFrame.sample(n=subsampleData, random_state=1) def get_features_datatype(self,v,num_list,cat_list,text_list): """ To get exact datatype of the feature in Data Overview.""" if v in cat_list: return 'Categorical' elif v in num_list: return 'Numerical' elif v in text_list: return 'Text' def getCorrelationMatrix(self): try: if len(self.dataFrame.columns) > 25: df3 = df[self.dataFrame.columns[0:24]] else: df3 = self.dataFrame.copy() cor_mat= associations(self.dataFrame,compute_only=True) cor_mat=cor_mat['corr'] cor_mat = cor_mat.astype(float).round(2) cor_mat.replace(np.nan, 0, inplace=True) cor_mat.fillna('None',inplace=True) return cor_mat except Exception as e: print(e) correlationgraph = pd.DataFrame() return (correlationgraph) def dataDistribution(self): df_eda_actual = self.dataFrame.copy()
des1 = df_eda_actual.describe(include='all').T des1['missing count %'] = df_eda_actual.isnull().mean() * 100 des1['zero count %'] = df_eda_actual.isin([0]).mean() * 100 dataColumns = list(self.dataFrame.columns.values) des1.insert(0, 'Features', dataColumns) actual_df_numerical_features = df_eda_actual.select_dtypes(exclude='object') actual_df_categorical_features = df_eda_actual.select_dtypes(include='object') #For text features textFeature_df = df_eda_actual.filter(self.textFeature) actual_df_categorical_features = actual_df_categorical_features.drop(self.textFeature, axis=1) for i in des1['Features']: num_cols = actual_df_numerical_features.columns.to_list() cat_cols = actual_df_categorical_features.columns.to_list() text_cols = self.textFeature des1['Features Type'] = des1['Features'].apply(lambda x: self.get_features_datatype(x, num_cols,cat_cols,text_cols)) curr_columns = des1.columns.to_list() curr_columns.remove('Features Type') insert_i = curr_columns.index('Features')+1 curr_columns.insert(insert_i,'Features Type') des1 = des1[curr_columns] return des1 # ---------------------------- def subsetFeatures(self, edaFeatures): print(self.dataFrame.columns) self.dataFrame = self.dataFrame[edaFeatures] self.features = edaFeatures self.indexFeature = [] self.dateFeature = [] self.categoricalFeature = [] self.constantFeature = [] self.textFeature = [] self.numericFeature = [] self.numericAndCatFeature = [] print('abc') aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] for feature, featureType in zip(self.features, self.dataFrame.dtypes): if self.__check_seq_feature(self.dataFrame[feature]): self.indexFeature.append(feature) elif self.__match_date_format(self.dataFrame[feature]): self.dateFeature.append(feature) elif self.__check_constant_features(self.dataFrame[feature]): self.constantFeature.append(feature) elif self.__check_category_features(self.dataFrame[feature]): self.categoricalFeature.append(feature) elif featureType == 'object': ''' numOfRows = self.dataFrame.shape[0] distinctCount = len(self.dataFrame[feature].unique()) tempDff = self.dataFrame[feature] self.dataFrame[feature]=self.dataFrame[feature].apply(lambda x: self.testNum(x)) tempDf = self.dataFrame[feature] tempDf = tempDf.dropna() numberOfNonNullVals = tempDf.count() numericRatio = 0.8 if(numberOfNonNullVals > int(numOfRows * numericRatio)): self.numericFeature.append(feature) else: self.dataFrame[feature] = tempDff ''' self.textFeature.append(feature) elif featureType in aionNumericDtypes: self.numericFeature.append(feature) print('def') self.numericAndCatFeature = self.numericFeature + self.categoricalFeature # ---------------------------- def testNum(self,value): try: x=eval(value) return x except: return np.nan def getFeatures(self): leastRatioFeature = self.__LeastfeatureRatio() return (self.features, self.dateFeature, self.indexFeature, self.constantFeature, self.textFeature, leastRatioFeature,self.numericAndCatFeature,self.numericFeature,self.categoricalFeature) def getNumericFeatureCount(self): return(len(self.numericAndCatFeature)) def calculateNumberofCluster(self): df = self.dataFrame[self.numericFeature] return self.__NumberofCluster(df) def getTopTextFeatures(self,topn): df_text = pd.DataFrame() if (len(self.textFeature) > 1): df_text['combined'] = self.dataFrame[self.textFeature].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) features = ['combined'] else: df_text[['combined']] = self.dataFrame[self.textFeature] features = ['combined'] df_text[features[0]] = df_text[features[0]].fillna("NA") textCorpus = df_text[features[0]] from text import eda texteda_obj = eda.ExploreTextData() df = texteda_obj.MostCommonWords(textCorpus,topn) return df def __NumberofCluster(self, featureData): Sum_of_squared_distances = [] K = range(1, 15) for k in K: km = KMeans(n_clusters=k) km = km.fit(featureData) Sum_of_squared_distances.append(km.inertia_) x1, y1 = 1, Sum_of_squared_distances[0] x2, y2 = 15, Sum_of_squared_distances[len(Sum_of_squared_distances) - 1] distances = [] for inertia in range(len(Sum_of_squared_distances)): x0 = inertia + 2 y0 = Sum_of_squared_distances[inertia] numerator = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1) denominator = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2) distances.append(numerator / denominator) n_clusters = distances.index(max(distances)) + 2 return (n_clusters) #13841 : TrustedAI: hopkins stat def getHopkinsVal(self,df): try: from appbe.hopkinsStat import hopkins from sklearn.preprocessing import StandardScaler,OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer numeric_transformer = Pipeline( steps=[("imputer", SimpleImputer(missing_values=np.nan,strategy="mean")), ("standard_scaler", StandardScaler())] ) categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(missing_values=np.nan,strategy="most_frequent")), ("encoder", OneHotEncoder(handle_unknown="ignore")) ] ) preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, self.numericFeature), ("cat", categorical_transformer, self.categoricalFeature) ] ) pipe = Pipeline([('scaler',preprocessor)]) scaled_df = pipe.fit_transform(df) if type(scaled_df) != np.ndarray: scaled_df = scaled_df.toarray() score = round(hopkins(scaled_df,scaled_df.shape[0]),2) return str(score) except Exception as e: print(e) return '' def getClusterDetails(self): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df_clus = pd.get_dummies(self.dataFrame[self.numericAndCatFeature], prefix_sep='####') for i in df_clus.columns: dataType = df_clus[i].dtypes if dataType not in aionNumericDtypes: df_clus[i] = df_clus[i].fillna(df_clus[i].mode()[0]) else: df_clus[i] = df_clus[i].fillna(df_clus[i].mean()) n = self.__NumberofCluster(df_clus) n = n - 1 kmeans = KMeans(n_clusters=n, init='k-means++', max_iter=10, n_init=10, random_state=0) # Fit and predict y_means = kmeans.fit_predict(df_clus) centroids = kmeans.cluster_centers_.squeeze() labels = kmeans.labels_ features = df_clus.columns cluster_details = [] for j in range(len(features)): cluster = {} feature = features[j] perflag = 0 if '####' in feature: x = features[j].split('####') feature = x[0] + ' ' + x[1] + '(%)' perflag = 1 else: feature = feature + '(AVG)' cluster['label'] = feature total_sum = 0 if perflag == 1: for i in range(n): centroid = centroids[i] value = round(centroid[j], 2) total_sum = total_sum + value for i in range(n): centroid = centroids[i] value = round(centroid[j], 2) if perflag == 1: value = (value / total_sum) * 100 value = round(value, 2) cluster['Cluster ' + str(i + 1)] = value cluster_details.append(cluster) hopkins_val = self.getHopkinsVal(self.dataFrame,) return cluster_details,hopkins_val def getHighlyCorrelatedFeatures(self,noOfTop): df_corr = abs(self.dataFrame[self.numericAndCatFeature].corr()).stack().reset_index() df_corr.columns = ['FEATURE_1', 'FEATURE_2', 'CORRELATION'] mask_dups = (df_corr[['FEATURE_1', 'FEATURE_2']].apply(frozenset, axis=1).duplicated()) | ( df_corr['FEATURE_1'] == df_corr['FEATURE_2']) df_corr = df_corr[~mask_dups] df_corr = df_corr.sort_values(by='CORRELATION', ascending=False) df_top = df_corr.head(n=noOfTop) return(df_top) # ---------------------- 12686:Data Distribution related Changes S T A R T ---------------------- def word_token_for_feature(self, selectedFeature, dataframe): comment_words = "" try: df_text = pd.DataFrame() df_text[[selectedFeature]] = dataframe features = [selectedFeature] df_text[features[0]] = df_text[features[0]].fillna("NA") textCorpus = df_text[features[0]] from text import TextProcessing tp = TextProcessing.TextProcessing() preprocessed_text = tp.transform(textCorpus) df_text[selectedFeature] = preprocessed_text df_text_list = df_text.values.tolist() for val in df_text_list: val = str(val) tokens = val.split() for i in range(len(tokens)): tokens[i] = tokens[i].lower() comment_words += " ".join(tokens) + " " except: comment_words = "" return comment_words # -------------------------------------------- E N D -------------------------------------------- def word_token(self): df_text = pd.DataFrame() if (len(self.textFeature) > 1): df_text['combined'] = self.dataFrame[self.textFeature].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) features = ['combined'] else: df_text[['combined']] = self.dataFrame[self.textFeature] features = ['combined'] df_text[features[0]] = df_text[features[0]].fillna("NA") textCorpus = df_text[features[0]] from text import TextProcessing tp = TextProcessing.TextProcessing() preprocessed_text = tp.transform(textCorpus) df_text['combined'] = preprocessed_text df_text_list = df_text.values.tolist() comment_words = "" for val in df_text_list: val = str(val) tokens = val.split() for i in range(len(tokens)): tokens[i] = tokens[i].lower() comment_words += " ".join(tokens) + " " if comment_words == "": comment_words = 'Not found any token' return comment_words def getdata(self): return self.dataFrame def getPCATop10Features(self): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = self.dataFrame[self.numericAndCatFeature] for feature in self.numericAndCatFeature: if feature in self.categoricalFeature: df[feature] = pd.Categorical(df[feature]) df[feature] = df[feature].cat.codes df[feature] = df[feature].fillna(df[feature].mode()[0]) else: df[feature] = df[feature].fillna(df[feature].mean()) pca = PCA(n_components=2).fit(StandardScaler().fit_transform(df)) mapping = pd.DataFrame(pca.components_, columns=self.numericAndCatFeature) mapping = mapping.diff(axis=0).abs() mapping = mapping.iloc[1] mapping = mapping.sort_values(ascending=False).head(10) return mapping def getTopRows(self, rows=5): return self.dataFrame.head(rows) def __check_seq_feature(self, data): if data.dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: total_record = data.count() count = (data - data.shift() == 1).sum() if ((total_record - count) == 1): return True return False def __match_date_format(self, data): try: ## Using regex lib, we are check if any col contains datetime format like yyyy-mm-dd or yyyy/mm/dd format. if it finds return true. import re u_data = data.to_string() date_find = (re.findall(r"[0-9]{1,4}[\\_|\\-|\\/|\\|][0-9]{1,2}[\\_|\\-|\\/
|\\|][0-9]{1,4}", u_data) or re.findall(r'\\d{,2}\\-[A-Za-z]{,9}\\-\\d{,4}', u_data) or re.findall(r"[0-9]{1,4}[\\_|\\-|\\/|\\|][0-9]{1,2}[\\_|\\-|\\/|\\|][0-9]{1,4}.\\d" , u_data) or re.findall(r"[0-9]{1,4}[\\_|\\-|\\/|\\|][A-Za-z]{,9}[\\_|\\-|\\/|\\|][0-9]{1,4}", u_data)) if (date_find): try: data = pd.to_datetime(data, utc=True) return True except Exception as e: ##If not a datetime col, just pass to return false statement. pass except Exception as e: data = data.astype(str) beforecheckcount = data.count() #####YYYY-MM-DD HH:MM:SS#### check1 = data[data.str.match( r'(^\\d\\d\\d\\d-(0?[1-9]|1[0-2])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check1.count() if (beforecheckcount == aftercheckcount): return True #####MM/DD/YYYY HH:MM#### check2 = data[data.str.match( r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\\d\\d\\d\\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check2.count() if (beforecheckcount == aftercheckcount): return True #####DD-MM-YYYY HH:MM#### check2 = data[data.str.match( r'(^(0?[1-9]|[12][0-9]|3[01])-(0?[1-9]|1[0-2])-(\\d\\d\\d\\d) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9])$)') == True] aftercheckcount = check2.count() if (beforecheckcount == aftercheckcount): return True #####YYYY/MM/DD#### check2 = data[data.str.match(r'(^\\d\\d\\d\\d/(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])$)') == True] aftercheckcount = check2.count() if (beforecheckcount == aftercheckcount): return True #####MM/DD/YYYY#### check2 = data[data.str.match(r'(^(0?[1-9]|1[0-2])/(0?[1-9]|[12][0-9]|3[01])/(\\d\\d\\d\\d)$)') == True] aftercheckcount = check2.count() if (beforecheckcount == aftercheckcount): return True #####YYYY-MM-DD HH:MM:SS.fff#### check11 = data[data.str.match( r'(^\\d\\d\\d\\d-(0?[1-9]|1[0-2])-(0?[1-9]|[12][0-9]|3[01]) (00|0?[0-9]|1[0-9]|2[0-4]):([0-9]|[0-5][0-9]):([0-9]|[0-5][0-9])\\.(\\d{3})$)') == True] aftercheckcount = check11.count() if (beforecheckcount == aftercheckcount): return True return False def __check_category_features(self, modelFeatures): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] dataType = modelFeatures.dtypes numOfRows = len(modelFeatures) if dataType not in aionNumericDtypes: if dataType != 'bool': nUnique = len(modelFeatures.unique().tolist()) if nUnique <= 30: return True return False def __check_constant_features(self, modelFeatures): return len(modelFeatures.unique().tolist()) == 1 def __featureRatio(self, modelFeatures): if len(modelFeatures): return len(modelFeatures.unique().tolist()) / len(modelFeatures) return 0 def __LeastfeatureRatio(self): ratio = 1 feat = "" for feature in (self.numericAndCatFeature + self.textFeature): r = self.__featureRatio(self.dataFrame[feature]) if r < ratio: ratio = r feat = feature return feat def getDistribution(self): aionNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = self.dataFrame[self.numericAndCatFeature] dist={} for feature in self.numericAndCatFeature: if feature in self.categoricalFeature: df[feature] = pd.Categorical(df[feature]) df[feature] = df[feature].cat.codes df[feature] = df[feature].fillna(df[feature].mode()[0]) else: df[feature] = df[feature].fillna(df[feature].mean()) distributionname,sse = self.DistributionFinder(df[feature]) if distributionname == '': dist[feature] = 'Unknown' else: dist[feature] = distributionname return dist def DistributionFinder(self,data): try: distributionName = "" sse = 0.0 KStestStatic = 0.0 dataType = "" if (data.dtype == "float64"): dataType = "Continuous" elif (data.dtype == "int"): dataType = "Discrete" elif (data.dtype == "int64"): dataType = "Discrete" if (dataType == "Discrete"): distributions = [st.bernoulli, st.binom, st.geom, st.nbinom, st.poisson] index, counts = np.unique(data.astype(int), return_counts=True) if (len(index) >= 2): best_sse = np.inf y1 = [] total = sum(counts) mean = float(sum(index * counts)) / total variance = float((sum(index ** 2 * counts) - total * mean ** 2)) / (total - 1) dispersion = mean / float(variance) theta = 1 / float(dispersion) r = mean * (float(theta) / 1 - theta) datamin = data.min() datamax = data.max() for j in counts: y1.append(float(j) / total) pmf1 = st.bernoulli.pmf(index, mean) pmf2 = st.binom.pmf(index, len(index), p=mean / len(index)) pmf3 = st.geom.pmf(index, 1 / float(1 + mean)) pmf4 = st.nbinom.pmf(index, mean, r) pmf5 = st.poisson.pmf(index, mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1 - pmf5, 2.0)) sselist = [sse1, sse2, sse3, sse4, sse5] best_distribution = 'NA' for i in range(0, len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName = best_distribution sse = best_sse elif (dataType == "Continuous"): distributions = [st.uniform, st.expon, st.weibull_max, st.weibull_min, st.chi, st.norm, st.lognorm, st.t, st.gamma, st.beta] best_distribution = st.norm.name best_sse = np.inf datamin = data.min() datamax = data.max() nrange = datamax - datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: params = distribution.fit(data.astype(float)) arg = params[:-2] loc = params[-2] scale = params[-1] pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if (best_sse > sse > 0): best_distribution = distribution.name best_sse = sse distributionName = best_distribution sse = best_sse except: response = str(sys.exc_info()[0]) message = 'Job has Failed' + response exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) return distributionName, sse <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' #Standard Library modules import sqlite3 import pandas as pd from pathlib import Path class sqlite_writer(): def __init__(self, target_path): self.target_path = Path(target_path) database_file = self.target_path.stem + '.db' self.db = sqlite_db(self.target_path, database_file) def file_exists(self, file): if file: return self.db.table_exists(file) else: return False def read(self, file): return self.db.read(file) def write(self, data, file): self.db.write(data, file) def close(self): self.db.close() class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem + '.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self, table_name,condition=''): if condition == '': return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) else: return pd.read_sql_query(f"SELECT * FROM {table_name} WHERE {condition}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def update(self,table_name,updates,condition): update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close() <s> import json import os import random import time from avro.datafile import DataFileReader from avro.io import DatumReader from pyarrow.parquet import ParquetFile from snorkel.labeling.model import LabelModel from snorkel.labeling import PandasLFApplier, LFAnalysis import pandas as pd import pandavro as pdx import pyarrow as pa import numpy as np import platform from os.path import expanduser home = expanduser("~") if platform.system() == 'Windows': DATA_FILE_PATH = os.path.join(home,'AppData','Local','Programs','HCLTech','AION','data','storage') else: DATA_FILE_PATH = os.path.join(home,'HCLT','AION','data') def get_join(condition): if condition["join"] == 'and': return "
&" elif condition["join"] == 'or': return "|" else: return "" def create_labelling_function(rule_list, label_list): lfs_main_func = 'def lfs_list_create():\\n' lfs_main_func += '\\tfrom snorkel.labeling import labeling_function\\n' lfs_main_func += '\\timport numpy as np\\n' lfs_main_func += '\\timport json\\n' lfs_main_func += '\\tABSTAIN = -1\\n' lfs_main_func += '\\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\\n' lfs_list = '\\tlfs_list=[' for rule in rule_list: lfs_list += 'lf_' + rule["rule_name"] + ',' lfs = '\\t@labeling_function()\\n' lfs += '\\tdef lf_' + rule["rule_name"] + '(data):\\n' lfs += '\\t\\treturn np.where(' for condition in rule["conditions"]: if "string" in condition["sel_datatype"]: if condition["sel_condition"] in ["==", "!="]: cond_statement = '(data["' + condition["sel_column"] + '"]' + condition[ "sel_condition"] + '("' + str(condition["input_value"]) + '"))' + get_join(condition) else: cond_statement = '(data["' + condition["sel_column"] + '"].' + condition[ "sel_condition"] + '("' + str(condition["input_value"]) + '"))' + get_join(condition) else: cond_statement = '(data["' + condition["sel_column"] + '"]' + condition["sel_condition"] + \\ str(condition["input_value"]) + ')' + get_join(condition) lfs += cond_statement lfs += ', labels.index("' + rule["label"] + '"), ABSTAIN)\\n' lfs_main_func += lfs if lfs_list.endswith(","): lfs_list = lfs_list.rstrip(lfs_list[-1]) lfs_list += ']\\n' else: lfs_list += ']\\n' lfs_main_func += lfs_list lfs_main_func += '\\treturn lfs_list\\n' lfs_main_func += 'lfs_list_create()' f = open(os.path.join(DATA_FILE_PATH, 'lfs_list.txt'), 'w') f.write(lfs_main_func) f.close() return lfs_main_func def label_dataset(rule_list, file_ext, label_list, not_satisfy_label): file_path = os.path.join(DATA_FILE_PATH, "uploaded_file." + file_ext) if file_ext in ["csv", "tsv"]: df = pd.read_csv(file_path) elif file_ext == "json": df = pd.json_normalize(pd.read_json(file_path).to_dict("records")) elif file_ext == "avro": reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) df = pdx.read_avro(file_path, schema=schema, na_dtypes=True) elif file_ext == "parquet": df = pd.read_parquet(file_path, engine="pyarrow") labelling_functions = create_labelling_function(rule_list, label_list) exec(labelling_functions) lfs = eval('lfs_list_create()') applier = PandasLFApplier(lfs) l_data = applier.apply(df) label_model = LabelModel(cardinality=len(label_list) + 1, verbose=True) label_model.fit(l_data, n_epochs=500, log_freq=50, seed=123) df["label"] = label_model.predict(L=l_data, tie_break_policy="abstain") df.loc[df["label"] == -1, "label"] = not_satisfy_label for item in label_list: df.loc[df["label"] == label_list.index(item), "label"] = item if file_ext in ["csv", "tsv"]: df.to_csv(os.path.join(DATA_FILE_PATH, "result_file." + file_ext), index=False) elif file_ext == "parquet": df.to_parquet(os.path.join(DATA_FILE_PATH, "result_file." + file_ext), engine="pyarrow", index=False) elif file_ext == "avro": pdx.to_avro(os.path.join(DATA_FILE_PATH, "result_file." + file_ext), df) else: raise ValueError("Invalid file format") num_records = len(df.index) size_take = 100 if num_records <= size_take: size_take = num_records display_df = df.sample(n=size_take) return display_df.to_html(classes='table table-striped text-left', justify='left', index=False) def create_sample_function(rule, label_list, not_satisfy_label): lfs_main_func = 'def lf_rule_apply(data):\\n' lfs_main_func += '\\timport numpy as np\\n' lfs_main_func += '\\tABSTAIN = -1\\n' lfs_main_func += '\\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\\n' lfs = '\\treturn np.where(' for condition in rule["conditions"]: if "string" in condition["sel_datatype"]: if condition["sel_condition"] in ["==", "!="]: cond_statement = '(data["' + condition["sel_column"] + '"]' + condition["sel_condition"] + '("' + str( condition["input_value"]) + '"))' + get_join(condition) else: cond_statement = '(data["' + condition["sel_column"] + '"].str.' + condition[ "sel_condition"] + '("' + str(condition["input_value"]) + '"))' + get_join(condition) print(cond_statement) else: cond_statement = '(data["' + condition["sel_column"] + '"]' + condition["sel_condition"] + \\ str(condition["input_value"]) + ')' + get_join(condition) lfs += cond_statement lfs += ', "' + rule["label"] + '", "' + not_satisfy_label + '")\\n' lfs_main_func += lfs return lfs_main_func def get_sample_result_of_individual_rule(rule_json, file_ext, label_list, not_satisfy_label): file_path = os.path.join(DATA_FILE_PATH, "uploaded_file." + file_ext) size_take = 100 if file_ext in ["csv", "tsv"]: num_records = sum(1 for line in open(file_path)) - 1 if num_records > size_take: skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take)) else: skip = 0 df = pd.read_csv(file_path, skiprows=skip) elif file_path.endswith(".json"): df = pd.read_json(file_path) df = pd.json_normalize(df.to_dict("records")) elif file_path.endswith(".avro"): reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) df = pdx.read_avro(file_path, schema=schema, na_dtypes=True) elif file_path.endswith(".parquet"): pf = ParquetFile(file_path) take_rows = next(pf.iter_batches(batch_size=size_take)) df = pa.Table.from_batches([take_rows]).to_pandas() # file_content = pd.read_parquet(file_path, engine="pyarrow") else: raise ValueError("Invalid file format") rule_applier_func = create_sample_function(rule_json, label_list, not_satisfy_label) exec(rule_applier_func) df[rule_json["rule_name"]] = eval('lf_rule_apply')(df) return df.to_html(classes='table table-striped text-left', justify='left', index=False) def create_sample_function_ver2(rule_json, label_list, not_satisfy_label): lfs_main_func = 'def lf_rule_apply(data):\\n' lfs_main_func += '\\timport numpy as np\\n' lfs_main_func += '\\tABSTAIN = -1\\n' lfs_main_func += '\\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\\n' counter = 0 for condition in rule_json["conditions"]: lfs_return = condition["sel_label"] if counter > 0: lfs_return_condition = '\\telif' else: lfs_return_condition = '\\tif' for label_condition in condition["label_condition"]: if label_condition["sel_datatype"] == "string": if label_condition["sel_condition"] == "contains": lfs_return_condition += '((' + str(label_condition["input_value"]) + ') in data["' + \\ label_condition["sel_column"] + '"])' + get_join(label_condition) elif label_condition["sel_condition"] in ["==", "!="]: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"]' + label_condition[ "sel_condition"] + '("' + str( label_condition["input_value"]) + '"))' + get_join(label_condition) else: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"].' + label_condition[ "sel_condition"] + '("' + str(label_condition["input_value"]) + '"))' + get_join( label_condition) else: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"]' + label_condition[ "sel_condition"] + str(label_condition["input_value"]) + ')' + get_join(label_condition) if get_join(label_condition) == "": lfs_return_condition += ":\\n" lfs_return_condition += '\\t\\treturn "' + lfs_return + '"\\n' lfs_main_func += lfs_return_condition counter += 1 lfs_return_condition = '\\n\\telse:\\n' lfs_return_condition += '\\t\\treturn "' + not_satisfy_label + '"' lfs_main_func += lfs_return_condition return lfs_main_func def get_sample_result_of_individual_rule_ver2(rule_json, file_ext, label_list, not_satisfy_label): file_path = os.path.join(DATA_FILE_PATH, "uploaded_file." + file_ext) size_take = 100 if file_ext in ["csv", "tsv"]: num_records = sum(1 for line in open(file_path)) - 1 if num_records > size_take: skip = sorted(random.sample(range(1, num_records + 1), num_records - size_take)) else: skip = 0 df = pd.read_csv(file_path, skiprows=skip) elif file_path.endswith(".json"): df = pd.read_json(file_path) df = pd.json_normalize(df.to_dict("records")) elif file_path.endswith(".avro"): reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) df = pdx.read_avro(file_path, schema=schema, na_dtypes=True) elif file_path.endswith(".parquet"): pf = ParquetFile(file_path) take_rows = next(pf.iter_batches(batch_size=size_take)) df = pa.Table.from_batches([take_rows]).to_pandas() # file_content = pd.read_parquet(file_path, engine="pyarrow") else: raise ValueError("Invalid file format") rule_applier_func = create_sample_function_ver2(rule_json, label_list, not_satisfy_label) exec(rule_applier_func) df[rule_json["rule_name"]] = df.apply(eval('lf_rule_apply'), axis=1) return df.to_html(classes='table table-striped text-left', justify='left', index=False) def create_labelling_function_ver2(rule_list, label_list): lfs_main_func = 'def lfs_list_create():\\n' lfs_main_func += '\\tfrom snorkel.labeling import labeling_function\\n' lfs_main_func += '\\timport numpy as np\\n' lfs_main_func += '\\timport json\\n' lfs_main_func += '\\tABSTAIN = -1\\n' lfs_main_func += '\\tlabels = json.loads(json.dumps(' + json.dumps(label_list) + '))\\n' lfs_list = '\\tlfs_list=[' for rule in rule_list: lfs_list += 'lf_' + rule["rule_name"] + ',' lfs = '\\t@labeling_function()\\n' lfs += '\\tdef lf_' + rule["rule_name"] + '(data):\\n' counter = 0 for condition in rule["conditions"]: lfs_return = 'labels.index("' + condition["sel_label"] + '")' if counter > 0: lfs_return_condition = '\\t\\telif' else: lfs_return_condition = '\\t\\tif' for label_condition in condition["label_condition"]: if label_condition["sel_datatype"] == "string": if label_condition["sel_condition"] == "contains": lfs_return_condition += '((' + str(label_condition["input_value"]) + ') in data["' + \\ label_condition["sel_column"] + '"])' + get_join(label_condition) elif label_condition["sel_condition"] in ["==", "!="]: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"]' + label_condition[ "sel_condition"] + '("' + str(
label_condition["input_value"]) + '"))' + get_join(label_condition) else: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"].' + label_condition[ "sel_condition"] + '("' + str(label_condition["input_value"]) + '"))' + get_join( label_condition) else: lfs_return_condition += '(data["' + label_condition["sel_column"] + '"]' + label_condition[ "sel_condition"] + str(label_condition["input_value"]) + ')' + get_join(label_condition) if get_join(label_condition) == "": lfs_return_condition += ":\\n" lfs_return_condition += '\\t\\t\\treturn ' + lfs_return + '\\n' lfs += lfs_return_condition counter += 1 lfs_return_condition = '\\n\\t\\telse:\\n' lfs_return_condition += '\\t\\t\\treturn ABSTAIN\\n' lfs += lfs_return_condition lfs_main_func += lfs if lfs_list.endswith(","): lfs_list = lfs_list.rstrip(lfs_list[-1]) lfs_list += ']\\n' else: lfs_list += ']\\n' lfs_main_func += lfs_list lfs_main_func += '\\treturn lfs_list\\n' lfs_main_func += 'lfs_list_create()' # f = open(os.path.join(DATA_FILE_PATH, 'lfs_list.txt'), 'w') # f.write(lfs_main_func) # f.close() return lfs_main_func def get_rule_name_list(rule_list): rule_name_list = [] for rule in rule_list: rule_name_list.append(rule["rule_name"]) return rule_name_list def label_dataset_ver2(request,rule_list, file_ext, label_list, not_satisfy_label, label_weightage, include_proba): file_path = os.path.join(DATA_FILE_PATH, "uploaded_file." + file_ext) if file_ext in ["csv", "tsv"]: df = pd.read_csv(file_path) elif file_ext == "json": df = pd.json_normalize(pd.read_json(file_path).to_dict("records")) elif file_ext == "avro": reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) df = pdx.read_avro(file_path, schema=schema, na_dtypes=True) elif file_ext == "parquet": df = pd.read_parquet(file_path, engine="pyarrow") labelling_functions = create_labelling_function_ver2(rule_list, label_list) exec(labelling_functions) lfs = eval('lfs_list_create()') applier = PandasLFApplier(lfs) l_data = applier.apply(df) label_model = LabelModel(cardinality=len(label_list), verbose=True) label_model.fit(l_data, n_epochs=500, log_freq=50, seed=123, class_balance=label_weightage) df["label"] = label_model.predict(L=l_data, tie_break_policy="abstain") if include_proba: prediction_of_prob = label_model.predict_proba(L=l_data) for label in label_list: df[label + "_prob"] = np.around(prediction_of_prob[:, label_list.index(label)], 2) * 100 df.loc[df["label"] == -1, "label"] = not_satisfy_label filetimestamp = str(int(time.time())) datasetName = "AION_labelled_"+filetimestamp + '.' + file_ext request.session['AION_labelled_Dataset'] = datasetName for item in label_list: df.loc[df["label"] == label_list.index(item), "label"] = item if file_ext in ["csv", "tsv"]: df.to_csv(os.path.join(DATA_FILE_PATH, datasetName), index=False) elif file_ext == "parquet": df.to_parquet(os.path.join(DATA_FILE_PATH, datasetName), engine="pyarrow", index=False) elif file_ext == "avro": pdx.to_avro(os.path.join(DATA_FILE_PATH, datasetName), df) else: raise ValueError("Invalid file format") #### saving file to database from appbe.dataPath import DATA_DIR from appbe.sqliteUtility import sqlite_db file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') newdata = {} newdata['datapath'] = [os.path.join(DATA_FILE_PATH, datasetName)] newdata['datasetname'] = [datasetName] sqlite_obj.write_data(pd.DataFrame.from_dict(newdata), 'dataingest') num_records = len(df.index) size_take = 100 if num_records <= size_take: size_take = num_records display_df = df.sample(n=size_take) weightage = np.around(label_model.get_weights(), 2) rule_name_list = get_rule_name_list(rule_list) analysis_df = LFAnalysis(l_data, lfs).lf_summary() analysis_df["Rule"] = analysis_df.index analysis_df["Rule"] = analysis_df["Rule"].str.replace("lf_", "") analysis_df = analysis_df[["Rule", "Polarity", "Coverage", "Overlaps", "Conflicts"]] weightage_dict = dict(zip(rule_name_list, weightage)) analysis_json = analysis_df.to_dict(orient="records") for item in analysis_json: item["Weightage"] = weightage_dict[item["Rule"]] analysis_df = pd.json_normalize(analysis_json) # rules_weightage = [] # for key in weightage_dict: # rules_weightage.append({ # "label": key, # "y": weightage_dict[key], # "legendText": key # }) response = { # "rule_name_list": rule_name_list, # "weightage_list": list(weightage), "analysis_df": analysis_df.to_html(classes='table table-striped text-left', justify='left', index=False), "result_html": display_df.to_html(classes='table table-striped text-left', justify='left', index=False) } return response def get_label_and_weightage(test_file_ext, marked_label_column,file_delim_test, custom_test_delim ): file_path = os.path.join(DATA_FILE_PATH, "test_data_file." + test_file_ext) if test_file_ext in ["csv", "tsv"]: df = pd.read_csv(file_path) elif test_file_ext == "json": df = pd.json_normalize(pd.read_json(file_path).to_dict("records")) elif test_file_ext == "avro": reader = DataFileReader(open(file_path, "rb"), DatumReader()) schema = json.loads(reader.meta.get('avro.schema').decode('utf-8')) df = pdx.read_avro(file_path, schema=schema, na_dtypes=True) elif test_file_ext == "parquet": df = pd.read_parquet(file_path, engine="pyarrow") json_df = pd.DataFrame(df[marked_label_column].value_counts(normalize=True) * 100) json_dict = json.loads(json_df.to_json()) label_with_weightage = [] for k in json_dict[marked_label_column]: label_with_weightage.append( {"label_name": k, "label_weightage": np.around(json_dict[marked_label_column][k], 2)}) return label_with_weightage <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os from os.path import expanduser import platform DEFAULT_FILE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)),'conf') cur_dir = os.path.dirname(os.path.abspath(__file__)) home = expanduser("~") if platform.system() == 'Windows': DATA_DIR = os.path.normpath(os.path.join(cur_dir,'..','..','..','..','..','..','data')) DATA_FILE_PATH = os.path.join(DATA_DIR,'storage') CONFIG_FILE_PATH = os.path.join(DATA_DIR,'config') DEPLOY_LOCATION = os.path.join(DATA_DIR,'target') LOG_LOCATION = os.path.join(DATA_DIR,'logs') LOG_FILE = os.path.join(DATA_DIR,'logs','ux.log') else: DATA_DIR = os.path.join(home,'HCLT','data') DATA_FILE_PATH = os.path.join(DATA_DIR,'storage') CONFIG_FILE_PATH = os.path.join(DATA_DIR,'config') DEPLOY_LOCATION = os.path.join(DATA_DIR,'target') LOG_FILE = os.path.join(DATA_DIR,'logs','ux.log') LOG_LOCATION = os.path.join(DATA_DIR,'logs')<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import shutil import subprocess import sys import glob from pathlib import Path import json from django.http import FileResponse from django.http import HttpResponse from importlib.metadata import version COMMON_PACKAGES = "'setuptools >=62.3.0','pandas==1.5.3','numpy==1.24.2','joblib==1.2.0','Cython==0.29.33','scipy==1.10.1',' scikit-learn==1.2.1','word2number==1.1','category_encoders==2.6.0'" DL_COMMON_PACKAGE = "'tensorflow==2.11.0'" TEXT_PACKAGES = "'spacy==3.5.0','nltk==3.8.1','textblob==0.15.3','demoji==1.1.0','bs4==0.0.1','text-unidecode==1.3','pyspellchecker==0.6.2','contractions==0.1.73','protobuf==3.19.6','lxml'" def createPackagePackage(request,id,version,usecasedetails,Existusecases): from appbe.pages import get_usecase_page #print('2') usecasedetail = usecasedetails.objects.get(id=id) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version) modelid = models[0].id p = Existusecases.objects.get(id=modelid) deploymentfolder = str(p.DeployPath) modelname = p.ModelName.usecaseid version = p.Version deployed_code = 'AION' dockerimage = os.path.join(deploymentfolder,'publish','docker_image') dockersetup = os.path.join(deploymentfolder,'publish','docker_setup') tempPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'temp_'+modelname+'_'+str(version)) try: shutil.rmtree(tempPath,ignore_errors=True) except: pass shutil.copytree(deploymentfolder,tempPath) shutil.rmtree(os.path.join(tempPath,'publish'), ignore_errors=True) try: Path(os.path.join(deploymentfolder,'publish')).mkdir(parents=True, exist_ok=True) os.mkdir(dockersetup) except: shutil.rmtree(dockersetup,ignore_errors=True) os.mkdir(dockersetup) try: os.mkdir(dockerimage) except: shutil.rmtree(dockerimage,ignore_errors=True) os.mkdir(dockerimage) shutil.copytree(tempPath, os.path.join(dockersetup,deployed_code)) shutil.rmtree(tempPath) docker_setup = os.path.join(dockersetup,'AION') try: os.mkdir(dockerimage) except: pass requirementfilename = os.path.join(dockersetup,'requirements.txt') installfilename = os.path.join(dockersetup,'install.py') dockerfile = os.path.join(dockersetup,'Dockerfile') dockerdata='FROM python:3.10-slim-buster' dockerdata+='\\n' dockerdata+='WORKDIR /app' dockerdata+='\\n' dockerdata+='COPY AION AION' dockerdata+='\\n' dockerdata+='''RUN apt-get update \\ && apt-get install -y build-essential manpages-dev \\ && apt-get install -y libgomp1 \\ && python -m pip install --no-cache-dir -r AION/requirements.txt ''' f = open(dockerfile, "w") f.write(str(dockerdata)) f.close() try: try: import docker client = docker.from_env() client.containers.list() except: status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = 'Error' context['Msg'] = 'Docker should be installed and running on your machine. To build the docker image manually, the setup script is available at the following location: \\\\n'+dockersetup.replace('\\\\', '/') return context
command = 'docker pull python:3.10-slim-buster' os.system(command); subprocess.check_call(["docker", "build", "-t",modelname.lower()+":"+str(version),"."], cwd=dockersetup) subprocess.check_call(["docker", "save", "-o",modelname.lower()+"_"+str(version)+".tar",modelname.lower()+":"+str(version)], cwd=dockersetup) dockerfilepath = os.path.join(dockersetup,modelname.lower()+"_"+str(version)+".tar") shutil.copyfile(dockerfilepath, os.path.join(dockerimage,modelname.lower()+"_"+str(version)+".tar")) shutil.rmtree(dockersetup) msg = 'Done' Status = 'SUCCESS' except Exception as e: msg = 'Error in docker images creation. To build manually docker image setup available in following location: '+dockersetup.replace('\\\\', '\\\\\\\\') Status = 'Fail' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['Msg'] = msg return context def downloadPackage(request,id,version,usecasedetails,Existusecases): try: if 'downloadstatus' in request.session: if request.session['downloadstatus'] == 'Downloading': return HttpResponse(json.dumps("Error Creating Package"), content_type="application/error") request.session['downloadstatus'] = 'Downloading' usecasedetail = usecasedetails.objects.get(id=id) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version) modelid = models[0].id p = Existusecases.objects.get(id=modelid) deployPath = str(p.DeployPath) if os.path.isdir(os.path.join(deployPath,'publish','package')): for f in os.listdir(os.path.join(deployPath,'publish','package')): if f.endswith('whl'): os.remove(os.path.join(deployPath,'publish','package',f)) usecasename = p.ModelName.usecaseid Version = p.Version deployed_code = usecasename targetname = usecasename+'_'+str(Version) whl_dir_name = 'WHEEL_'+usecasename+'_'+str(Version) deployLocation = os.path.join (deployPath,'..',whl_dir_name) try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) os.makedirs(deployLocation) shutil.copytree(deployPath,os.path.join(deployLocation,deployed_code)) initstring = 'import os' initstring += '\\n' initstring += 'import sys' initstring += '\\n' initstring += 'sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))' filename = os.path.join(deployLocation,deployed_code,'__init__.py') f = open(filename, "w") f.write(str(initstring)) f.close() textdata=0 learner_type = 'ml' requirementfile = os.path.join(deployPath,'requirements.txt') install_requires = '' if os.path.exists(requirementfile): fileobj = open(requirementfile, 'r') requirePackages = fileobj.readlines() fileobj.close() for package in requirePackages: if install_requires != '': install_requires = install_requires+',' install_requires = install_requires+'\\''+package.strip()+'\\'' setup_string = 'from setuptools import setup,find_packages' setup_string += '\\n' setup_string += 'setup(name=\\''+deployed_code+'\\',' setup_string += '\\n' setup_string += 'version=\\'1\\',' setup_string += '\\n' setup_string += 'packages = find_packages(),' setup_string += '\\n' setup_string += 'install_requires = ['+install_requires+'],' setup_string += '\\n' setup_string += 'package_data={"'+deployed_code+'.pytransform":["*.*"],"'+deployed_code+'":["*.sav","*.json"],"":["*","*/*","*/*/*"]}' setup_string += '\\n' setup_string += ')' filename = os.path.join(deployLocation,'setup.py') f = open(filename, "w") f.write(str(setup_string)) f.close() subprocess.check_call([sys.executable, "setup.py", "bdist_wheel"], cwd=deployLocation) shutil.copytree(os.path.join(deployLocation,'dist'),os.path.join(deployPath,'publish','package'),dirs_exist_ok=True) shutil.rmtree(deployLocation) if os.path.isdir(os.path.join(deployPath,'publish','package')): for f in os.listdir(os.path.join(deployPath,'publish','package')): if f.endswith('whl'): package = f zip_file = open(os.path.join(deployPath,'publish','package',package), 'rb') request.session['downloadstatus'] = 'Done' return FileResponse(zip_file) except Exception as e: print(e) request.session['downloadstatus'] = 'Done' return HttpResponse(json.dumps("Error Creating Package"), content_type="application/error") def installPackage(model,version,deployedPath): deployedPath = os.path.join(deployedPath,'publish','package') whlfilename='na' if os.path.isdir(deployedPath): for file in os.listdir(deployedPath): if file.endswith(".whl"): whlfilename = os.path.join(deployedPath,file) if whlfilename != 'na': subprocess.check_call([sys.executable, "-m", "pip", "uninstall","-y",model]) subprocess.check_call([sys.executable, "-m", "pip", "install","--no-dependencies",whlfilename]) status,pid,ip,port = checkModelServiceRunning(model) if status == 'Running': stopService(pid) startService(model,ip,port) return('Success') else: return('Installation Package not Found') def getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases): usecasedetail = usecasedetails.objects.get(id=id) models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS',Version=version) return(models[0].id) def stopService(pid): import psutil p = psutil.Process(int(pid)) p.terminate() def checkModelServiceRunning(package_name): from os.path import expanduser home = expanduser("~") if platform.system() == 'Windows': modelServices = os.path.join(home,'AppData','Local','HCLT','AION','services') else: modelServices = os.path.join(home,'HCLT','AION','target','services') filename = package_name+'_service.py' modelservicefile = os.path.join(modelServices,filename) status = 'Not Initialized' ip = '' port = '' pid = '' if os.path.exists(modelservicefile): status = 'Not Running' import psutil for proc in psutil.process_iter(): pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections']) if 'python' in pinfo['name']: if filename in pinfo['cmdline'][1]: status = 'Running' pid = pinfo['pid'] for x in pinfo['connections']: ip = x.laddr.ip port = x.laddr.port return(status,pid,ip,port) def startService(package_name,ip,portNo): file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','bin','model_service.py')) from os.path import expanduser home = expanduser("~") if platform.system() == 'Windows': modelServices = os.path.join(home,'AppData','Local','HCLT','AION','services') else: modelServices = os.path.join(home,'HCLT','AION','target','services') if not os.path.isdir(modelServices): os.makedirs(modelServices) filename = package_name+'_service.py' modelservicefile = os.path.join(modelServices,filename) status = 'File Not Exist' if os.path.exists(modelservicefile): status = 'File Exist' r = ([line.split() for line in subprocess.check_output("tasklist").splitlines()]) for i in range(len(r)): if filename in r[i]: status = 'Running' if status == 'File Not Exist': shutil.copy(file_path,modelservicefile) with open(modelservicefile, 'r+') as file: content = file.read() file.seek(0, 0) line = 'from '+package_name+' import aion_performance' file.write(line+"\\n") line = 'from '+package_name+' import aion_drift' file.write(line+ "\\n") line = 'from '+package_name+' import featureslist' file.write(line+ "\\n") line = 'from '+package_name+' import aion_prediction' file.write(line+ "\\n") file.write(content) file.close() status = 'File Exist' if status == 'File Exist': command = "python "+modelservicefile+' '+str(portNo)+' '+str(ip) os.system('start cmd /c "'+command+'"') def checkInstalledPackge(package_name): import importlib.util spec = importlib.util.find_spec(package_name) if spec is None: return('Not Installed','','') else: if len(spec.submodule_search_locations) > 0: displaypath = os.path.join(spec.submodule_search_locations[0],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() if 'usecasename' in config: modelName = config['usecasename'] else: modelName = 'NA' if 'version' in config: version = config['version'] else: version = 'NA' return('Installed',modelName,version)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys from appbe import compute from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from records import pushrecords from appbe import service_url import json import time import pandas as pd from django.db.models import Max, F from os.path import expanduser import platform from appbe.data_io import sqlite_db import subprocess from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.dataPath import DATA_DIR DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite') def pushRecordForTraining(): from appbe.pages import getversion AION_VERSION = getversion() try: status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def getversion(): configFolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config') version = 'NA' for file in os.listdir(configFolder): if file.endswith(".var"): version = file.rsplit('.', 1) version = version[0] break return version def getusercasestatus(request): if 'UseCaseName' in request.session: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' return selected_use_case,ModelVersion,ModelStatus def getMLModels(configSettingsJson): mlmodels ='' dlmodels = '' problem_type = "" problemtypes = configSettingsJson['basic']['analysisType'] for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break sc = "" if problemtypes in ['classification','regression','survivalAnalysis']: scoringCreteria = configSettingsJson['basic']['scoringCriteria'][problem_type] for k in scoringCreteria.keys(): if configSettingsJson['basic']['scoringCriteria'][problem_type][k] == 'True': sc = k break else: sc = 'NA' if problem_type in ['classification','regression']: algorihtms = configSettingsJson['basic']['algorithms'][problem_type] #print(algorihtms) for k in algorihtms.keys(): #print(configSettingsJson['basic']['algorithms'][problem_type][k]) if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True': if k in ['SNN','RNN','CNN']: if dlmodels != '': dlmodels += ', ' dlmodels += k else: if mlmodels != '': mlmodels += ', ' mlmodels += k elif problem_type in ['videoForecasting','imageClassification','objectDetection']: algorihtms = configSettingsJson['basic']['algorithms'][problem_type] for k in algorihtms.keys(): if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True': if dlmodels != '': dlmodels += ', ' dlmodels += k else: algorihtms = configSettingsJson['basic']['alg
orithms'][problem_type] for k in algorihtms.keys(): if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True': if mlmodels != '': mlmodels += ', ' mlmodels += k displayProblemType = problem_type selected_model_size = '' if problem_type.lower() == 'llmfinetuning': displayProblemType = 'LLM Fine-Tuning' supported_model_types = configSettingsJson['basic']['modelSize'][problem_type][mlmodels] for k in supported_model_types.keys(): if configSettingsJson['basic']['modelSize'][problem_type][mlmodels][k] == 'True': selected_model_size = k break #print(selected_model_size) if mlmodels == 'TF_IDF': mlmodels = 'TF-IDF' if mlmodels == 'LatentSemanticAnalysis': mlmodels = 'Latent Semantic Analysis (LSA)' if mlmodels == 'SentenceTransformer_distilroberta': mlmodels = 'SentenceTransformer (DistilRoBERTa)' if mlmodels == 'SentenceTransformer_miniLM': mlmodels = 'SentenceTransformer (MiniLM)' if mlmodels == 'SentenceTransformer_mpnet': mlmodels = 'SentenceTransformer (MPNet)' return(problem_type,displayProblemType,sc,mlmodels,dlmodels,selected_model_size) def get_usecase_page(request,usecasedetails,Existusecases,usecaseId = None,search_text=None): try: x = request.build_absolute_uri().split("http://") y = x[1].split("/") url = y[0].split(":") tacking_url = url[0] except: tacking_url = '127.0.0.1' computeinfrastructure = compute.readComputeConfig() ruuningSetting = running_setting() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) status = 'SUCCESS' ser_url = service_url.read_service_url_params(request) hosturl =request.get_host() hosturl = hosturl.split(':') hosturl = hosturl[0] packagetip=''' Call From Command Line 1. Click AION Shell 2. python {packageAbsolutePath}/aion_prediction.py {json_data} Call As a Package 1. Go To package_path\\WHEELfile 2. python -m pip install {packageName}-py3-none-any.whl Call the predict function after wheel package installation 1. from {packageName} import aion_prediction as p1 2. p1.predict({json_data})''' models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id') usecase = usecasedetails.objects.all().order_by('-id') usecase = landing_page(usecasedetails,Existusecases,hosturl,usecaseId,search_text) if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 nouc = str(nouc).zfill(4) else: nouc = 1 nouc = str(nouc).zfill(4) description_text = 'This is a usecase for AI' + str(nouc) context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'tacking_url':tacking_url, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'computeinfrastructure':computeinfrastructure,'ruuningSetting':ruuningSetting} return status,context,'usecases.html' def checkText(configPath): isText='False' with open(configPath) as config: data = json.load(config) for feature in data['advance']['profiler']['featureDict'] : if feature['type']=='text': isText = 'True'; break; return isText # For Task ID 12393 # For BUG ID 13161 def checkFE(configPath): isFE = 'False' with open(configPath) as config: data = json.load(config) is_selection_method = data.get('advance', {}).get('selector', {}).get('selectionMethod', {}).get('featureEngineering','False') feature_dict= data.get('advance', {}).get('selector', {}).get('featureEngineering', {}) if 'null' in feature_dict.keys(): feature_dict.pop('null') if is_selection_method == 'True' or 'True' in list(feature_dict.values()): isFE = 'True' return isFE def get_model(Existusecases,usercaseid,version=-1): from django.core import serializers if version == -1: models = Existusecases.objects.filter(ModelName=usercaseid).order_by('-id') else: models = Existusecases.objects.filter(ModelName=usercaseid,Version=version).order_by('-id') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' model.problemType = 'NA' model.maacsupport = 'False' model.flserversupport = 'False' model.onlinelerningsupport = 'False' model.oltrainingdetails='' model.xplain = 'True' model.isText = 'False' problemTypeNames = {'topicmodelling':'TopicModelling','anomalydetection':'AnomalyDetection'} if model.Status == 'SUCCESS': if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.problemType = outputconfig['data']['ModelType'] if model.problemType in ['topicmodelling','anomalydetection']: model.problemType = problemTypeNames[model.problemType] model.featuresused = outputconfig['data']['featuresused'] model.targetFeature = outputconfig['data']['targetFeature'] if 'params' in outputconfig['data']: model.modelParams = outputconfig['data']['params'] model.modelType = outputconfig['data']['ModelType'] model.isText = checkText(str(model.ConfigPath)) model.isFeatureEng = checkFE(str(model.ConfigPath))#task id 12393 model.dataPath = os.path.join(str(model.DeployPath),'data', 'postprocesseddata.csv.gz') mlacSupportedModel = ["Logistic Regression","Naive Bayes","Decision Tree","Random Forest", "Support Vector Machine","K Nearest Neighbors","Gradient Boosting","Extreme Gradient Boosting (XGBoost)","Light Gradient Boosting (LightGBM)", "Categorical Boosting (CatBoost)","Linear Regression","Lasso","Ridge","MLP","LSTM"] if model.problemType.lower() in ['classification','regression','timeseriesforecasting']: #task 11997 if model.deploymodel in mlacSupportedModel: model.maacsupport = 'True' if model.problemType.lower() not in ['classification','regression']: model.xplain = 'False' elif model in ["Neural Architecture Search"]: model.xplain = 'False' model.flserversupport = 'False' model.onlinelerningsupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' supportedmodels = ["Online Decision Tree Classifier","Online Logistic Regression","Online Linear Regression","Online Decision Tree Regressor","Online KNN Regressor","Online Softmax Regression","Online KNN Classifier"] if model.deploymodel in supportedmodels: model.onlinelerningsupport = 'True' onlineoutputPath = os.path.join(str(model.DeployPath),'production','Config.json') with open(onlineoutputPath) as file: onlineoutputPath = json.load(file) file.close() details = {'Score' :onlineoutputPath['metricList'],'DataSize':onlineoutputPath['trainRowsList']} dfonline = pd.DataFrame(details) model.oltrainingdetails = dfonline else: model.onlinelerningsupport = 'False' except Exception as e: print(e) pass return models def landing_page(usecasedetails,Existusecases,hosturl,usecaseId = None,search_text=None): sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') if usecaseId: usecase = usecasedetails.objects.filter(id=usecaseId) else: if search_text: usecase = usecasedetails.objects.filter(UsecaseName__contains=str(search_text)).order_by('-id') else: #usecase = usecasedetails.objects.all().order_by('-id')[:100] #top 100 records usecase = usecasedetails.objects.all().order_by('-id') #top 100 records usecaselist=[] if not usecaseId: for x in usecase: problemType= 'NA' publish_url = '' otherModel = {} models = Existusecases.objects.filter(Status='SUCCESS',publishStatus='Published',ModelName=x.id).order_by('-id') if len(models) > 0: #print(models[0]) version = models[0].Version if os.path.isdir(str(models[0].DeployPath)): modelPath = os.path.join(str(models[0].DeployPath),'etc','output.json') with open(modelPath) as file: outputconfig = json.load(file) problemType = outputconfig['data']['ModelType'] #print(problemType.lower()) if problemType.lower() == "llm fine-tuning": cloudconfig = os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json')) print(cloudconfig) from appbe.models import get_instance hypervisor,instanceid,region,image,status = get_instance(x.usecaseid+ '_' + str(version)) from llm.llm_inference import get_ip instanceip = get_ip(cloudconfig,instanceid,hypervisor,region,image) #usnish__ server maynot running if instanceip != '': publish_url = 'http://' + instanceip + ':' + '8000' + '/generate' else: publish_url = 'service not available' else: publish_url = 'http://'+hosturl+':'+str(models[0].portNo)+'/AION/'+x.usecaseid+'/predict' publish_status = 'Published' #publish_url = 'http://'+hosturl+':'+str(models[0].portNo)+'/AION/'+x.usecaseid+'/predict' parentModel = get_model(Existusecases,x.id,int(version)) else: models = Existusecases.objects.filter(Status='SUCCESS',ModelName=x.id).order_by('-id') if len(models) > 0: publish_status = 'Trained' version = models[0].Version parentModel = get_model(Existusecases,x.id,int(version)) else: models = Existusecases.objects.filter(ModelName=x.id).order_by('-id') if len(models)==0: publish_status= 'Not Trained' version = -1 else: if models[0].Status == 'FAIL': publish_status= 'Failed' elif models[0].Status == 'Running': publish_status = 'Running' else: publish_status='Not Trained' problemType = models[0].ProblemType version = models[0].Version parentModel={} usecasedetails = {'uuid':x.id,'description':x.Description,'usecaseid':x.usecaseid,'usecase':x.UsecaseName,'status':publish_status,'publish_url':publish_url,'version':version,'parentModel':parentModel,'otherModel':otherModel,'problemType':problemType} usecaselist.append(usecasedetails) else: for x in usecase: otherModel = get_model(Existusecases,x.id) problemType = otherModel[0].problemType usecasedetails = {'uuid':x.id,'description':x.Description,'usecase':x.UsecaseName,'status':'','version':'','parentModel':{},'otherModel':otherModel,'problemType':problemType} usecaselist.append(usecasedetails) return usecaselist def get_landing_model(Existusecases): models = Existusecases.objects.filter(Status='SUCCESS').order_by('-id') for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.problemType = outputconfig['data']['ModelType'] model.ma
acsupport = 'True' model.flserversupport = 'False' model.onlinelerningsupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' supportedmodels = ["Online Decision Tree Classifier","Online Logistic Regression"] if model.deploymodel in supportedmodels: model.onlinelerningsupport = 'True' onlineoutputPath = os.path.join(str(model.DeployPath),'production','Config.json') with open(onlineoutputPath) as file: onlineoutputPath = json.load(file) file.close() details = {'Score' :onlineoutputPath['metricList'],'DataSize':onlineoutputPath['trainRowsList']} dfonline = pd.DataFrame(details) model.oltrainingdetails = dfonline else: model.onlinelerningsupport = 'False' except Exception as e: pass return models def usecase_page(request,usecasedetails,Existusecases,usecaseid,search_text): try: from appbe import read_service_url_params tacking_url = read_service_url_params(request) except: tacking_url = '127.0.0.1' hosturl =request.get_host() hosturl = hosturl.split(':') hosturl = hosturl[0] computeinfrastructure = compute.readComputeConfig() from appbe.aion_config import settings usecasetab = settings() kafkaSetting = kafka_setting() ruuningSetting = running_setting() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) status,msg = pushRecordForTraining() if status == False: context = {'msg':msg} context['selected'] = 'License' return status,context,'licenseexpired.html' ser_url = service_url.read_service_url_params(request) packagetip=''' Call From Command Line 1. Click AION Shell 2. python {packageAbsolutePath}/aion_predict.py {json_data} Call As a Package 1. Go To package_path\\publish\\package 2. python -m pip install {packageName}-py3-none-any.whl Call the predict function after wheel package installation 1. from {packageName} import aion_predict as p1 2. p1.predict({json_data})''' if request.method == "POST": usecasename = request.POST.get('UsecaseName') description = request.POST.get('Description') usecaseid = request.POST.get('usecaseid') #print('1',usecasename) if (usecasename == ''): usecase = landing_page(usecasedetails,Existusecases,hosturl) if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 nouc = str(nouc).zfill(4) description_text = 'This is a usecase for AI' + str(nouc) context = {'description_text':description_text,'usecase':'usecase','Notallowed':'Usecasename is mandatory','ser_url':ser_url,'packagetip':packagetip,'usecasedetail': usecase,'nouc':nouc, 'ser_url':ser_url,'packagetip':packagetip, 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'tacking_url':tacking_url,'usecasetab':usecasetab, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting} return status,context,'usecases.html' else: usecase_count = usecasedetails.objects.filter(usecaseid=usecaseid).count() usecasename_count = usecasedetails.objects.filter(UsecaseName=usecasename).count() usecase = landing_page(usecasedetails,Existusecases,hosturl) if (usecase_count > 0) or (usecasename_count > 0): nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 nouc = str(nouc).zfill(4) Msg = 'Error in usecase creating, try again' if usecase_count > 0: Msg = 'Error in usecase creating, try again' if usecasename_count > 0: Msg = 'There is already a use case with same name, please provide unique name' description_text = 'This is a usecase for AI' + str(nouc) context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc,'Status':'error','Msg': Msg,'tacking_url':tacking_url,'usecasetab':usecasetab,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ser_url':ser_url,'packagetip':packagetip, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting} return status,context,'usecases.html' else: clusteringModels = Existusecases.objects.filter(Status='SUCCESS',ProblemType='unsupervised').order_by('-id') from appbe.s3bucketsDB import get_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.azureStorageDB import get_azureStorage p = usecasedetails(UsecaseName=usecasename,usecaseid=usecaseid,Description=description) p.save() s1 = Existusecases.objects.filter(ModelName=p.id).annotate(maxver=Max('ModelName__existusecases__Version')) config_list = s1.filter(Version=F('maxver')) if config_list.count() > 0: Version = config_list[0].Version Version = Version + 1 else: Version = 1 ps = Existusecases(DataFilePath='', DeployPath='', Status='Not Trained',ConfigPath='', Version=Version, ModelName=p,TrainOuputLocation='') ps.save() request.session['ModelName'] = p.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = usecaseid request.session['ModelVersion'] = Version request.session['ModelStatus'] = 'Not Trained' request.session['currentstate'] = 0 request.session['finalstate'] = 0 selected_use_case = usecasename model_status = 'Not Trained' ModelVersion = Version from appbe.telemetry import UseCaseCreated UseCaseCreated(usecaseid+'-'+str(Version)) if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 nouc = str(nouc).zfill(4) description_text = 'This is a usecase for AI' + str(nouc) context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'newusercase': usecasename,'tacking_url':tacking_url,'finalstate':request.session['finalstate'], 'description': description,'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'clusteringModels':clusteringModels,'s3buckets':get_s3_bucket(),'gcsbuckets':get_gcs_bucket(),'usecasetab':usecasetab,'azurestorage':get_azureStorage(), 'ModelStatus': model_status, 'ModelVersion': ModelVersion, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure} return status,context,'upload.html' else: models = get_landing_model(Existusecases) usecase = landing_page(usecasedetails,Existusecases,hosturl,usecaseid,search_text) if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 nouc = str(nouc).zfill(4) description_text = 'This is a usecase for AI' + str(nouc) context = {'description_text':description_text,'usecasedetail': usecase, 'nouc': nouc, 'models': models, 'selected_use_case': selected_use_case,'ser_url':ser_url,'packagetip':packagetip,'tacking_url':tacking_url,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'usecase','computeinfrastructure':computeinfrastructure,'kafkaSetting':kafkaSetting,'ruuningSetting':ruuningSetting,'usecasetab':usecasetab} if usecaseid: context.update({'ucdetails':'True'}) return status,context,'usecases.html' def index_page(request,usecasedetails,Existusecases): if 'ModelVersion' in request.session: del request.session['ModelVersion'] if 'UseCaseName' in request.session: del request.session['UseCaseName'] if 'ModelStatus' in request.session: del request.session['ModelStatus'] if 'currentstate' in request.session: del request.session['currentstate'] if 'finalstate' in request.session: del request.session['finalstate'] return usecases_page(request,usecasedetails,Existusecases) def usecases_page(request,usecasedetails,Existusecases,usecaseid=None,substring=None): return usecase_page(request,usecasedetails,Existusecases,usecaseid,substring) def mllite_page(request): from appbe.aion_config import settings usecasetab = settings() status,msg = pushRecordForTraining() if status == False: context = {'selected':'mllite','lerror':msg} return context configFile = os.path.join(DEFAULT_FILE_PATH, 'model_converter.json') f = open(configFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) context = {} context = {'selected':'mllite','sagemaker':configSettingsJson,'usecasetab':usecasetab} return context def mltesting_page(request): from appbe.aion_config import settings usecasetab = settings() status,msg = pushRecordForTraining() if status == False: context = {'lerror':msg} return context if request.method == "POST": models = request.POST['model'] datap = request.POST['data'] if(os.path.isfile(models) and os.path.isfile(datap)): request.session['datalocation'] = datap df = pd.read_csv(datap,encoding='utf-8',skipinitialspace = True,encoding_errors= 'replace') trainfea = df.columns.tolist() featurs = request.POST.getlist('Training') feature = ",".join(featurs) filetimestamp = str(int(time.time())) settingconfig = os.path.join(CONFIG_FILE_PATH, 'MLTest_' + filetimestamp + '.json') request.session['MLTestResult'] = settingconfig mltestresult={} mltestresult['models'] = models mltestresult['datap'] = datap mltestresult['feature'] = feature # features = ['PetalLengthCm','PetalWidthCm'] targ = request.POST['Target'] tar =[targ] mltestresult['target'] = targ mltestresult = json.dumps(mltestresult) with open(settingconfig, "w") as fpWrite: fpWrite.write(mltestresult) fpWrite.close() from pathlib import Path mltest={} if Path(models).is_file() and Path(datap).is_file(): try: from mltest import baseline outputStr = baseline.baseline_testing(models,datap, feature, targ) #scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_mltest.py')) #print(scriptPath, models, datap, feature, targ) #outputStr = subprocess.check_output([sys.executable, scriptPath, models, datap, feature, targ]) #print(outputStr) #outputStr = outputStr.decode('utf-8') #outputStr= outputStr.replace('\\'','\\"') #print('ou',outputStr) #outputStr = outputStr.strip() mltest = json.loads(outputStr) Problemtype= mltest['Problemtype'] with open(request.session['MLTestResult'], 'r+') as f: mltestresult = json.load(f) f.close() mltestresult['Problemtype'] = Problemtype mltestresult['ProblemName'] = mltest['ProblemName'] status = mltest['Status'] if status == 'Fail': errormsg= mltest['Msg'] context = {'error':errormsg,'mltest':'mltest'} else: if Problemtype == 'Classification': mltestresult['Score'] = mltest['Accuracy'] mltestresult['Params'] = mltest['Params'] Problem= mltest['ProblemName'] Parameters= mltest['Params'] round_params = {} for key, value in Parameters.items(): if isinstance(value, float): round_params[key] = round(value,2) else: round_params[key] = value matrixconfusion = mltest['Confusionmatrix'] classificationreport = mltest['classificationreport'] classificationreport = json.loads(classificationreport) matrixconfusion = json.loads(matrixconfusion) indexName =[] columnName = [] for i in matrixconfusion.keys(): indexName.append("act:"+str(i)) for j in matrixconfusion[i].keys(): columnName.append("pre:"+str(j)) df3 = pd.DataFrame.from_dict(classificationreport) df = df3.transpose() df2 = pd.DataFrame.from_dict(matrixconfusion) df1 = pd.DataFrame(df2.values,
index=indexName,columns=columnName) report = df.to_html() report1 = df1.to_html() recordone = mltest['onerecord'] recordsten = mltest['tenrecords'] recordshund = mltest['hundrecords'] context = {'modelname': models,'datapath':datap,'features':featurs,'target':tar,'Problemtype':Problem,'modeltype':Problemtype,'Parameter':round_params,'Onerecord':recordone,'Tenrecords':recordsten,'Hundrecords':recordshund,'matrixconfusion':report1,'classificationreport':report,'classification':'classification','df':df,'df1':df1,'basemltest':'basemltest','success':'success','trainfea':trainfea,'selected':'mltesting','usecasetab':usecasetab} elif Problemtype == 'Regression': Problem= mltest['ProblemName'] mltestresult['Params'] = mltest['Params'] mltestresult['Score'] = mltest['R2'] Parameters= mltest['Params'] round_params = {} for key, value in Parameters.items(): if isinstance(value, float): round_params[key] = round(value,2) else: round_params[key] = value Mse = mltest['MSE'] Mae = mltest['MAE'] Rmse = mltest['RMSE'] R2 = mltest['R2'] recordone = mltest['onerecord'] recordsten = mltest['tenrecords'] recordshund = mltest['hundrecords'] context = {'modelname': models,'datapath':datap,'features':featurs,'target':tar, 'Problemtype':Problem,'Parameter':round_params,'Onerecord':recordone,'Tenrecords':recordsten,'Hundrecords':recordshund,'Mse':Mse,'Mae':Mae,'Rmse':Rmse,'R2Score':R2,'regression':'regression','success':"success",'selected': 'mltest','basemltest':'basemltest','usecasetab':usecasetab} else: errormsg= mltest['Msg'] context = {'error':errormsg,'mltest':'mltest'} mltestresult = json.dumps(mltestresult) with open(settingconfig, "w") as fpWrite: fpWrite.write(mltestresult) fpWrite.close() except Exception as e: print("-------------"+str(e)+'=================') e = str(e).replace('\\'','') errormsg = 'Error: Exception '+str(e) context = {'error':errormsg,'mltest':'mltest'} else: if not (Path(models).is_file() and Path(datap).is_file()): context = {'error':"Please Check ModelPath & Datapath Format","result":"result",'selected':'mltesting','usecasetab':usecasetab} elif not Path(models).is_file(): context = {'error':"Please Check ModelPath Format","result":"result",'selected':'mltesting','usecasetab':usecasetab} elif not Path(datap).is_file(): context = {'error':"Please Check DataPath Format","result":"result",'selected':'mltesting','usecasetab':usecasetab} else: context = {'error':'Either model path or data path does not exist','mltest':'mltest','usecasetab':usecasetab} else: context = {'selected':'mltesting','usecasetab':usecasetab} return context<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import pandas as pd import requests import re import json import sys import time from appbe.aion_config import get_llm_data from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg import logging import openai import tiktoken openai.api_key = '' openai.api_base = '' openai.api_type = '' openai.api_version = '' deployment_name="Text-Datvinci-03" def generateLabelPerRecord(OrgData): OrgData['LabelFromGPT'] = OrgData['Head_Description'].apply(lambda x: \\ generate_gpt3_response\\ ("I am giving you the title and short description \\ in the format [Title:Description], \\ give me the related low level topics in one word in the \\ format[Topic: your primary topic] along with top 5 important keywords in the \\ format[Keywords: keywords]'{}' ".format(x))) #Cleaning the output as it is from ChatGPT OrgData['temp1'] = OrgData['LabelFromGPT'].apply(lambda x: (x.split('Topic:')[1]).replace(']','')) OrgData['LabelFromGPT'] = OrgData['temp1'].apply(lambda x: (x.split('Keywords:')[0]).replace(']','').rstrip()) OrgData['Keywords'] = OrgData['temp1'].apply(lambda x: (x.split('Keywords:')[1]).replace(']','')) OrgData = OrgData.drop(['temp1','Head_Description'], axis=1) return OrgData def generateLabelForChunkedRecords(OrgData): import io # OrgData = OrgData.head(120) Head_Description = {"Head_Description": [] } Head_Description2 = {"Head_Description": [] } Head_Description['Head_Description'] = OrgData['Head_Description'] strt_ind = 0 brk_ind = 0 # encoding = tiktoken.get_encoding('p50k_base') encoding = tiktoken.encoding_for_model("text-davinci-003") chunks = [] _cur_token_count = 0 _chunk_token_count = 0 for ind in Head_Description['Head_Description'].index: tokenized_text = encoding.encode(Head_Description['Head_Description'][ind]) _cur_token_count = len(tokenized_text) if _cur_token_count >= 600: OrgData['Head_Description'][ind] = OrgData['Head_Description'][ind][:1000] upto_ind = ind + 1 Head_Description2['Head_Description'] = OrgData['Head_Description'][brk_ind:ind] _chunk_token_count = encoding.encode(Head_Description2['Head_Description'].to_string()) if len(_chunk_token_count) >= 1200: brk_ind = ind # print(brk_ind) chunks.append(ind-1) _start_count = 0 if len(chunks) == 0: output = generate_gpt3_response("I am giving you datatable of text records \\ for each record give me the related low level topics in one word as a data column called Topic\\ and important top five keywords as a data column called Keywords. \\ Provide me record number as Record and these two data columns as datatable for each record in the given datatable and number of records should be equivalent to the number of records in the given datatable of text records. '{}' ".format(Head_Description['Head_Description'])) out = io.StringIO(output[2:]) df = pd.read_csv(out, sep='\\t') else: chunks.append(len(Head_Description['Head_Description'])) for ind_val in chunks: _cur_ind_val = ind_val _recordsSent = 0 Head_Description = {"Head_Description": [] } if _start_count == 0: Head_Description['Head_Description'] = OrgData['Head_Description'][strt_ind:_cur_ind_val].to_string() _recordsSent = len(OrgData['Head_Description'][strt_ind:_cur_ind_val]) else: Head_Description['Head_Description'] = OrgData['Head_Description'][_pre_ind_val:_cur_ind_val].to_string() _recordsSent = len(OrgData['Head_Description'][_pre_ind_val:_cur_ind_val]) _pre_ind_val = ind_val # if _start_count <= 5: output = generate_gpt3_response("I am giving you datatable of text records \\ for each record give me the related low level topics in one word as a data column called Topic\\ and important top five keywords as a data column called Keywords. \\ Provide me record number as Record and these two data columns as datatable for each record in the given datatable and number of records should be equivalent to the number of records in the given datatable of text records. '{}' ".format(Head_Description['Head_Description'])) out = io.StringIO(output[2:]) if _start_count == 0: df = pd.read_csv(out, sep='\\t') else: df_tmp = pd.read_csv(out, sep='\\t') if len(df_tmp) > _recordsSent: df_tmp = df_tmp.head(_recordsSent) # df = df.append(df_tmp, ignore_index=True) df = pd.concat([df, df_tmp], ignore_index=True) _start_count += 1 OrgData['LabelFromGPT'] = df['Topic'] OrgData['Keywords'] = df['Keywords'] OrgData = OrgData.drop(['Head_Description'], axis=1) return OrgData # Text Data Labelling using LLM related changes # -------------------------------------------------------- def generateTextLabel(request, DATA_FILE_PATH): log = logging.getLogger('log_ux') key,url,api_type,api_version = get_llm_data() openai.api_key = key openai.api_base = url openai.api_type = api_type openai.api_version = api_version try: features = request.POST.getlist('InputFeatures') datapath = request.session['textdatapath'] OrgData = pd.read_csv(datapath) # OrgData = OrgData.head(2000) OrgData.fillna("", inplace = True) OrgData['Head_Description'] = OrgData[features[0]] if (len(features) > 1): for indx in range(len(features)): if (indx > 0): OrgData['Head_Description'] = OrgData['Head_Description'] + " "+ OrgData[features[indx]] # OrgData = generateLabelPerRecord(OrgData) OrgData = generateLabelForChunkedRecords(OrgData) df = OrgData filetimestamp = str(int(time.time())) datasetName = 'AION_TextLabelled' + filetimestamp+'.csv' dataFile = os.path.join(DATA_FILE_PATH,datasetName) df.to_csv(dataFile) request.session['texttopicdatapath'] = dataFile df_json = df.to_json(orient="records") df_json = json.loads(df_json) from appbe.dataPath import DATA_DIR from appbe.sqliteUtility import sqlite_db file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') newdata = {} newdata['datapath'] = [dataFile] newdata['datasetname'] = [datasetName] sqlite_obj.write_data(pd.DataFrame.from_dict(newdata), 'dataingest') ################################################ context = {'data_topic':df_json, 'selected':'DataOperations'} return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() errormsg = str(e) if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg: errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.' if 'Max retries exceeded with url' in errormsg: errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.' fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'error': 'Failed to communicate LLM','LLM' : 'openAI', 'selected':'DataOperations', 'errormessage':errormsg} log.info('generateTextLabel -- Error : Failed to generate Text-Label.. '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context #function to return the queried response def generate_gpt3_response(user_text, print_output=False): """ Query OpenAI GPT-3 for the specific key and get back a response :type user_text: str the user's text to query for :type print_output: boolean whether or not to print the raw output JSON """ time.sleep(2) completions = openai.Completion.create( # engine='Text-Datvinci-03', # Determines the quality, speed, and cost. engine='text-davinci-003', engine=deployment_name, # Determines the quality, speed, and cost. engine='text-davinci-003', temperature=0, # Level of creativity in the response prompt=user_text, # What the user typed in max_tokens=2000, # Maximum tokens in the prompt AND response n=1, # The number of completions to generate stop=None, # An optional setting to control response generation ) # Displaying the output can be helpful if things go wrong if print_output: print(completions) # Return the first choice's text # print(completions.choices[0].text) return completions.choices[0].text # --------------------------------------------------------<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023
* Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import pandas as pd def get_true_option(d, default_value=None): if isinstance(d, dict): for k, v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_true_options(d): options = [] if isinstance(d, dict): for k, v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): options.append(k) return options def check_datetime(config): dateTime = config['basic']['dateTimeFeature'] if dateTime == '' or dateTime.lower()=='na': return False return True def check_dtype(d): flag= 1 for item in d: if item["type"].lower() != "text" and item["type"].lower() != "index": flag = 0 break return flag def check_text(d): #task 12627 flag= 0 for item in d: if item["type"].lower() == "text": flag = 1 break return flag def check_labelencoding(ftr_dict_list, target_ftr): for ftr_dict in ftr_dict_list: if ftr_dict['feature']!=target_ftr and ftr_dict['type'].lower()=='categorical' and ftr_dict['categoryEncoding'].lower()!='labelencoding': return False return True class timeseries(): def __init__(self,config): self.config=config if self.config['basic']['analysisType']['timeSeriesForecasting'].lower()=='true': #task 11997 self.problemType = 'timeSeriesForecasting' elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true': self.problemType = 'timeSeriesAnomalyDetection' #task 11997 def validate_basic_config(self,status='pass',msg=None): #task 12627 date_time_status = check_datetime(self.config) text_status = check_text(self.config['advance']['profiler']['featureDict']) if not date_time_status and text_status: msg = 'For time series problem,\\\\n* One feature should be in datetime format\\\\n* Text feature not supported ' return 'error', msg elif not date_time_status: msg = 'For time series problem, one feature should be in datetime format' return 'error', msg elif text_status: msg = 'For time series problem, text feature not supported ' return 'error', msg selected_algos = get_true_options(self.config['basic']['algorithms'][self.problemType]) #task 11997 if isinstance(self.config['basic']['targetFeature'],str): targetFeature = list(self.config['basic']['targetFeature'].split(',')) if self.problemType=='timeSeriesForecasting': #task 11997 if len(targetFeature) > 1: if 'ARIMA' in selected_algos: status = 'error' msg = "ARIMA is not supported for multilabel (target) feature" return status, msg if "FBPROPHET" in selected_algos: status = 'error' msg = "FBPROPHET is not supported for multiLabel (target) feature" return status, msg if 'MLP' in selected_algos: status = 'error' msg = "MLP is not supported for multiLabel (target) feature" return status, msg if len(targetFeature) == 1 and 'VAR' in selected_algos: status = 'error' msg = "VAR is not supported for singleLabel (target) feature" return status, msg elif self.problemType=='timeSeriesAnomalyDetection': #task 11997 anomChecker = anomaly(self.config) status, msg = anomChecker.validate_basic_config() return status, msg class anomaly(): def __init__(self,config): self.config = config if self.config['basic']['analysisType']['anomalyDetection'].lower()=='true': #task 11997 self.problemType = 'anomalyDetection' elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true': #task 11997 self.problemType = 'timeSeriesAnomalyDetection' def validate_basic_config(self,status='pass',msg=None): #task 12627 date_time_status = check_datetime(self.config) targetFeature = self.config['basic']['targetFeature'] if self.problemType=='anomalyDetection' and date_time_status: status = 'error' msg = 'Date feature detected. For anomaly detection on time series change problem type to Time Series Anomaly Detection or drop Date feature' return status, msg if targetFeature.lower()!= 'na' and targetFeature!= "" and self.config['basic']['inlierLabels'] == '': status = 'error' msg = 'Please provide inlier label in case of supervised anomaly detection' return status, msg class survival(): def __init__(self,config): self.config = config self.problemType= 'survivalAnalysis' def validate_basic_config(self): dateTimeStatus = check_datetime(self.config) labelencoding_status = check_labelencoding(self.config['advance']['profiler']['featureDict'], self.config['basic']['targetFeature']) if not dateTimeStatus and not labelencoding_status: msg = 'For survival analysis problem,\\\\n* One feature should be in datetime format\\\\n* Encoding of categorical features should be of label encoding ' return 'error', msg elif not dateTimeStatus: msg = 'One feature should be in datetime format for survival analysis problem. Please select it from model feature' return 'error', msg elif not labelencoding_status: msg = 'Categorical features are expected to be label encoded for survival analysis problem. Please select it from feature encoding' return 'error', msg else: return 'pass', " " class associationrule(): def __init__(self,config): self.config=config def validate_basic_config(self,status='pass', msg=None): if self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == 'na' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == 'na': return "error","Make sure to configure invoice feature and item feature" elif self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] == self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature']: return "error","Make sure to invoice feature and item feature is configure correctly" else: return "pass", " " class itemrating(): #task 6081 def __init__(self,config): self.config = config def validate_basic_config(self): data_loc = self.config['basic']['dataLocation'] data_length = len(pd.read_csv(data_loc)) if data_length >= 1000000: return 'error', "Recommender System can handle data up to 1 million records. Please try with a smaller dataset." else: return "pass"," " class documentsimilarity(): def __init__(self,config): self.config=config def validate_basic_config(self,status='pass', msg=None): flag = check_dtype(self.config['advance']['profiler']['featureDict']) if flag == 1: return "pass", " " else: msg="Make sure to change the feature type from Categorical to Text and drop Numerical features for document similarity" return "error", msg def validate(config): try: problem_type = get_true_option(config['basic']['analysisType']) status = 'pass' msg = '' if 'timeseries' in problem_type.lower(): #task 11997 obj = timeseries(config) elif problem_type.lower() == 'survivalanalysis': obj = survival(config) elif problem_type.lower() == 'anomalydetection': obj = anomaly(config) elif problem_type.lower() in ['similarityidentification','contextualsearch']: obj = documentsimilarity(config) elif problem_type.lower() == 'recommendersystem': if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'].lower() == 'true': obj = associationrule(config) elif config['basic']['algorithms']['recommenderSystem']['ItemRating'].lower() == 'true': #task 6081 obj = itemrating(config) else: return 'pass',"" else: return 'pass',"" status,msg= obj.validate_basic_config() print(status, msg, 'io') return(status,msg) except Exception as e: print(e) def start_check(config): return validate(config) <s> import json import os import pandas as pd import urllib, base64 def check_deepCheckPlots(deployedLocation): deepCheck = 'False' boostOverfit = 'False' boostOverfitCond = 'False' mi='False' miCond='False' smc = 'False' smsCond = 'False' boostOverfitFile= os.path.join(deployedLocation,'log','boosting_overfit.html') boostOverfitCondFile= os.path.join(deployedLocation,'log','boosting_overfit_condition.html') smcFile= os.path.join(deployedLocation,'log','smc.html') smcCondFile= os.path.join(deployedLocation,'log','smc_condition.html') miFile= os.path.join(deployedLocation,'log','mi.html') miConFile= os.path.join(deployedLocation,'log','mi_con.html') file_exists = os.path.exists(boostOverfitFile) if file_exists: deepCheck = 'True' boostOverfit = 'True' file_exists = os.path.exists(boostOverfitCondFile) if file_exists: deepCheck = 'True' boostOverfitCond = 'True' file_exists = os.path.exists(miFile) if file_exists: deepCheck = 'True' mi = 'True' file_exists = os.path.exists(miConFile) if file_exists: deepCheck = 'True' miCond = 'True' file_exists = os.path.exists(smcFile) if file_exists: deepCheck = 'True' smc = 'True' file_exists = os.path.exists(smcCondFile) if file_exists: deepCheck = 'True' smsCond = 'True' output = {'deepCheck':deepCheck,'boostOverfit':boostOverfit,'boostOverfitCond':boostOverfitCond,'mi':mi,'miCond':miCond,'smc':smc,'smsCond':smsCond} return output def FeaturesUsedForTraining(output_json): resultJsonObj = json.loads(output_json) result = {} result['Status'] = resultJsonObj['status'] result['ModelType'] = resultJsonObj['data']['ModelType'] result['ScoreType'] = resultJsonObj['data']['ScoreType'] result['FeaturesUsed'] = resultJsonObj['data']['featuresused'] result['BestModel'] = resultJsonObj['data']['BestModel'] return result def ParseResults(output_json): msg1 = 'Results...' resultJsonObj = json.loads(output_json) result = {} survical_images = [] result['Status'] = resultJsonObj['status'] result['ModelType'] = resultJsonObj['data']['ModelType'] if 'vmDetails' in resultJsonObj['data']: result['DeployLocation'] = resultJsonObj['data']['vmDetails'] else: result['DeployLocation'] = resultJsonObj['data']['deployLocation'] result['BestModel'] = resultJsonObj['data']['BestModel'] if str(resultJsonObj['data']['BestScore']) == "NA": result['BestScore'] = 'NA' else: result['BestScore'] = round(float(resultJsonObj['data']['BestScore']), 2) result['ScoreType'] = resultJsonObj['data']['ScoreType'] result['FeaturesUsed'] = resultJsonObj['data']['featuresused'] ##### Training Confusion Matrix result['problem_type'] = result['ModelType'] if result['ModelType'].lower() == 'timeseriesanomalydetection': result['problem_type'] = 'TimeSeriesAnomalydetection' if result['ModelType'] == 'classification' or result['ModelType'].lower() == 'distributed classification' or (result['ModelType'] == 'anomalydetection' and (result['BestScore']) != 0) or result['ModelType'] == 'ImageClassification': bestmodel = resultJsonObj['data']['BestModel'] if bestmodel.lower() == 'nas': modelSummary= os.path.join(result['DeployLocation'],'summary.txt') f = open(modelSummary, 'r') file_content = f.read() f.close() #print(file_content) result['modelSummary'] = file_content #task 11997 if result['ModelType'].lower() == 'classification': result['problem_type'] = 'Classification' elif result['ModelType'].lower() == 'anomalydetection': result['problem_type'] = 'AnomalyDetection' elif result['ModelType'].lower() == 'imageclassification': result['problem_type'] = 'ImageClassification' elif result['ModelType'].lower() == 'distributed classification': result['problem_type'] =
'Distributed Classification' try: result['deepCheck'] = check_deepCheckPlots(result['DeployLocation']) except Exception as e: print(e) if 'ConfusionMatrix' in resultJsonObj['data']['trainmatrix']: TrainConfusionMatrix = resultJsonObj['data']['trainmatrix']['ConfusionMatrix'] numLabels = len(TrainConfusionMatrix) TrainConfusionMatrixList = [] for act_key, value in TrainConfusionMatrix.items(): temp = {} temp['Label'] = act_key for pred_key, pred_value in value.items(): temp[pred_key] = pred_value TrainConfusionMatrixList.append(temp) result['TrainConfusionMatrix'] = TrainConfusionMatrixList TrainClassificationReport = resultJsonObj['data']['trainmatrix']['ClassificationReport'] numRows = len(TrainClassificationReport) TrainClassificationReportList = [] metrics_keys_list = [] for key, value in TrainClassificationReport.items(): temp = {} temp['Label'] = key if isinstance( value, dict): for metricsKey, metricsValue in value.items(): temp[metricsKey] = round(metricsValue, 4) if metricsKey not in metrics_keys_list: metrics_keys_list.append( metricsKey) else: if metrics_keys_list: for key in metrics_keys_list: temp[key] = round(value, 4) TrainClassificationReportList.append(temp) result['TrainClassificationReport'] = TrainClassificationReportList result['Train_ROC_AUC_SCORE'] = round(float(resultJsonObj['data']['trainmatrix']['ROC_AUC_SCORE']), 4) else: result['TrainClassificationReport'] = '' result['Train_ROC_AUC_SCORE']='' ##### Testing Confusion Matix if 'ConfusionMatrix' in resultJsonObj['data']['matrix']: ConfusionMatrix = resultJsonObj['data']['matrix']['ConfusionMatrix'] numLabels = len(ConfusionMatrix) ConfusionMatrixList = [] for act_key, value in ConfusionMatrix.items(): temp = {} temp['Label'] = act_key for pred_key, pred_value in value.items(): temp[pred_key] = pred_value ConfusionMatrixList.append(temp) result['ConfusionMatrix'] = ConfusionMatrixList ClassificationReport = resultJsonObj['data']['matrix']['ClassificationReport'] numRows = len(ClassificationReport) ClassificationReportList = [] metrics_keys_list = [] for key, value in ClassificationReport.items(): temp = {} temp['Label'] = key if isinstance( value, dict): for metricsKey, metricsValue in value.items(): temp[metricsKey] = round(metricsValue, 4) if metricsKey not in metrics_keys_list: metrics_keys_list.append( metricsKey) else: if metrics_keys_list: for key in metrics_keys_list: temp[key] = round(value, 4) ClassificationReportList.append(temp) result['ClassificationReport'] = ClassificationReportList result['ROC_AUC_SCORE'] = round(float(resultJsonObj['data']['matrix']['ROC_AUC_SCORE']), 4) elif result['ModelType'] == 'similarityIdentification': result['problem_type'] = 'similarityIdentification' elif result['ModelType'] == 'contextualSearch': result['problem_type'] = 'contextualSearch' elif result['ModelType'] == 'MultiLabelPrediction': result['problem_type'] = 'MultiLabelPrediction' matrix = resultJsonObj['data']['matrix'] training_matrix = [] for x in matrix: fmatrix = {} fmatrix['feature'] = x performance = {} for y in matrix[x]: performance[y] = matrix[x][y] fmatrix['performance'] = performance training_matrix.append(fmatrix) testmatrix = resultJsonObj['data']['testmatrix'] testing_matrix = [] for x in testmatrix: fmatrix = {} fmatrix['feature'] = x performance = {} for y in testmatrix[x]: performance[y] = testmatrix[x][y] fmatrix['performance'] = performance testing_matrix.append(fmatrix) result['testing_matrix'] = testing_matrix result['training_matrix'] = training_matrix elif result['ModelType'] == 'regression' or result['ModelType'].lower() == 'distributed regression': try: result['deepCheck'] = check_deepCheckPlots(result['DeployLocation']) except Exception as e: print(e) try: result['problem_type'] = 'Regression' testing_matrix = {} if 'MAE' in resultJsonObj['data']['matrix']: testing_matrix['MAE'] = float(resultJsonObj['data']['matrix'].get('MAE','0')) testing_matrix['R2Score'] = float(resultJsonObj['data']['matrix'].get('R2Score','0')) testing_matrix['MSE'] = float(resultJsonObj['data']['matrix'].get('MSE','0')) testing_matrix['MAPE'] = float(resultJsonObj['data']['matrix'].get('MAPE','0')) testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix'].get('RMSE','0')) testing_matrix['NormalisedRMSEPercentage'] = float(resultJsonObj['data']['matrix'].get('Normalised RMSE(%)','0')) result['testing_matrix'] = testing_matrix training_matrix = {} training_matrix['MAE'] = float(resultJsonObj['data']['trainmatrix'].get('MAE','0')) training_matrix['R2Score'] = float(resultJsonObj['data']['trainmatrix'].get('R2Score','0')) training_matrix['MSE'] = float(resultJsonObj['data']['trainmatrix'].get('MSE','0')) training_matrix['MAPE'] = float(resultJsonObj['data']['trainmatrix'].get('MAPE','0')) training_matrix['RMSE'] = float(resultJsonObj['data']['trainmatrix'].get('RMSE','0')) training_matrix['NormalisedRMSEPercentage'] = float(resultJsonObj['data']['trainmatrix'].get('Normalised RMSE(%)','0')) result['training_matrix'] = training_matrix except Exception as e: print(e) elif result['ModelType'] == 'Text Similarity': result['problem_type'] = 'textsimilarity' testing_matrix = {} testing_matrix['Accuracy'] = float(resultJsonObj['data']['matrix']['Accuracy']) testing_matrix['ROC_AUC'] = float(resultJsonObj['data']['matrix']['ROC AUC']) result['testing_matrix'] = testing_matrix training_matrix = {} training_matrix['Accuracy'] = float(resultJsonObj['data']['trainmatrix']['Accuracy']) training_matrix['ROC_AUC'] = float(resultJsonObj['data']['trainmatrix']['ROC AUC']) result['training_matrix'] = training_matrix elif result['ModelType'] == 'RecommenderSystem': #taskid 11190 result['problem_type'] = 'Recommender' testing_matrix = {} testing_matrix['RMSE'] = 'NA' result['testing_matrix'] = testing_matrix training_matrix = {} training_matrix['RMSE'] = 'NA' result['training_matrix'] = training_matrix elif result['ModelType'] == 'SurvivalAnalysis': result['problem_type'] = 'SurvivalAnalysis' survivalProbabilityjson = resultJsonObj['data']['survivalProbability'] performanceimages = resultJsonObj['data']['imageLocation'] start = '[' end = ']' performanceimages = performanceimages[performanceimages.find(start) + len(start):performanceimages.rfind(end)] performanceimages = performanceimages.split(',') for imagefile in performanceimages: imagefile = imagefile.replace("'", "") string = base64.b64encode(open(imagefile, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) survical_images.append(image_64) result['survivalProbability'] = survivalProbabilityjson elif result['ModelType'] == 'StateTransition': result['problem_type'] = 'StateTransition' stateprobabilityfile = os.path.join(result['DeployLocation'],'stateTransitionProbability.csv') clusterfile = os.path.join(result['DeployLocation'],'stateClustering.csv') if(os.path.isfile(stateprobabilityfile)): df_prob = pd.read_csv(stateprobabilityfile) df_prob = df_prob[['State','NextState','Probability']] result['probability'] = df_prob if(os.path.isfile(clusterfile)): df_clus = pd.read_csv(clusterfile) df_clus = df_clus[['clusterid','clusterlist']] result['cluster'] = df_clus elif result['ModelType'].lower() == 'timeseriesforecasting': #task 11997 result['problem_type'] = 'TimeSeriesForecasting' if result['BestModel'] == 'FBPROPHET': imagefile = os.path.join(result['DeployLocation'],'log','img','prophet_fig.png') string = base64.b64encode(open(imagefile, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) survical_images.append(image_64) testing_matrix = {} testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE']) testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE']) testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2']) testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE']) result['testing_matrix'] = testing_matrix forecastjson = resultJsonObj['data']['forecasts'] result['forecast'] = forecastjson if result['BestModel'] == 'VAR': ''' FeaturesMatrix = resultJsonObj['data']['matrix']['FeaturesMatrix'] mae = '' mse = '' mape = '' rmse = '' for x in FeaturesMatrix: if mae != '': mae += ',' if mse != '': mse += ',' if R2 != '': R2 += ',' if rmse != '': rmse += ',' featurename = x['Features'] mae = mae + featurename + '=' + x['MAE'] mse = mse + featurename + '=' + x['MSE'] R2 = R2 + featurename + '=' + x['R2'] rmse = rmse + featurename + '=' + x['RMSE'] testing_matrix = {} testing_matrix['MAE'] = mae testing_matrix['MSE'] = mse testing_matrix['R2'] = R2 testing_matrix['RMSE'] = rmse result['testing_matrix'] = testing_matrix forecastjson = resultJsonObj['data']['forecasts'] result['forecast'] = forecastjson ''' testing_matrix = {} testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE']) testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE']) testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2']) testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE']) result['testing_matrix'] = testing_matrix forecastjson = resultJsonObj['data']['forecasts'] result['forecast'] = forecastjson elif result['BestModel'] == 'LSTM' or result['BestModel'] == 'MLP': testing_matrix = {} testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE']) testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE']) result['testing_matrix'] = testing_matrix forecastjson = resultJsonObj['data']['forecasts'] result['forecast'] = forecastjson else: testing_matrix = {} testing_matrix['MAE'] = float(resultJsonObj['data']['matrix']['MAE']) testing_matrix['MSE'] = float(resultJsonObj['data']['matrix']['MSE']) testing_matrix['R2'] = float(resultJsonObj['data']['matrix']['R2']) testing_matrix['RMSE'] = float(resultJsonObj['data']['matrix']['RMSE']) result['testing_matrix'] = testing_matrix forecastjson = resultJsonObj['data']['forecasts'] result['forecast'] = forecastjson elif result['ModelType'] == 'topicmodelling': result['problem_type'] = 'TopicModelling' topics = resultJsonObj['topics'] df_topic = [] dataDict = {} for x in topics: dataDict = {} words = topics[x] print(words) word = '' for key in words: print(key) if word != '': word = word+', ' word = word+key+'('+str(round(words[key],2))+')' dataDict["ID"] = x dataDict["Words"] = word df_topic.append(dataDict) result['topics'] = df_topic elif result['ModelType'].lower() == 'association rule': result['problem_type'] = 'AssociationRules' deploy_location = result['DeployLocation'] freq_item_file = os.path.join(result['DeployLocation'],'frequentItems.csv') if(os.path.isfile(freq_item_file)): rules_file = os.path.join(result['DeployLocation'],'associationRules.csv') if(os.path.isfile(rules_file)): df_rules = pd.read_csv(rules_file) df_rules = df_rules[['antecedents','consequents','support','confidence','lift']] #df_rules['antecedents'] = df_rules['antecedents'] result['rules'] = df_rules else: result['error'] = 'There are no association found in frequent items above that threshold (minThreshold)' else: result['error'] = 'There are no frequent items above that threshold (minSupport), try by reducing the minSupport value' elif result['ModelType'] == 'clustering': result['problem_type'] = 'Clustering' testing_matrix = {} if 'SilHouette_Avg' in resultJsonObj['data']['matrix']: testing_matrix['SilHouette_Avg'] = round(float(resultJsonObj['data']['matrix']['SilHouette_Avg']),2) else: testing_matrix['SilHouette_Avg'] = 'NA' if 'DaviesBouldinScore' in resultJsonObj['data']['matrix']: testing_matrix['DaviesBouldinScore'] = round(float(resultJsonObj['data']['matrix']['DaviesBouldinScore']),2) else: testing_matrix['DaviesBouldinScore'] = 'NA' if 'CalinskiHarabazScore'
in resultJsonObj['data']['matrix']: testing_matrix['CalinskiHarabazScore'] = round(float(resultJsonObj['data']['matrix']['CalinskiHarabazScore']),2) else: testing_matrix['CalinskiHarabazScore'] = 'NA' centroidpath = os.path.join(result['DeployLocation'],'centers.csv') if(os.path.isfile(centroidpath)): df_center = pd.read_csv(centroidpath) df_center = df_center.rename(columns={"Unnamed: 0": "Cluster"}) result['centerpoints'] = round(df_center,2) result['testing_matrix'] = testing_matrix training_matrix = {} if 'SilHouette_Avg' in resultJsonObj['data']['matrix']: training_matrix['SilHouette_Avg'] = round(float(resultJsonObj['data']['matrix']['SilHouette_Avg']),2) training_matrix['DaviesBouldinScore'] = round(float(resultJsonObj['data']['matrix']['DaviesBouldinScore']),2) training_matrix['CalinskiHarabazScore'] = round(float(resultJsonObj['data']['matrix']['CalinskiHarabazScore']),2) else: training_matrix['SilHouette_Avg'] = 'NA' training_matrix['DaviesBouldinScore'] = 'NA' training_matrix['CalinskiHarabazScore'] = 'NA' result['training_matrix'] = training_matrix #print(result) evaluatedModelsList = resultJsonObj['data']['EvaluatedModels'] #print(evaluatedModelsList) for index in range(len(evaluatedModelsList)): if evaluatedModelsList[index]['Score'] == 'NA': evaluatedModelsList[index]['Score'] = 'NA' else: evaluatedModelsList[index]['Score'] = round(float(evaluatedModelsList[index]['Score']), 4) if result['ModelType'] == 'classification': evaluatedModelsList = sorted(evaluatedModelsList, key=lambda k: k['Score'],reverse=True) else: evaluatedModelsList = sorted(evaluatedModelsList, key=lambda k: k['Score']) result['EvaluatedModels'] = evaluatedModelsList result['LogFile'] = resultJsonObj['data']['LogFile'] return result, survical_images<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pyodbc as pyodbc import pandas as pd import json def simple_select(c, sql_query, bind_params=None, display_sql=False): """where c is a cursor""" if bind_params is None: c.execute(sql_query) else: if display_sql: c.execute(sql_query, bind_params) headers = [] if c.description is not None: # We have a SELECT statement for x in c.description: headers.append(x[0]) row_count = 0 row = c.fetchone() data=[] while row: row_count += 1 xrow={} for i in range(len(row)): xrow[headers[i]] = row[i] data.append(xrow) row = c.fetchone() #df = pd.DataFrame(data) return(data) def validatequery(request,query): resultdata = [] try: server_url = request.session['server_url'] username_actian = request.session['username'] password_actian = request.session['password'] database_actian = request.session['database'] conn = get_connection(server_url,username_actian,password_actian,database_actian) sql_text = query cur = conn.cursor() resultdata = simple_select(cur, query) cur.close() if len(resultdata) > 0: return "Query executed successfully" else: return "No rows returned" except Exception as e: print(e) return str(e) def executequery(request,query): resultdata = [] try: server_url = request.session['server_url'] username_actian = request.session['username'] password_actian = request.session['password'] database_actian = request.session['database'] conn = get_connection(server_url,username_actian,password_actian,database_actian) sql_text = query cur = conn.cursor() resultdata = simple_select(cur, query) cur.close() return(resultdata) except Exception as e: print(e) return(resultdata) def list_tables_fields(request,table_list): table_field_obj = {} table_field_obj['data'] = [] try: server_url = request.session['server_url'] username_actian = request.session['username'] password_actian = request.session['password'] database_actian = request.session['database'] table_list = json.loads(table_list) conn = get_connection(server_url,username_actian,password_actian,database_actian) for table in table_list: tf_obj = {} tf_obj['TableName'] = str(table).strip() tf_obj['Fields']= [] field_list = [] sql_text = "SELECT column_name, false as is_select FROM iicolumns WHERE table_name='"+table+"'" cur = conn.cursor() field_list = simple_select(cur, sql_text) cur.close() print(field_list) tf_obj['Fields'] = field_list table_field_obj['data'].append(tf_obj) print("----------------------") print(table_field_obj) print(json.dumps(table_field_obj)) print("----------------------") return json.dumps(table_field_obj) except Exception as e: print("Something went wrong "+str(e)) return table_field_obj def list_tables(request): server_url = request.session['server_url'] username_actian = request.session['username'] password_actian = request.session['password'] database_actian = request.session['database'] dt_list = [] try: conn = get_connection(server_url,username_actian,password_actian,database_actian) sql_text = "select table_name from iitables where table_type='T' and table_owner='"+username_actian+"'" cur = conn.cursor() dt_list = simple_select(cur, sql_text) cur.close() return dt_list except: print("Something went wrong") return dt_list def get_connection(server_url,username_actian,password_actian,database_actian): conn = pyodbc.connect("driver=Ingres;servertype=ingres;server=@"+str(server_url)+",tcp_ip,VW;uid="+str(username_actian)+";pwd="+str(password_actian)+";database="+str(database_actian)) print("connected") return conn def getDataFromActianAvalanche(request): server_url = request.POST.get('server_url') username_actian = request.POST.get('username') password_actian = request.POST.get('password') database_actian = request.POST.get('database') table_actian = request.POST.get('table') conn = get_connection(server_url,username_actian,password_actian,database_actian) c = conn.cursor() sql_text = "select * from "+str(table_actian) data = simple_select(c, sql_text) df = pd.DataFrame(data) return(df)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np import json import os def downloadtrainingfile(request,Existusecases): usename = request.session['UseCaseName'].replace(" ", "_") + '_' + str(request.session['ModelVersion']) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) modelName = request.session['UseCaseName'] modelVersion = request.session['ModelVersion'] modelStatus = request.session['ModelStatus'] model = Existusecases.objects.get(ModelName=request.session['ModelName'],Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() dict = {'Attribute':[], 'Value':[] } training_output = json.loads(training_output) dfdashbord = pd.DataFrame(dict) dfdashbord.loc[len(dfdashbord.index)] = ['UseCaseName',modelName] dfdashbord.loc[len(dfdashbord.index)] = ['ProblemType',training_output['data']['ModelType']] dfdashbord.loc[len(dfdashbord.index)] = ['Version',str(modelVersion)] dfdashbord.loc[len(dfdashbord.index)] = ['Status',modelStatus] if 'vmDetails' in training_output['data']: dfdashbord.loc[len(dfdashbord.index)] = ['DeployLocation', training_output['data']['vmDetails']] else: dfdashbord.loc[len(dfdashbord.index)] = ['DeployLocation',training_output['data']['deployLocation']] dfdashbord.loc[len(dfdashbord.index)] = ['BestModel',training_output['data']['BestModel']] dfdashbord.loc[len(dfdashbord.index)] = ['BestScore',training_output['data']['BestScore']] dfdashbord.loc[len(dfdashbord.index)] = ['ScoringParam',training_output['data']['ScoreType']] if training_output['data']['ModelType'] != 'LLM Fine-Tuning': dfdashbord.loc[len(dfdashbord.index)] = ['Test%',configSettingsJson['advance']['testPercentage']] dfdashbord.loc[len(dfdashbord.index)] = ['FeaturesUsed',training_output['data']['featuresused']] from io import BytesIO as IO excel_file = IO() edaFileName = usename + '_training.xlsx' excel_writer = pd.ExcelWriter(excel_file, engine="xlsxwriter") dfdashbord.to_excel(excel_writer, sheet_name='Dashboard',index=False) if training_output['data']['ModelType'].lower() != 'multimodellearning' and training_output['data']['ModelType'].lower() != 'multilabelprediction': EvaluatedModels = training_output['data']['EvaluatedModels'] EvaluatedModels = pd.DataFrame(EvaluatedModels) EvaluatedModels.to_excel(excel_writer, sheet_name='EvaluatedModels',startrow=0 , startcol=0) if training_output['data']['ModelType'].lower() == 'classification': #print(training_output['data']['matrix']) row1 = 10 row2 = 10 if 'ConfusionMatrix' in training_output['data']['matrix']: confusionMatrix = training_output['data']['matrix']['ConfusionMatrix'] confusionMatrix = pd.DataFrame(confusionMatrix) confusionMatrix.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0) row1 =confusionMatrix.shape[0]+5 if 'ConfusionMatrix' in training_output['data']['trainmatrix']: confusionMatrix = training_output['data']['trainmatrix']['ConfusionMatrix'] confusionMatrix = pd.DataFrame(confusionMatrix) confusionMatrix.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0) if 'ClassificationReport' in training_output['data']['matrix']: confusionMatrix = training_output['data']['matrix']['ClassificationReport'] confusionMatrix = pd.DataFrame(confusionMatrix) confusionMatrix.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=row1 , startcol=0) if 'ClassificationReport' in training_output['data']['trainmatrix']: confusionMatrix = training_output['data']['trainmatrix']['ClassificationReport'] confusionMatrix = pd.DataFrame(confusionMatrix) confusionMatrix.to_excel(excel_writer, sheet_name='Training Matrix',startrow=row2 , startcol=0) if training_output['data']['ModelType'].lower() == 'regression': dict = {'Attribute':[],'Value':[]} testingDF = pd.DataFrame(dict) try: testingDF.loc[len(testingDF.index)] = ['MAE',training_output['data']['matrix']['MAE']] testingDF.loc[len(testingDF.index)] = ['R2Score',training_output['data']['matrix']['R2Score']] testingDF.loc[len(testingDF.index)] = ['MSE',training_output['data']['matrix']['MSE']] testingDF.loc[len(testingDF.index)] = ['MAPE',training_output['data']['matrix']['MAPE']] testingDF.loc[len(testingDF.index)] = ['RMSE',training_output['data']['matrix']['RMSE']] except: pass testingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0) trainingDF = pd.DataFrame(dict) try: trainingDF.loc[len(trainingDF.index)] = ['MAE',training_output['data']['trainmatrix']['MAE']] trainingDF.loc[len(trainingDF.index)] = ['R2Score',training_output['data']['trainmatrix']['R2Score']] trainingDF.loc[len(trainingDF.index)] = ['MSE',training_output['data']['trainmatrix']['MSE']] trainingDF.loc[len(trainingDF.index)] = ['MAPE',training_output['data']['trainmatrix']['MAPE']] trainingDF.loc[len(trainingDF.index)] = ['RMSE',training_output['data']['trainmatrix']['RMSE']] except: pass trainingDF.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0) if training_output['data']['ModelType'].lower() == 'clustering': dict = {'Attribute':[],'Value':[]} trainingDF = pd.DataFrame(dict) try: trainingDF.loc[len(trainingDF.index)] = ['SilHouette_
Avg',round(training_output['data']['trainmatrix']['SilHouette_Avg'],2)] trainingDF.loc[len(trainingDF.index)] = ['DaviesBouldinScore',round(training_output['data']['trainmatrix']['DaviesBouldinScore'],2)] trainingDF.loc[len(trainingDF.index)] = ['CalinskiHarabazScore',round(training_output['data']['trainmatrix']['CalinskiHarabazScore'],2)] except: pass trainingDF.to_excel(excel_writer, sheet_name='Training Matrix',startrow=0 , startcol=0) centroidpath = os.path.join(training_output['data']['deployLocation'],'centers.csv') if(os.path.isfile(centroidpath)): df_center = pd.read_csv(centroidpath) df_center = df_center.rename(columns={"Unnamed: 0": "Cluster"}) df_center.to_excel(excel_writer, sheet_name='Centroid',startrow=0 , startcol=0) if training_output['data']['ModelType'].lower() == 'timeseriesforecasting': #task 11997 if training_output['data']['BestModel'].lower() == 'var': dict = {'Features':[],'Attribute':[],'Value':[]} trainingDF = pd.DataFrame(dict) FeaturesMatrix = training_output['data']['matrix'] for x in FeaturesMatrix: try: trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MAE',x['MAE']] trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MSE',x['MSE']] trainingDF.loc[len(trainingDF.index)] = [x['Features'],'MAPE',x['MAPE']] trainingDF.loc[len(trainingDF.index)] = [x['Features'],'RMSE',x['RMSE']] except: pass trainingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0) else: dict = {'Attribute':[],'Value':[]} trainingDF = pd.DataFrame(dict) try: trainingDF.loc[len(trainingDF.index)] = ['MAE',training_output['data']['matrix']['MAE']] trainingDF.loc[len(trainingDF.index)] = ['MSE',training_output['data']['matrix']['MSE']] trainingDF.loc[len(trainingDF.index)] = ['MAPE',training_output['data']['matrix']['MAPE']] trainingDF.loc[len(trainingDF.index)] = ['RMSE',training_output['data']['matrix']['RMSE']] except: pass trainingDF.to_excel(excel_writer, sheet_name='Testing Matrix',startrow=0 , startcol=0) workbook = excel_writer.book #excel_writer.save() excel_writer.close() excel_file.seek(0) return edaFileName,excel_file <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os.path from pathlib import Path import time import subprocess import sys import shutil from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe.publish import chech_publish_info from llm.llm_tuning import update_sqllite_data from appbe.data_io import sqlite_db from appbe.dataPath import DATA_DIR from appbe import installPackage from appbe import compute import json import os import signal from os.path import expanduser import platform import pandas as pd LOG_FILE_PATH = os.path.join(DATA_DIR,'logs') GITHUB_FILE_PATH = os.path.join(DATA_DIR,'github') PUBLISH_PATH = os.path.join(DATA_DIR,'target') DEPLOY_DATABASE_PATH = os.path.join(DATA_DIR,'sqlite') os.makedirs(LOG_FILE_PATH, exist_ok=True) ''' def check_publish_info(usecase,version): sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') if sqlite_dbObj.table_exists('publish'): publishState= 'Published' ''' def get_instance(modelID): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID) if len(data) > 0: return (data[3],data[2],data[5],data[6],data[4]) else: return '','','','','' else: return '','','','','' def startServices(request,usecasedetails,Existusecases): try: models = Existusecases.objects.filter(publishStatus='Published') print(models) if len(models) > 0: for model in models: try: portNo = model.portNo ppid = model.publishPID if ppid == 0: continue try: os.kill(int(model.publishPID), signal.SIGTERM) except Exception as e: print(e) scriptPath = os.path.join(PUBLISH_PATH,model.ModelName.usecaseid,'aion_publish_service.py') if os.path.exists(scriptPath): outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)]) model.publishStatus = 'Published' model.publishPID = outputStr.pid model.portNo = portNo model.save() else: print("Pass") pass except Exception as e: print(e) except Exception as e: print(e) def publishmodel(request,usecaseid,version,Existusecases,usecasedetails): portNo=0 usecased = usecasedetails.objects.get(usecaseid=usecaseid) models = Existusecases.objects.filter(ModelName=usecased,publishStatus='Published') if len(models) > 0: for model in models: try: portNo = model.portNo try: os.kill(int(model.publishPID), signal.SIGTERM) except Exception as e: print(e) mod = Existusecases.objects.get(id=model.id) mod.publishStatus = '' mod.publishPID = 0 mod.portNo = 0 mod.save() except Exception as e: print(e) pass missingNumbers = [] if portNo == 0: models = Existusecases.objects.filter(publishStatus='Published') usedPortNo=[] for model in models: usedPortNo.append(model.portNo) startPortNo = 8091 endPortNo = 8091+5 missingNumbers = [ i for i in range(startPortNo,endPortNo) if i not in usedPortNo] if len(missingNumbers) > 0: portNo = missingNumbers[0] if portNo != 0: scriptPath = os.path.join(PUBLISH_PATH,usecaseid,'aion_publish_service.py') model = Existusecases.objects.get(ModelName=usecased,Version=version) isExist = os.path.exists(scriptPath) if isExist: configfile = os.path.join(PUBLISH_PATH,usecaseid,'config.json') configdata = {'version': str(version)} with open(configfile, "w") as outfile: json.dump(configdata, outfile) outfile.close() outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)]) model.publishStatus = 'Published' model.publishPID = outputStr.pid model.portNo = portNo model.save() Status = 'SUCCESS' hosturl =request.get_host() hosturl = hosturl.split(':') url = 'http://'+hosturl[0]+':'+str(portNo)+'/AION/'+str(usecaseid)+'/predict' Msg = 'Model Published Successfully' else: Status = 'Error' Msg = 'Model Published Error' url = '' else: Status = 'Error' Msg = 'All ports are utilized' url='' return Status,Msg,url def get_published_models(instanceid): from appbe.sqliteUtility import sqlite_db file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): condition = f'"instance"=="{instanceid}" AND "status"=="Published"' datas = sqlite_obj.read_data('LLMTuning',condition) if len(datas)>0: return True,datas[0][0] return False,'' def maac_command(request,Existusecases,usecasedetails): command = request.POST.get('maacsubmit') kafkaSetting = kafka_setting() ruuningSetting = running_setting() computeinfrastructure = compute.readComputeConfig() modelID = request.POST.get('modelID') Version = request.POST.get('Version') p = Existusecases.objects.get(id=modelID,Version=Version) usecasename = p.ModelName.usecaseid #bugid 13339 usecaseid = p.ModelName.id # runningStatus,pid,ip,port = installPackage.checkModelServiceRunning(usecasename) # installationStatus,modelName,modelVersion=installPackage.checkInstalledPackge(usecasename) usecasedetail = usecasedetails.objects.get(id=p.ModelName.id) usecase = usecasedetails.objects.all() problemType = p.ProblemType score = 0 scoreType = '' deployedModel = '' deployedModelVersion = p.Version models = Existusecases.objects.filter(ModelName=usecasedetail,Status='SUCCESS') computeinfrastructure = compute.readComputeConfig() for model in models: model.scoringCreteria = 'NA' model.score = 'NA' model.deploymodel = 'NA' if os.path.isdir(str(model.DeployPath)): modelPath = os.path.join(str(model.DeployPath),'etc','output.json') try: with open(modelPath) as file: outputconfig = json.load(file) file.close() if outputconfig['status'] == 'SUCCESS': if deployedModelVersion == model.Version: problemType = outputconfig['data']['ModelType'] scoreType = outputconfig['data']['ScoreType'] score = outputconfig['data']['BestScore'] deployedModel = outputconfig['data']['BestModel'] model.scoringCreteria = outputconfig['data']['ScoreType'] model.score = outputconfig['data']['BestScore'] model.deploymodel = outputconfig['data']['BestModel'] model.maacsupport = 'True' model.flserversupport = 'False' supportedmodels = ["Logistic Regression","Neural Network","Linear Regression"] if model.deploymodel in supportedmodels: model.flserversupport = 'True' else: model.flserversupport = 'False' supportedmodels = ["Extreme Gradient Boosting (XGBoost)"] if model.deploymodel in supportedmodels: model.encryptionsupport = 'True' else: model.encryptionsupport = 'False' except Exception as e: print(e) pass MLaaC_output = '' if command == 'generatemaac': deployPath = str(p.DeployPath) codeconfig = os.path.join(deployPath,'etc','code_config.json') if os.path.isfile(codeconfig): with open(codeconfig,'r') as f: cconfig = json.load(f) f.close() dbserver = request.POST.get('productiondb') db_config = {} if dbserver.lower() == 'influxdb': cconfig['prod_db_type'] = 'influx' db_config['host'] = request.POST.get('influxdbhost') db_config['port'] = request.POST.get('influxdbportno') db_config['user'] = request.POST.get('influxdbuser') db_config['password'] = request.POST.get('influxpassword') db_config['database'] = 'production' db_config['measurement'] = usecasename tags = {} db_config['tags']=tags cconfig['db_config'] = db_config else: cconfig['prod_db_type'] = 'sqlite' cconfig['db_config'] = db_config dbserver = request.POST.get('mlflowserver') mlflow_config = {} if dbserver.lower() == 'local': cconfig['mlflow_config'] = mlflow_config else: mlflow_config['tracking_uri_type'] = request.POST.get('mlflowserverurl') mlflow_config['tracking_uri'] = request.POST.get('mlflowserverurl') mlflow_config['registry_uri'] = request.POST.get('mlflowserverurl') mlflow_config['artifacts_uri'] = request.POST.get('mlflowserverurl') cconfig['mlflow_config'] = mlflow_config with open(codeconfig,'w') as f: json.dump(cconfig, f) f.close() from bin.aion_mlac import generate_mlac_code outputStr = generate_mlac_code(codeconfig) output = json.loads(outputStr) from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'MLaC','Yes') if output['Status'] == 'SUCCESS': Status = 'SUCCESS' MLaaC_output = output['MLaC_Location'].replace('\\\\', '\\\\\\\\') Msg = 'MLaC code successfully generated' else: Status = '
Failure' Msg = output['msg'] else: Status = 'Failure' Msg = 'Code Config Not Present' if command == 'buildContainer': deployPath = str(p.DeployPath) maac_path = os.path.join(deployPath,'publish','MLaC') if os.path.isdir(maac_path): config={'usecase':str(usecasename),'version':str(p.Version),'mlacPath':maac_path} config = json.dumps(config) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py')) if platform.system() == 'Windows': outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','buildMLaCContainerLocal' ,'-j',config],creationflags = subprocess.CREATE_NEW_CONSOLE) else: outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','buildMLaCContainerLocal' ,'-j',config]) #cmd = scriptPath+" "+str(usecasename)+" "+str(p.Version)+" "+str(maac_path) #subprocess.Popen(cmd,shell=True) Status = 'SUCCESS' Msg = 'Build Container Started' else: Status = 'Failure' Msg = 'Run Code Generator' if command == 'runpipeline': deployPath = str(p.DeployPath) dockerlist = os.path.join(deployPath,'publish','MLaC','dockerlist.json') if os.path.isfile(dockerlist): persistancevolume = request.POST.get('persistancevolume') datasetpath = request.POST.get('dataset') filetimestamp = str(int(time.time())) logfilepath = os.path.join(LOG_FILE_PATH,'AIONPipeline_'+str(filetimestamp)+'.log') config={'usecase':str(usecasename),'version':str(p.Version),'persistancevolume':persistancevolume,'datasetpath':datasetpath,'dockerlist':str(dockerlist),'logfilepath':logfilepath} config = json.dumps(config) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py')) if platform.system() == 'Windows': outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','runpipelinelocal','-j',config],creationflags = subprocess.CREATE_NEW_CONSOLE) else: outputStr = subprocess.Popen([sys.executable, scriptPath, str(usecasename),str(p.Version),persistancevolume,datasetpath,str(dockerlist),logfilepath]) Status = 'SUCCESS' Msg = 'Pipeline Started' MLaaC_output = 'Check log file for pipeline execution status: ' + str(logfilepath) else: Status = 'Failure' Msg = 'Not found container information' if command == 'generateyaml': deployPath = str(p.DeployPath) maac_path = os.path.join(deployPath,'publish','MLaC') if os.path.isdir(maac_path): persistancevolume = request.POST.get('persistancevolume') datasetpath = request.POST.get('dataset') supported_urls_starts_with = ('gs://','https://','http://') if datasetpath.startswith(supported_urls_starts_with): datasetpath = request.POST.get('dataset') else: datasetpath = '/aion/'+request.POST.get('dataset') serviceport = request.POST.get('serviceport') scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_generateyaml.py')) outputStr = subprocess.check_output([sys.executable, scriptPath, str(usecasename),str(p.Version),persistancevolume,datasetpath,maac_path,serviceport]) outputStr = outputStr.decode('utf-8') outputStr=outputStr.strip() print(outputStr) output = json.loads(outputStr) if output['Status'] == 'SUCCESS': Status = 'SUCCESS' MLaaC_output = output['location'] Msg = 'MLaaC dockerfile successfully generated' else: Status = 'Failure' Msg = output['msg'] else: Status = 'Failure' Msg = 'Execute generate code first' if command == 'githubupload': if shutil.which('git') is None: Status = 'Failure' Msg = 'Git is not installed, Please install Git first.' else: try: deployPath = str(p.DeployPath) maac_path = os.path.join(deployPath,'publish','MLaC') if os.path.isdir(maac_path): githuburl = request.POST.get('githuburl') githubusername = request.POST.get('githubusername') githubtoken = request.POST.get('githubtoken') githubemail = request.POST.get('githubemail') githubconfig = {"url_type":"https","url":githuburl,"username":githubusername,"email":githubemail,"token":githubtoken,"location":maac_path,"modelName":usecasename,"gitFolderLocation":GITHUB_FILE_PATH} from mlops import git_upload outputStr = git_upload.upload(githubconfig) print(outputStr) output = json.loads(outputStr) if output['Status'] == 'SUCCESS': Status = 'SUCCESS' MLaaC_output = githuburl Msg = 'Code Uploaded to GitHub Successfully' else: Status = 'Failure' Msg = output['msg'] else: Status = 'Failure' Msg = 'GitHub Upload failed' except Exception as e: print(e) Status = 'Failure' Msg = 'GitHub Upload failed' if command == 'unpublishmodel': try: models = Existusecases.objects.filter(ModelName=usecasedetail,publishStatus='Published') if len(models) > 0: for model in models: try: if problemType.lower() == "llm fine-tuning": cloudconfig = os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json')) modelid = usecasename + '_' + str(Version) usecasename = usecasename.replace(" ", "_") hypervisor,instanceid,region,image,status = get_instance(usecasename + '_' + str(Version)) from llm.llm_inference import kill_inference_server kill_inference_server(cloudconfig,instanceid,hypervisor,region,image) update_sqllite_data(modelid,'status','Success') else: try: os.kill(int(model.publishPID), signal.SIGTERM) mod.publishPID = 0 except Exception as e: print(e) mod = Existusecases.objects.get(id=model.id) mod.publishStatus = '' mod.portNo = 0 mod.save() Status = 'SUCCESS' Msg = 'Model Unpublished Successfully' except Exception as e: print(e) Status = 'Error' Msg = 'Model Unpublished Error' except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(e) pass if command == 'publishmodel': try: portNo=0 models = Existusecases.objects.filter(ModelName=usecasedetail,publishStatus='Published') if len(models) > 0: for model in models: try: portNo = model.portNo try: os.kill(int(model.publishPID), signal.SIGTERM) except Exception as e: print(e) mod = Existusecases.objects.get(id=model.id) mod.publishStatus = '' mod.publishPID = 0 mod.portNo = 0 mod.save() except Exception as e: print(e) pass missingNumbers = [] if problemType.lower() == "llm fine-tuning": model = Existusecases.objects.get(ModelName=usecasedetail,Version=Version) try: usecasename = usecasename.replace(" ", "_") hypervisor,instanceid,region,image,status = get_instance(usecasename + '_' + str(Version)) if status.lower() in ['published','success'] : if status.lower() == 'published': from llm.llm_inference import kill_inference_server kill_inference_server('',instanceid, hypervisor, region, image) update_sqllite_data(usecasename + '_' + str(Version), 'status', 'Success') already_published,published_usecase = get_published_models(instanceid) if already_published: Status = 'Error' Msg = f'{published_usecase} is published at the same id, Please Unpublish mentioned model to proceed.' else: if not region: region = '' cloudconfig = os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'compute_conf.json')) usecase = usecasename + '_' + str(Version) #modelid = usecasename + '_' + str(Version) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'aion.py')) cmd = [sys.executable, scriptPath, '-m', 'llmpublish', '-cc', cloudconfig, '-i',instanceid,'-hv',hypervisor,'-md',deployedModel,'-uc',usecase,'-r',region,'-im',image ] outputStr = subprocess.Popen(cmd) model.publishStatus = 'Published' model.publishPID = 0 model.portNo = 8000 model.save() Status = 'SUCCESS' from llm.llm_inference import get_ip instanceip = get_ip(cloudconfig,instanceid,hypervisor,region,image) print(instanceip) url = 'http://' + instanceip + ':' + str(model.portNo) + '/generate' Msg = 'Model Published Successfully, Server will take few minutes to be ready for Inferencing. URL: ' + url update_sqllite_data(usecase,'status','Published') else: Status = 'Error' Msg = 'Only Trained models are availble for Publish.' except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) Status = 'Error' Msg = 'Model Published Error' else: if portNo == 0: models = Existusecases.objects.filter(publishStatus='Published') usedPortNo=[] for model in models: usedPortNo.append(model.portNo) startPortNo = 8091 endPortNo = 8091+5 missingNumbers = [ i for i in range(startPortNo,endPortNo) if i not in usedPortNo] if len(missingNumbers) > 0: portNo = missingNumbers[0] if portNo != 0: model = Existusecases.objects.get(ModelName=usecasedetail,Version=Version) scriptPath = os.path.join(PUBLISH_PATH,usecasename,'aion_publish_service.py') isExist = os.path.exists(scriptPath) if isExist: configfile = os.path.join(PUBLISH_PATH,usecasename,'config.json') configdata = {'version': str(Version)} with open(configfile, "w") as outfile: json.dump(configdata, outfile) outfile.close() outputStr = subprocess.Popen([sys.executable, scriptPath,'-ip','0.0.0.0','-p',str(portNo)]) model.publishStatus = 'Published' model.publishPID = outputStr.pid model.portNo = portNo model.save() Status = 'SUCCESS' hosturl =request.get_host() hosturl = hosturl.split(':') url = 'http://'+hosturl[0]+':'+str(portNo)+'/AION/'+str(usecasename)+'/predict' Msg = 'Model Published Successfully URL: '+url else: Status = 'Error' Msg = 'Model Published Error' else: Status = 'Error' Msg = 'All ports are utilized' except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(e) pass if command == 'generatekubeflowyaml': try: if problemType.lower() == 'timeseriesforecasting': #task 11997 from appbe.aionpipelinets import aionpipelinets else: from appbe.aionpipeline import aionpipeline deployPath = str(p.DeployPath) codeconfig = os.path.join(deployPath,'etc','code_config.json') featuresmapping = {'modelBased':'mlbased','statisticalBased':'statisticalBased'} if os.path.isfile(codeconfig): with open(codeconfig,'r') as f: codeconfig = json.load(f) f.close() modelsarray=[] for featureselection in codeconfig['feature_selector']: for algo in codeconfig['algorithms'].keys(): if problemType.lower() == 'timeseriesforecasting': #task 11997 modelname = 'modeltraining_'+algo.lower() else: modelname =
'modeltraining_'+algo.lower()+'_'+featuresmapping[featureselection] modelx = {'modelname':modelname} modelsarray.append(modelx) modelsjson = {'models':modelsarray} kubeflowhost= request.POST.get('kubeflowhost') containerregistry= request.POST.get('containerregistry') containerlabel= request.POST.get('containerlabel') containersecret= request.POST.get('containersecret') if problemType.lower() == 'timeseriesforecasting': #task 11997 ap = aionpipelinets(modelsjson,containerregistry,containerlabel,containersecret) else: ap = aionpipeline(modelsjson,containerregistry,containerlabel,containersecret) ap.aion_mlops() ap.compilepl() ap.executepl(kubeflowhost) Status = 'SUCCESS' MLaaC_output = '' Msg = 'MLOps pipeline executed successfully' except Exception as e: print(e) Status = 'Failure' Msg = 'Error in pipeline execution' from appbe.pages import get_usecase_page if command in ['publishmodel','unpublishmodel']: status,context,action = get_usecase_page(request,usecasedetails,Existusecases,usecaseid) context['Status'] = Status context['MLaaC_output'] = MLaaC_output context['Msg'] = Msg return(context,'usecasedetails.html') else: status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['Status'] = Status context['MLaaC_output'] = MLaaC_output context['Msg'] = Msg return(context,'usecases.html') def getusercasestatus(request): if 'UseCaseName' in request.session: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' return selected_use_case,ModelVersion,ModelStatus<s> # -*- coding: utf-8 -*- import os import glob, os import pandas as pd from openai.embeddings_utils import cosine_similarity import numpy as np from openai.embeddings_utils import get_embedding import tiktoken import openai import importlib.util from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics import time from tqdm import tqdm import concurrent.futures from openai.error import RateLimitError, Timeout try: import chromadb from chromadb.api.types import Documents, Embeddings except: #Looks no chromadb installed,just proceed to use csv embedd pass from openai.embeddings_utils import get_embedding import json from openai.embeddings_utils import cosine_similarity from langchain.schema import Document from langchain.vectorstores import Chroma import warnings import logging warnings.simplefilter(action='ignore', category=FutureWarning) """Code clone detection parent class, based on user input data,the class will detect similar code snippets in the python file """ class CodeCloneDetection: #Constructor for base inputs def __init__(self,rootdir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId): self.rootdir=rootdir self.embedd_storage_path=embedd_storage_path self.openai_baseurl=openai_baseurl self.openai_key=openai_key self.openai_api_type=openai_api_type self.openai_api_version=openai_api_version self.ccdreportpath = os.path.join(self.embedd_storage_path, "codeCloneReport") self.generativeai_chat_model=generativeai_chat_model self.generativeai_embedding_engine = generativeai_embedding_engine self.generativeai_embedding_model = generativeai_embedding_model self.generativeai_deploymentId = generativeai_deploymentId try: os.makedirs(self.ccdreportpath, exist_ok = True) except OSError as error: print("Directory 'codeclonedetection' can not be created",self.ccdreportpath) try: self.logpath = os.path.join(self.ccdreportpath,'codeclonelog.log') logging.basicConfig(level=logging.INFO,filename=self.logpath,filemode='w',format='%(message)s') self.log = logging.getLogger() except Exception as e: print("code clone log object creation error.",e) def get_function_name(self,code): """ Extract function name from a line beginning with "def " """ assert code.startswith("def ") return code[len("def "): code.index("(")] def get_until_no_space(self,all_lines, i) -> str: """ Get all lines until a line outside the function definition is found. """ ret = [all_lines[i]] for j in range(i + 1, i + 10000): if j < len(all_lines): if len(all_lines[j]) == 0 or all_lines[j][0] in [" ", "\\t", ")"]: ret.append(all_lines[j]) else: break return "\\n".join(ret) def chunk_functions(self,function_code, chunk_size): """ To chunk input for gpt models because max token per model is 4090 """ try: # chunk_size = 1900 chunks = [function_code[i:i + chunk_size] for i in range(0, len(function_code), chunk_size)] except Exception as e: self.log.info('Error in chunking input prompt data.') return chunks def get_functions(self,filepath): """ Get all functions in a Python file. """ try: whole_code = open(filepath).read().replace("\\r", "\\n") all_lines = whole_code.split("\\n") for i, l in enumerate(all_lines): if l.startswith("def "): code = self.get_until_no_space(all_lines, i) function_name = self.get_function_name(code) yield {"code": code, "function_name": function_name, "filepath": filepath} except Exception as e: self.log.info("Error in getting function from file. Error message: \\n"+str(e)) def get_clone_function_details(self): """ To get available functions from python files """ try: code_root=self.rootdir from glob import glob code_files = [y for x in os.walk(code_root) for y in glob(os.path.join(x[0], '*.py'))] if code_files: all_funcs = [] total_locs = 0 for code_file in code_files: with open(code_file) as f: total_locs += len(f.readlines()) funcs = list(self.get_functions(code_file)) for func in funcs: all_funcs.append(func) return all_funcs,code_root,code_files,total_locs else: self.log.info("no python files available in the dir:"+str(code_root)) return {"pythondiles_error":"No python files are found."} except Exception as e: print("Error in reading the functions from the given directory. Error message: \\n",e) self.log.info("Error in reading the functions from the given directory. Error message: \\n"+str(e)) def getOpenAICredentials(self): """ To set openai credential using user input """ #Currently only support openai try: package_name = 'openai' lib_name = importlib.util.find_spec(package_name) if lib_name is None: return "openai_pkg_check_failed" else: embedding_model_lib ='openai' # if isinstance(self.openai_baseurl,str) and isinstance(self.openai_key,str) and isinstance(self.openai_api_type,str): os.environ['OPENAI_API_TYPE'] = self.openai_api_type os.environ['OPENAI_API_BASE'] = self.openai_baseurl # os.environ['OPENAI_API_VERSION'] = '2023-05-15' # os.environ['OPENAI_API_VERSION'] = "2022-12-01" os.environ['OPENAI_API_VERSION'] = self.openai_api_version os.environ['OPENAI_API_KEY'] = self.openai_key if (embedding_model_lib.lower()=='openai'): try: openai.api_type=os.getenv('OPENAI_API_TYPE') openai.api_base = os.getenv('OPENAI_API_BASE') openai.api_key = os.getenv('OPENAI_API_KEY') openai.api_version = os.getenv('OPENAI_API_VERSION') except Exception as e: self.log.info("Unable to get openai credentials,please provide proper credentials."+str(e)) return {"error_msg":"openai_environment_error"} except Exception as e: print("Openai credential set and get function error. Error message: \\n",e) return openai.api_type,openai.api_base,openai.api_key,openai.api_version def get_embedding_local(self,model: str, text: str) -> list[float]: """ To get embedding data for single user given prompt text""" try: response = openai.Embedding.create( input=text, engine=self.generativeai_embedding_engine) except Exception as e: self.log.info("openai embedding creation error."+str(e)) return result['data'][0]['embedding'] def get_embeddings_pyfiles(self,all_funcs): """ To get embedding for python functions """ try: import tiktoken openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials() encoding = tiktoken.encoding_for_model("text-embedding-ada-002") df = pd.DataFrame(all_funcs) df["tokens"] = df["code"].apply(lambda c: len(encoding.encode(c))) embedding_cost = df["tokens"].sum() * (0.0004/1000) EMBEDDING_FILEPATH=self.ccdreportpath+'\\code_embeddings.csv' self.log.info("embedding storage location: "+str(EMBEDDING_FILEPATH)) vdb_status = self.get_vdb_status('chromadb') ##Currently chromadb not integrated vdb_status = False if not vdb_status: df['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, engine=self.generativeai_embedding_engine)) df['filepath'] = df['filepath'].apply(lambda x: x.replace(self.rootdir, "")) df.to_csv(EMBEDDING_FILEPATH, index=False) else: df = self.chromadb_embedding(df) """ Please uncomment below, currently assumption is each run we create embedd based on python files dir """ import numpy as np df = pd.read_csv(EMBEDDING_FILEPATH) df["code_embedding"] = df["code_embedding"].apply(eval).apply(np.array) except Exception as e: self.log.info("Error in get_embeddings_pyfiles for embedding conversion process. Error Message: "+str(e)) raise Exception("Error in get_embeddings_pyfiles for embedding conversion process.") return df,embedding_cost def search_functions_vectordb(df,db, code_query, n=3, pprint=True, n_lines=7): """ Search function for user query (prompt content), used for vector database embedding query option. """ try: docs = db.similarity_search_with_score(code_query )[:n] docs = [{"similarities":score, "code": d.page_content, **d.metadata} for d,score in docs] res = pd.DataFrame(docs).drop("_additional", axis=1) ##Uncomment for debug # if pprint: # for r in res.iterrows(): # print(r[1].filepath+" : "+r[1].function_name + " score=" + str(round(r[1].similarities, 3))) # print("\\n".join(r[1].code.split("\\n")[:n_lines])) # print('-'*70) except Exception as e: self.log.info("Error in search_functions_vectordb to get similarity information based on user query. Error Message: "+str(e)) raise Exception("Error in search_functions_csv to get similarity information based on user query.") return res def search_functions_csv(self,df, code_query, n=3, pprint=True, n_lines=7): """ Search function for user query (prompt content), used for csv embedding query option. """ try: embedding = get_embedding(code_query, engine=self.generativeai_embedding_engine) df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding)) res = df.sort_values('similarities', ascending=False) ## uncomment for debug purpose # if pprint: # for r in res.iterrows(): # print(r[1].filepath+" : "+r[1].function_name + " score=" + str(round(r[1].similarities, 3))) # print("\\n".join(r[1].code.split("\\n")[:n_lines])) # print('-'*70) except Exception as e: self.log.info("Error in search_functions_functions_csv to get similarity information based on user query. Error Message: "+str(e)) raise Exception("Error in search_functions_csv to get similarity information based on user query.") return res def get_prediction(self,prompt_data): """ To get prediction for given user data """ try: all_funcs,code_root,
code_files,total_locs=self.get_clone_function_details() if not isinstance(all_funcs,type(None)): df,embedding_cost=self.get_embeddings_pyfiles(all_funcs) res = self.search_functions_csv(df, prompt_data, n=3) return res else: return dict({"error":"Empty_root_directory"}) except Exception as e: self.log.info("Error in get prediction for user prompt information. Error Message: "+str(e)) raise Exception("Error in get prediction for user prompt information. .") def get_vdb_status(self,vdb_name): """ To check chromadb python package installed or not""" try: vdb_name = 'chromadb' vdb_status=False lib_name = importlib.util.find_spec(vdb_name) if lib_name is None: vdb_status=False else: vdb_status=True ## Processing the files and create a embedding and save it using csv. except Exception as e: self.log.info("Error in checking chromadb installed or not. Error Message: "+str(e)) raise Exception("Error in checking chromadb installed or not. .") ## Currently vector db (chromadb) not implemented, so vdb_status is set as False vdb_status = False return vdb_status def create_chroma_db(self,documents, name): """ Craete chromadb instance (persistant) """ #get openai status openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials() # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials() try: from langchain.embeddings.openai import OpenAIEmbeddings embed_function = OpenAIEmbeddings(deployment=self.generativeai_embedding_engine, chunk_size=1) except: from chromadb.utils import embedding_functions embed_function = embedding_functions.OpenAIEmbeddingFunction( api_key=openai.api_key, api_base=openai.api_base, api_type = openai.api_type, model_name=self.generativeai_embedding_model ) try: # chroma_client = chromadb.Client() persist_directory = self.embedd_storage_path chroma_client = chromadb.Client( Settings( persist_directory=persist_directory, chroma_db_impl="duckdb+parquet", ) ) # Start from scratch chroma_client.reset() chroma_client.persist() try: embed_function = OpenAIEmbeddings(deployment=self.generativeai_embedding_engine, chunk_size=1) except: embed_function = OpenAIEmbeddings() db = Chroma.from_documents(documents, embed_function, persist_directory=persist_directory) db.persist() except Exception as e: self.log.info("Error in chromadb based embeding creation. Error Message: "+str(e)) raise Exception("Error in chromadb based embeding creation.") return db,chroma_client def chromadb_embedding(self,df): """ Base chromadb embedding creation and storage function, it calls above create_chroma_db() to create db. """ try: documents = df.apply(lambda x: Document(page_content= x["code"], metadata= {"function_name": x["function_name"], "filepath": x["filepath"]}), axis=1) #setup the chromadb db,chroma_client = self.create_chroma_db(documents,collection_name) try: chromadb_df=pd.DataFrame(db) except: db_json = db.get(include=['embeddings', 'documents', 'metadatas']) chromadb_df = pd.read_json(db_json) self.log.info("chromadb_df records (top ~5 records): "+str(chromadb_df.head(5))) except Exception as e: self.log.info("chromadb embedding error. Error message: "+str(e)) return chromadb_df def num_tokens_from_string(self, string: str) -> int: """ Get number of tokens of text using tiktokens lib.""" encoding = tiktoken.encoding_for_model("text-embedding-ada-002") num_tokens = len(encoding.encode(string)) return num_tokens def validate_code_clone_with_explanation(self,code1, code2, verbose=False): """ Validate clone detection code snippet and get explanation from openai chat model (gpt-3.5-turbo) """ ## Openai using 4 chars as 1 token, same method here followed. Here,we dont need to call tiktoken lib to save cost. if (len(code1)/4 >1900): chunk = self.chunk_functions(code1, 1900) code1 = chunk[0] print("In side , len of code1\\n",len(code1)) if (len(code2)/4 >1900): chunk = self.chunk_functions(code2, 1900) code2 = chunk[0] print("In side , len of code2\\n",len(code2)) try: SYS_ROLE = "You are a Senior Code Reviewer, who helps in Code review and integration using code clone detection approach." openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials() # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials() prompt = f"""Given two code snippets, find if they are clones or not with suitable explaination. Four types of clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone. 3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones. 4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone. Use JSON object format with following keys: IsClone: (True, False) wheather two code snippets are clone or not. CloneType: (Exact clone, Parameterized clone, Never-miss clone, Semantic clone) Choose appropriate clone type or "None". Explanation: A short explanation for the above answer. ### Code Snippets: ## Code 1: {code1} ## Code 2: {code2} ### Answer(Valid JSON object): """ response = openai.ChatCompletion.create(deployment_id=self.generativeai_deploymentId, messages=[{"role": "system", "content": SYS_ROLE}, {"role": "user", "content": prompt},], temperature = 0,max_tokens = 3900,request_timeout=90) text = response['choices'][0]['message']['content'] if verbose: self.log.info("validate_code_clone_with_explanation, text: "+str(text)) except Exception as e: print(" validate_code_clone_with_explanation: \\n",e) response = "OpenAI Model Connection" if e.code == "invalid_request" and "token limit" in e.message.lower(): # Implement your logic to reduce the length of messages or split them into smaller parts # Modify messages or take appropriate action self.log.info("Given function is too large and exceeds openai chat model token limit,please review the source file function length. "+str(e)) return response def validate_code_clone_with_explanation_davinci(self,code1, code2, verbose=False): """ Validate clone detection code snippet and get explanation from openai chat model (davinci) """ if (len(code1)/4 >1900): chunk = self.chunk_functions(code1, 1900) code1 = chunk[0] if (len(code2)/4 >1900): chunk = self.chunk_functions(code2, 1900) code2 = chunk[0] try: SYS_ROLE = "You are a Senior Code Reviewer, who helps in Code review and integration. Detecting code clone in the repository." openai_api_type,openai_api_base,openai_api_key,openai_api_version = self.getOpenAICredentials() # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials() prompt = f"""Given two code snippets, find if they are clones or not with suitable explaination. Four types of clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone. 3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones. 4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone. Use JSON object format with following keys: IsClone: (True, False) wheather two code snippets are clone or not. CloneType: (Exact clone, Parameterized clone, Never-miss clone, Semantic clone) Choose appropriate clone type or "None". Explanation: A short explanation for the above answer. ### Code Snippets: ## Code 1: {code1} ## Code 2: {code2} ### Answer(Valid JSON object): """ # response = openai.Completion.create(engine='Text-Datvinci-03', prompt=prompt, temperature=0, max_tokens=1166) response = openai.Completion.create(engine=self.generativeai_chat_model, prompt=prompt, temperature=0, max_tokens=3900) text = response.choices[0]["text"] if verbose: self.log.info("validate_code_clone_with_explanation, text (chatmodel response) "+str(text)) except Exception as e: response = "OpenAI Model Connection Error" if e.code == "invalid_request" and "token limit" in e.message.lower(): # Implement your logic to reduce the length of messages or split them into smaller parts # Modify messages or take appropriate action self.log.info("Given function is too large and exceeds openai chat model token limit,please review the source file function length. Error msg: "+str(e)) return response ## For dbscan based clone detction from python files, we use CodeCloneDetection parent class. (Using inheritance) class CodeCloneDetectionFiles(CodeCloneDetection): """For dbscan based clone detction from python files, we use CodeCloneDetection parent class. (Using inheritance) """ def __init__(self,root_dir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId): super().__init__(root_dir,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId) def get_embedd_fns(self): """ To get embedd vector, using parent class methods""" try: ## Processing the files and create a embedding and save it using csv. vdb_status = super().get_vdb_status('chromadb') self.log.info("<------- AION Code Clone Detection started ... ------>\\n ") if not vdb_status: openai_api_type,openai_api_base,openai_api_key,openai_api_version = super().getOpenAICredentials() # openai_api_type,openai_api_base,openai_api_key = self.getOpenAICredentials() all_funcs,code_root,code_files,total_locs = super().get_clone_function_details() if (openai.api_key or openai_api_key): if not isinstance(all_funcs,type(None)): embedded_df,embedding_cost=super().get_embeddings_pyfiles(all_funcs) else: return status except Exception as e: # print("Error in getting embedding vector using openai. Error message: ",e) self.log.info("Error in getting embedding vector using openai. Error message: "+str(e)) raise Exception("Error in getting embedding vector using openai.") return embedded_df,embedding_cost def dbscan_clone_detection(self,df): """ DBScan based code clone similarity detection (for functions in given dir """ try: vdb_status = super().get_vdb_status('chromadb') if not vdb_status: X = np.array(list(df.code_embedding.values)) else: X = np.array(list(df.embeddings.values)) #X = StandardScaler().fit_transform(X) db = DBSCAN(eps=0.2, min_samples=2).fit(X) labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) df["cluster"] = labels cluster_result = [] for i in range(n_clusters_): cluster_df = df.loc[df['cluster'] == i] # with open("{}/cluster_{}.txt".format(self.ccdreportpath,i), "w") as f: for index, row in cluster_df.iterrows(): cluster_result.append({"cluster_id": i,"filepath": row.filepath,"function_name": row.function_name,"code": row.code }) # f.write(f"Source File: {row.filepath}, Function Name: {row.function_name}") #f.write(f"\\n{row.code}\\n\\n{'-'*80}\\n\\n") cluster_result_df = pd.DataFrame(cluster_result) codeclonereport_df = os.path.join(self.ccdreportpath,'cluster_result.csv') cluster_result_df.to_csv(codeclonereport_df, index=False) return cluster_result_df except Exception as e: self.log.info("Error in dbscan based similar code clone clustering. Error Message: "+str(e)) raise Exception("Error in dbscan based similar code clone clustering
.") def make_pairs(self,data_list:list): try: if len(data_list) <=1: return [] return [(data_list[0], d) for d in data_list[1:]] + self.make_pairs(data_list[1:]) except Exception as e: self.log.info("Error in make pairs function, error message: "+str(e)) raise Exception("Error in clone code mapping.") def code_clone_check_with_retry(self,code1,code2, retry_interval=1): """ Call chat models for code clone detection with retry mechanism. """ try: # res = super().validate_code_clone_with_explanation(code1,code2) ##sj if (self.generativeai_embedding_model.lower() =='text-embedding-ada-002' and self.generativeai_chat_model.lower() == 'text-datvinci-03'): res = super().validate_code_clone_with_explanation_davinci(code1,code2) return res elif (self.generativeai_embedding_model.lower() =='text-embedding-ada-002' and self.generativeai_chat_model.lower() == 'gpt-3.5-turbo'): res = super().validate_code_clone_with_explanation(code1,code2) return res except (RateLimitError, Timeout) as e: self.log.info("Calling chat model issue in code clone check function, error message: "+str(e)) time.sleep(retry_interval) return self.code_clone_check_with_retry(code1, code2) def res_formater(self,inp): """ Function to format gpt-3.5 or text-davinci-003 response body. """ try: line = inp.replace('{','') line = line.replace('}','') line = line.replace('"','') end=line.split(',') d1={} l2=[] for l in end: l=l.split(',') for i in l: l1=i.split(":") l2.append(l1) import pandas as pd df=pd.DataFrame(l2) df=df.T df.columns = df.iloc[0] df = df[1:] df.columns = df.columns.str.replace('[#,@,&,\\']', '') # df.to_csv('test1.csv', index=False) response=df.iloc[0] fl=response.to_list() clone_status=fl[0] clone_type=fl[1] result=fl[2] except Exception as e: self.log.info("chat model response formatter error. Error message: "+str(e)) return clone_status,clone_type,result def getcloneresult_modelspecific(self,code_clone_check_tasks,embedding_cost): """ get the clone type and associated information from chat model response data. """ try: max_workers = min(len(code_clone_check_tasks), 100) all_funcs,code_root,code_files,total_locs = super().get_clone_function_details() if (self.generativeai_chat_model.lower() == 'text-datvinci-03'): self.log.info("<--- Text-Datvinci-03 chat model based code clone detection. --->") code_clone_result = [] for task in code_clone_check_tasks: response=self.code_clone_check_with_retry(task[0]["code"], task[1]["code"]) with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor: llm_requests = { executor.submit(self.code_clone_check_with_retry, task[0]["code"], task[1]["code"]): task for task in code_clone_check_tasks } with tqdm(total= len(llm_requests)) as progress: for future in concurrent.futures.as_completed(llm_requests): task = llm_requests[future] try: res = future.result() try: my_openai_obj1 = res["choices"][0]["text"] clone_status,clone_type,result = self.res_formater(my_openai_obj1) model_value=res['model'] total_tokens_value=res['usage']['total_tokens'] code_clone_result.append({"task": task, "result":result, "IsClone": clone_status, "CloneType": clone_type, "model":model_value, "total_tokens":total_tokens_value}) except Exception as e: self.log.info("getCloneReport, code_clone_result.append error: "+str(e)) except Exception as exc: self.log.info("getCloneReport error (text davinci chat model): "+str(exc)) progress.update() ## Please uncomment below part if you need to check chat model response body. #codeclonecheckresult_json = os.path.join(self.ccdreportpath,'code_clone_chatmodel_responsebody.json') #with open(codeclonecheckresult_json, "w+") as fp: #json.dump(code_clone_result, fp, indent=2) code_clone_result_json=json.dumps(code_clone_result) clone_report=pd.read_json(code_clone_result_json) cr_totaltokens = clone_report['total_tokens'] total_amt = (cr_totaltokens).sum() * (0.002/1000) clone_report["function1"] = clone_report["task"].apply(lambda x: x[0]["filepath"] + " -> " + x[0]["function_name"]) clone_report["function2"] = clone_report["task"].apply(lambda x: x[1]["filepath"] + " -> " + x[1]["function_name"]) # clone_report["clone_type"] = clone_report["result"].apply(lambda x: x["CloneType"]) clone_report["clone_type"] = clone_report["CloneType"] code_dir = code_root total_files = len(code_files) total_locs = total_locs total_functions = len(all_funcs) total_tokens = clone_report['total_tokens'].sum() total_cost= embedding_cost + clone_report['total_tokens'].sum() * (0.002/1000) total_clones = len(clone_report[clone_report.clone_type != "None"]) code_clone_count_by_df = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql') clone_functions = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1").to_markdown(tablefmt='psql', index=False) code_clone_count_dict = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')) clone_function_dict = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1") ##Final report on code clone detection report_str = f"""Code_directory: {code_dir} Files: {total_files} LOCs: {total_locs} Functions: {total_functions} Total_code_clones_detected: {total_clones} Tokens used: {total_tokens} Total cost(embedding + clone check): {total_cost} Four_types_of_clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone. 3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones. 4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone. Code_clones_count_by_clone_type: {code_clone_count_by_df} Clone_functions: {clone_functions} """ codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt') with open(codeclonereport_txt, "w") as f: f.write(report_str) report_dict=dict({"Code_directory":code_dir,"total_files":total_files, "total_locs":total_locs,"total_functions":total_functions,"total_clones":total_clones, "total_tokens":total_tokens,"total_cost":total_cost, "Code_clones_count_by_clone_type":code_clone_count_dict,"clone_functions":clone_function_dict}) ## report for chat model is gpt 3.5 turbo elif (self.generativeai_chat_model.lower() == 'gpt-3.5-turbo'): try: self.log.info("<--- gpt-3.5-turbo chat model based code clone detection. --->") code_clone_result = [] for task in code_clone_check_tasks: response=self.code_clone_check_with_retry(task[0]["code"], task[1]["code"]) with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor: llm_requests = { executor.submit(self.code_clone_check_with_retry, task[0]["code"], task[1]["code"]): task for task in code_clone_check_tasks } with tqdm(total= len(llm_requests)) as progress: for future in concurrent.futures.as_completed(llm_requests): task = llm_requests[future] try: res = future.result() my_openai_obj1 = res["choices"][0]["message"]['content'] clone_status,clone_type,result = self.res_formater(my_openai_obj1) # result = json.loads(res['choices'][0]['message']['content']) total_tokens = res["usage"]["total_tokens"] code_clone_result.append({"task": task, "result":result , "CloneType": clone_type, "total_tokens": total_tokens}) except Exception as exc: self.log.info("gpt 3.5 chat model error: "+str(exc)) progress.update() except Exception as e: print("In gpt3.5,getcloneresult_modelspecific fn exception : \\n",e) import traceback print("traceback, In gpt3.5,getcloneresult_modelspecific fn exception \\n",traceback.print_exc()) ## Please uncomment below part if you need to check chat model response body. #codeclonecheckresult_json = os.path.join(self.ccdreportpath,'code_clone_chatmodel_responsebody.json') #with open(codeclonecheckresult_json, "w+") as fp: #json.dump(code_clone_result, fp, indent=2) try: code_clone_result_json=json.dumps(code_clone_result) clone_report = pd.read_json(code_clone_result_json) codeclone_total_amt = clone_report["total_tokens"].sum() * (0.002/1000) clone_report["function1"] = clone_report["task"].apply(lambda x: x[0]["filepath"] + " -> " + x[0]["function_name"]) clone_report["function2"] = clone_report["task"].apply(lambda x: x[1]["filepath"] + " -> " + x[1]["function_name"]) # clone_report["clone_type"] = clone_report["result"].apply(lambda x: x["CloneType"]) clone_report["clone_type"] = clone_report["CloneType"] code_dir = code_root total_files = len(code_files) total_locs = total_locs total_functions = len(all_funcs) total_tokens = clone_report["total_tokens"].sum() except Exception as e: self.log.info("Error in getting clone report: "+str(e)) total_cost= embedding_cost + clone_report["total_tokens"].sum() * (0.002/1000) total_clones = len(clone_report[clone_report.clone_type != "None"]) code_clone_count_by_df = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql') clone_functions = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1").to_markdown(tablefmt='psql', index=False) code_clone_count_dict = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')) clone_function_dict = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1") report_str = f"""Code_directory: {code_dir} Files: {total_files} LOCs: {total_locs} Functions: {total_functions} Total code clones detected: {total_clones} Tokens used: {total_tokens} Total cost(embedding + clone check): {total_cost} Four types of clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone. 3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones. 4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone. 5. None: Not a clone, discard this one. Code_clones_count_by_clone_type: {code_clone_count_by_df} Clone_functions: {clone_functions} """ codeclonereport_txt = os.path.join(self.ccdreportpath,'code_clone_report.txt') with open(codeclonereport_txt, "w") as
f: f.write(report_str) report_dict=dict({"Code_directory":code_dir,"total_files":total_files, "total_locs":total_locs,"total_functions":total_functions,"total_clones":total_clones, "total_tokens":total_tokens,"total_cost":total_cost, "Code_clones_count_by_clone_type":code_clone_count_dict,"clone_functions":clone_function_dict}) except Exception as e: self.log.info("Error in clone type and information retrival process .Error message: "+str(e)) return code_clone_result,report_str,report_dict def getCloneReport(self): """ To get the clone report from the given python directory """ try: self.log.info("To get clone report, we are calling embedding and chat model.") import time vdb_status = super().get_vdb_status('chromadb') start_time = time.time() # self.log.info("code clone detection start time."+str(start_time)) if not vdb_status: embedded_df,embedding_cost = self.get_embedd_fns() cluster_df = self.dbscan_clone_detection(embedded_df) cluster_df_group = cluster_df.groupby("cluster_id") len_cluster_df_group = len(cluster_df_group) code_clone_check_tasks = [] for name, group in cluster_df_group: res = self.make_pairs(group.to_dict(orient="records")) code_clone_check_tasks += res #For text-embedding-ada-002 and gpt 3.5 chat model code_clone_result,report_str,report_dict = self.getcloneresult_modelspecific(code_clone_check_tasks,embedding_cost) end_time = time.time() total_time_taken = end_time - start_time self.log.info("Total time taken for code clone detction: "+str(total_time_taken)) self.log.info("<------------- Final code clone report: -------------------> \\n"+str(report_str)) report_df = pd.DataFrame.from_dict(report_dict, orient="index").reset_index() report_df.columns = ['ccd_properties', 'Values'] report_df=report_df.T codecloneresult_df = os.path.join(self.ccdreportpath,'code_clone_report_df.csv') report_df.to_csv(codecloneresult_df) return report_str,report_dict,report_df,json.dumps(report_str) else: #Below code indended for vector db. all_funcs,code_root,code_files,total_locs = super().get_clone_function_details() df = pd.DataFrame(all_funcs) df['filepath'] = df['filepath'].apply(lambda x: x.replace(code_root, "")) chromadb_df=super().chromadb_embedding(df) df = self.dbscan_clone_detection(chromadb_df) cluster_df_group = cluster_df.groupby("cluster_id") len_cluster_df_group = len(cluster_df_group) code_clone_check_tasks = [] for name, group in cluster_df_group: res = self.make_pairs(group.to_dict(orient="records")) code_clone_check_tasks += res code_clone_result = [] max_workers = min(len(code_clone_check_tasks), 100) with concurrent.futures.ThreadPoolExecutor(max_workers= max_workers) as executor: llm_requests = { executor.submit(self.code_clone_check_with_retry, task[0]["code"], task[1]["code"]): task for task in code_clone_check_tasks } with tqdm(total= len(llm_requests)) as progress: for future in concurrent.futures.as_completed(llm_requests): task = llm_requests[future] try: res = future.result() code_clone_result.append({"task": task, "result": json.loads(res['choices'][0]['message']['content']), "total_tokens": res["usage"]["total_tokens"]}) except Exception as exc: print('%r generated an exception: %s' % (task, exc)) progress.update() with open("code_clone_check_result.json", "w+") as fp: json.dump(code_clone_result, fp, indent=2) code_clone_result_json=json.dumps(code_clone_result) clone_report=pd.read_json(code_clone_result_json) total_amt = clone_report["total_tokens"].sum() * (0.002/1000) clone_report["function1"] = clone_report["task"].apply(lambda x: x[0]["filepath"] + " -> " + x[0]["function_name"]) clone_report["function2"] = clone_report["task"].apply(lambda x: x[1]["filepath"] + " -> " + x[1]["function_name"]) clone_report["clone_type"] = clone_report["result"].apply(lambda x: x["CloneType"]) all_funcs,code_root,code_files,total_locs = super().get_clone_function_details() code_dir = code_root total_files = len(code_files) total_locs = total_locs total_functions = len(all_funcs) total_tokens = clone_report["total_tokens"].sum() # total_cost= embedding_cost + clone_report["total_tokens"].sum() * (0.002/1000) total_clones = len(clone_report[clone_report.clone_type != "None"]) code_clone_count_by_df = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')).to_markdown(tablefmt='psql') clone_functions = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1").to_markdown(tablefmt='psql', index=False) code_clone_count_dict = clone_report[clone_report.clone_type != "None"].groupby("clone_type").agg(Count=('clone_type', 'count')) clone_function_dict = clone_report[["function1", "function2", "clone_type"]][clone_report.clone_type != "None"].sort_values("function1") ##Final report on code clone detection report_str = f"""Code_directory: {code_dir} Files: {total_files} LOCs: {total_locs} Functions: {total_functions} Total code clones detected: {total_clones} Tokens used: {total_tokens} Four types of clone: 1. Exact clone: Two code fragments similar to each other with little transformation in comments, layout, or whitespaces. 2. Parameterized clone: Changes made in names of variables, keywords, identifiers, or bypassing parameter during function call in code fragments, result in this clone. 3. Near-miss clone: Near-miss clone occurs by adding, deleting statements in code fragments of type 2 clones. 4. Semantic clone: The code snippets have different syntax but with alike functionality results in this clone. Code_clones_count_by_clone_type: {code_clone_count_by_df} Clone_functions: {clone_functions} """ with open("code_clone_report.txt", "w") as f: f.write(report_str) # print(report_str) self.log.info("<------------- Final code clone report: -------------------> \\n"+str(report_str)) self.log.info("<------------- clone_functions code clone report: -------------------> \\n"+str(clone_functions)) report_dict=dict({"Code_directory":code_dir,"total_files":total_files, "total_locs":total_locs,"total_functions":total_functions,"total_clones":total_clones, "total_tokens":total_tokens, "Code_clones_count_by_clone_type":code_clone_count_dict,"clone_functions": clone_function_dict}) report_df= pd.DataFrame([report_dict.keys(), report_dict.values()]).T report_df.columns = ["Code_directory", "total_files","total_locs","total_functions","total_clones","total_tokens","Code_clones_count_by_clone_type","clone_functions"] report_df.to_csv("code_clone_report_df.csv") return report_str,report_dict,report_df,json.dumps(report_str) except Exception as e: self.log.info("Error in clone detection function call. Error Message: \\n"+str(e)) raise Exception("Error in clone detection function.") #For testing and code instance privacy if __name__=='__main__': ## For testing purpose.Uncomment n use. root_directory = r"C:\\AION_Works\\Anomaly_Detection\\anomalydetectionpackage\\code_clone_testing_pyfiles\\code_clone_testing_pyfiles_large" embedd_storage_path = r"C:\\AION_Works\\ccddir" generativeai_credentials={'openai_baseurl':"", 'openai_key':"", 'openai_api_type':"", 'openai_api_version':"", 'generativeai_embedding_engine':"", 'generativeai_embedding_model':"", 'generativeai_chat_model':"", 'generativeai_deploymentId':""} openai_baseurl = generativeai_credentials['openai_baseurl'] openai_key = generativeai_credentials['openai_key'] openai_api_type = generativeai_credentials['openai_api_type'] openai_api_version = generativeai_credentials['openai_api_version'] generativeai_embedding_engine = generativeai_credentials['generativeai_embedding_engine'] generativeai_embedding_model = generativeai_credentials['generativeai_embedding_model'] generativeai_chat_model = generativeai_credentials['generativeai_chat_model'] generativeai_deploymentId = generativeai_credentials['generativeai_deploymentId'] codeclonedetection_obj = CodeCloneDetectionFiles(root_directory,openai_baseurl, openai_key,openai_api_type,openai_api_version,embedd_storage_path,generativeai_embedding_engine,generativeai_embedding_model,generativeai_chat_model,generativeai_deploymentId) report_str,report_dict,report_json = codeclonedetection_obj.getCloneReport() print("End of code clone detection....\\n") <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import json def getInstanceonGCP(image,instances): try: from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('LLMTuning'): data = sqlite_obj.read_data('LLMTuning','image="'+image['id']+'"') for values in data: instance = {} instance['type'] = 'instance' instance['id'] = values[2] instance['workLoad'] = image['workLoad'] instance['machineImageProjectID'] = image['machineImageProjectID'] instance['ssh'] = image['ssh'] instance['machineConfiguration'] = image['machineConfiguration'] instance['instanceType'] = image['instanceType'] instances.append(instance) except Exception as e: print(e) return instances def getInstanceonAWS(amiid,instances): try: from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('LLMTuning'): data = sqlite_obj.read_data('LLMTuning','image="'+amiid['id']+'"') for values in data: instance = {} instance['type'] = 'instance' instance['id'] = values[2] instance['workLoad'] = amiid['workLoad'] instance['regionName'] = amiid['regionName'] instance['ssh'] = amiid['ssh'] instance['machineConfiguration'] = amiid['machineConfiguration'] instance['instanceType'] = amiid['instanceType'] instances.append(instance) except Exception as e: print(e) return instances def updatelocalsetings(request): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR import pandas as pd file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('computeInfrastructure'): updated_data = 'selectedInfrastructure="Local"' sqlite_obj.update_data(updated_data,'','computeInfrastructure') def updateToComputeSettings(infratructure): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR import pandas as pd file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('computeInfrastructure'): updated_data = 'selectedInfrastructure="'+infratructure+'"' sqlite_obj.update_data(updated_data,'','computeInfrastructure') def updateGCPConfig(request): try: credentialsJson = request.POST.get('credentialsJson') projectID = request.POST.get('gcpProjectid') machineType = request.POST.get('gcpmachineType') selectedID = request.POST.get('gcpInstance') gcpZone = request.POST.get('gcpZone') workload = request.POST.get('gcpworkload') noOfInstance = request.POST.get('GCPnoofinstance') #print(credentialsJson,projectID,machineType,selectedID,gcpZone,workload,noOfInstance) if credentialsJson != '' and projectID != '': from appbe
.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR import pandas as pd file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('gcpCredentials'): updated_data = 'credentialsJson="'+credentialsJson+'",projectID="'+projectID+'",machineType="'+machineType+'",selectedID="'+selectedID+'",regionName="'+gcpZone+'",noOfInstance="'+str(noOfInstance)+'",workload="'+workload+'"' sqlite_obj.update_data(updated_data,'','gcpCredentials') else: newdata = {} newdata.update({'id':['1'],'credentialsJson': [credentialsJson],'projectID': [projectID],'machineType':[machineType],'selectedID':[selectedID],'regionName':[gcpZone],'noOfInstance':[noOfInstance],'workload':[workload]}) sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'gcpCredentials') return('success') else: return('error') except Exception as e: print(e) return('error') def updateComputeConfig(request): try: AWSAccessKeyID = request.POST.get('AWSAccessKeyID') AWSSecretAccessKey = request.POST.get('AWSSecretAccessKey') workload = request.POST.get('workload') machineType = request.POST.get('machineType') selectedID = request.POST.get('amiInstance') regionName = request.POST.get('regionName') noOfInstance = request.POST.get('NoOfInstance') securitygroupid = request.POST.get('AWSSecuritygroupID') if AWSAccessKeyID != '' and AWSSecretAccessKey != '': from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR import pandas as pd file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') if sqlite_obj.table_exists('awsCredentials'): column_names = sqlite_obj.column_names('awsCredentials') if 'securitygroupid' not in column_names: query = 'Alter Table awsCredentials ADD securitygroupid TEXT' sqlite_obj.execute_query(query) updated_data = 'AWSAccessKeyID="'+AWSAccessKeyID+'",AWSSecretAccessKey="'+AWSSecretAccessKey+'",machineType="'+machineType+'",selectedID="'+selectedID+'",regionName="'+regionName+'",noOfInstance="'+noOfInstance+'",workload="'+workload+'",securitygroupid="'+securitygroupid+'"' sqlite_obj.update_data(updated_data,'','awsCredentials') else: newdata = {} newdata.update({'id':['1'],'AWSAccessKeyID': [AWSAccessKeyID],'AWSSecretAccessKey': [AWSSecretAccessKey],'machineType':[machineType],'selectedID':[selectedID],'regionName':[regionName],'noOfInstance':[noOfInstance],'workload':[workload],'securitygroupid':[securitygroupid]}) sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'awsCredentials') return('success') else: return('error') except Exception as e: print(e) return('error') def selectedInfratructure(): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') selcInfra = 'Local' if sqlite_obj.table_exists('computeInfrastructure'): data = sqlite_obj.read_data('computeInfrastructure') for values in data: selcInfra = values[1] return selcInfra def readComputeConfig(): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','compute_conf.json')) f = open(file_path, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR import pandas as pd file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') selcInfra = 'Local' if sqlite_obj.table_exists('computeInfrastructure'): data = sqlite_obj.read_data('computeInfrastructure') for values in data: selcInfra = values[1] else: data = {} data.update({'id':['1'],'selectedInfrastructure': ['Local']}) sqlite_obj.write_data(pd.DataFrame.from_dict(data),'computeInfrastructure') configSettingsJson['computeInfrastructure'] = selcInfra for ami in configSettingsJson['AWS_EC2']['amis']: configSettingsJson['AWS_EC2']['instances'] = getInstanceonAWS(ami,configSettingsJson['AWS_EC2']['instances']) for image in configSettingsJson['GCP']['machineImage']: configSettingsJson['GCP']['instances'] = getInstanceonGCP(image,configSettingsJson['GCP']['instances']) AWSAccessKeyID = '' AWSSecretAccessKey = '' securitygroupid = '' machineType = 'AMI' selectedID = '' regionName = '' noofInfra = 1 workLoad = 'LLM' if sqlite_obj.table_exists('awsCredentials'): column_names = sqlite_obj.column_names('awsCredentials') #print(column_names) if 'workload' not in column_names: query = 'Alter Table awsCredentials ADD workload TEXT' sqlite_obj.execute_query(query) if 'securitygroupid' not in column_names: query = 'Alter Table awsCredentials ADD securitygroupid TEXT' sqlite_obj.execute_query(query) data = sqlite_obj.read_data('awsCredentials') for values in data: AWSAccessKeyID = values[1] AWSSecretAccessKey = values[2] machineType = values[3] selectedID = values[4] regionName = values[5] noofInfra = values[6] workLoad = values[7] securitygroupid = values[8] selectedAWS = {} selectedAWS['accessKey'] = AWSAccessKeyID selectedAWS['secretAccessKey'] = AWSSecretAccessKey selectedAWS['machineType']=machineType selectedAWS['selectedID'] = selectedID selectedAWS['regionName'] = regionName selectedAWS['noOfInstance']=noofInfra selectedAWS['workLoad'] = workLoad selectedAWS['securitygroupid'] = securitygroupid configSettingsJson['awsCredentials'] = selectedAWS gcpCredentials='' projectID = '' selectedID = '' machineType = '' regionName = '' noOfInstance = 1 workLoad = 'LLM' if sqlite_obj.table_exists('gcpCredentials'): column_names = sqlite_obj.column_names('gcpCredentials') if 'workload' not in column_names: query = 'Alter Table gcpCredentials ADD workload TEXT' sqlite_obj.execute_query(query) data = sqlite_obj.read_data('gcpCredentials') for values in data: gcpCredentials = values[1] projectID = values[2] machineType = values[3] selectedID = values[4] regionName = values[5] noOfInstance = values[6] workLoad = values[7] selectedGCP = {} selectedGCP['gcpCredentials'] = gcpCredentials selectedGCP['selectedID'] = selectedID selectedGCP['projectID'] = projectID selectedGCP['machineType'] = machineType selectedGCP['regionName'] = regionName selectedGCP['noOfInstance'] = noOfInstance selectedAWS['workLoad'] = workLoad configSettingsJson['gcpCredentials'] = selectedGCP #print(configSettingsJson) return(configSettingsJson) except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import os import rsa import boto3 #usnish import pandas as pd import time def add_new_bucket(request): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] if request.POST["aionreferencename"] =='' or request.POST["s3bucketname"] == '' or request.POST["awsaccesskey"] == '' : return 'error' pkeydata='''-----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1AfnrMv fVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw0m4e wQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2PM4Re n0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHyKxlq i/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhxWrs/ lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQAB -----END RSA PUBLIC KEY-----''' pubkey = rsa.PublicKey.load_pkcs1(pkeydata) awssecretaccesskey = rsa.encrypt(request.POST["awssecretaccesskey"].encode(), pubkey) print(awssecretaccesskey) newdata = {} newdata['Name'] = request.POST["aionreferencename"] newdata['AWSAccessKeyID'] = request.POST["awsaccesskey"] newdata['AWSSecretAccessKey'] = str(awssecretaccesskey) newdata['S3BucketName'] = request.POST["s3bucketname"] data.append(newdata) with open(file_path, 'w') as f: json.dump(data, f) f.close() def get_s3_bucket(): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] return data def read_s3_bucket(name,filename,DATA_FILE_PATH): privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqQIBAAKCAQEAxIHM1FphEMMwViUrG0b2Bqf8tOxbhUWlnmjgFt5A25qbY1Af nrMvfVx8+7iCcZ/3TY9Jv2I584SOc1tvsgESCke/t6+o/u2esPBsnDFzV62l3Zvw 0m4ewQeKlFC8EoOblyIXRbZdelSJinzlr9lOiKuid/xPvXHou6jxF1A2W7a89A2P M4Ren0W9YkjB7dRGW1sSrpruHdVJvgHhGZFZ7sCTue0jVOnc5sT3Tq5saLfEDqHy Kxlqi/mcThmcTfisRIYFH5pyt/Ysr4VVP924QlcoqPOyg3RMCS3G0VjstSoVwNhx Wrs/lujDuCnpxvWzNpq21OWmF66GXxwiq+6W0wIDAQABAoIBAC/VbNfQPEqJSO3f VFPqfR73q2MbGdgiMQOTgeDvLxiF1QdizJ+j/I5mgiIAMviXuOpPU+NbdMHbZZWd D15kNlD8UCXVg6yyiOuHStjmjK4uHe8I86E1nxTb0hbyZCWZlbk/WizlDHInu+dT KdIZcq2AIidU6tAxtwA0ingHaRSoXDlSGwOTEigNqmWOKnDTVg0SMscoHOD7siXF DHm1/lkvD3uvcZk6c7fGxC8SgNX2dj6n/Nbuy0Em+bJ0Ya5wq4HFdLJn3EHZYORF ODUDYoGaSxeXqYsGg/KHJBc8J7xW9FdN9fGbHfw1YplrmiGL3daATtArjMmAh0EQ H8Sj7+ECgYkA3oWMCHi+4t8txRPkg1Fwt8dcqYhGtqpAus3NESVurAdi0ZPqEJcQ 4cUbflwQPhX0TOaBlkgzdP8DMdcW/4RalxHsAh5N8ezx/97PQMb3Bht0WsQUBeYJ xLV7T2astjTRWactGCG7dwTaUYRtU3FqL6//3CysmA12B5EMX0udNBOTKwmaYKww AwJ5AOISS7f12Q0fgTEVY0H8Zu5hHXNOA7DN92BUzf99iPx+H+codLet4Ut4Eh0C cFmjA3TC78oirp5mOOQmYxwaF
axlZ7Rs60dlPFrhz0rsHYPK1yUOWRr3RcXWSR13 r+kn+f+8k7nItfGi7shdcQW+adm/EqPfwTHM8QKBiQCIPEMrvKFBzVn8Wt2A+I+G NOyqbuC8XSgcNnvij4RelncN0P1xAsw3LbJTfpIDMPXNTyLvm2zFqIuQLBvMfH/q FfLkqSEXiPXwrb0975K1joGCQKHxqpE4edPxHO+I7nVt6khVifF4QORZHDbC66ET aTHA3ykcPsGQiGGGxoiMpZ9orgxyO3l5Anh92jmU26RNjfBZ5tIu9dhHdID0o8Wi M8c3NX7IcJZGGeCgywDPEFmPrfRHeggZnopaAfuDx/L182pQeJ5MEqlmI72rz8bb JByJa5P+3ZtAtzc2RdqNDIMnM7fYU7z2S279U3nZv0aqkk3j9UDqNaqvsZMq73GZ y8ECgYgoeJDi+YyVtqgzXyDTLv6MNWKna9LQZlbkRLcpg6ELRnb5F/dL/eB/D0Sx QpUFi8ZqBWL+A/TvgrCrTSIrfk71CKv6h1CGAS02dXorYro86KBLbJ0yp1T/WJUj rHrGHczglvoB+5stY/EpquNpyca03GcutgIi9P2IsTIuFdnUgjc7t96WEQwL -----END RSA PRIVATE KEY-----''' try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','s3bucket.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] awssecretaccesskey = '' found = False for x in data: if x['Name'] == name: awssecretaccesskey = x['AWSSecretAccessKey'] aws_access_key_id = x['AWSAccessKeyID'] bucketName = x['S3BucketName'] found = True break if found: privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') awssecretaccesskey = eval(awssecretaccesskey) awssecretaccesskey = rsa.decrypt(awssecretaccesskey, privkey) awssecretaccesskey = awssecretaccesskey.decode('utf-8') #awssecretaccesskey = 'SGcyJavYEQPwTbOg1ikqThT+Op/ZNsk7UkRCpt9g'#rsa.decrypt(awssecretaccesskey, privkey) client_s3 = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=str(awssecretaccesskey)) #print(bucketName,filename) try: response = client_s3.get_object(Bucket=bucketName, Key=filename) df = pd.read_csv(response['Body']) except Exception as e: print(e)#usnish return 'Error', pd.DataFrame() #return 'Error', pd.DataFrame() return 'Success',df return 'Error', pd.DataFrame()<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import json import platform import subprocess def kafka_setting(): file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf')) f = open(file_path, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) from os.path import expanduser home = expanduser("~") if platform.system() == 'Windows': DEPLOY_LOCATION = os.path.join(home,'AppData','Local','HCLT','AION','target','kafka') else: DEPLOY_LOCATION = os.path.join(home,'HCLT','AION','target','kafka') configSettingsJson['kafkalocation'] = DEPLOY_LOCATION return(configSettingsJson) def start_tracking(): from appbe.dataPath import DEPLOY_LOCATION import platform mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','..','Scripts','mlflow.exe')) script_path = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','..','Scripts')) #Updating path for system environment; Bug-13835 os.environ['PATH']= os.environ['PATH']+ ';'+ str(script_path) DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') if platform.system() == 'Windows': subprocess.Popen([sys.executable, mlflowpath,"ui", "--backend-store-uri","file:///"+DEPLOY_LOCATION]) else: subprocess.Popen(['mlflow',"ui","-h","0.0.0.0","--backend-store-uri","file:///"+DEPLOY_LOCATION]) def aion_tracking(): status = 'Success' import requests try: response = requests.get('http://localhost:5000') if response.status_code != 200: status = 'Error' except Exception as inst: print(inst) status = 'Error' return status def aion_service(): try: if platform.system() == 'Windows': nooftasks = getrunningstatus('AION_Service') else: nooftasks = getrunningstatus('run_service') if len(nooftasks): status = 'Running' else: if platform.system() == 'Windows': servicepath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','sbin','AION_Service.bat')) os.system('start cmd /c "'+servicepath+'"') else: servicepath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','bin','run_service.py')) subprocess.Popen([sys.executable,servicepath]) status = 'Started' except Exception as inst: print(inst) status = 'Error' return status def getrunningstatus(name): try: taskdetails = [] if platform.system() == 'Windows': r = ([line.split() for line in subprocess.check_output('tasklist /v /FI "IMAGENAME eq conhost.exe"').decode('UTF-8').splitlines()]) r.append([line.split() for line in subprocess.check_output('tasklist /v /FI "IMAGENAME eq cmd.exe"').decode('UTF-8').splitlines()]) else: r = ([line.split() for line in subprocess.check_output("ps -ef | grep .py",shell=True).decode('UTF-8').splitlines()]) for i in range(len(r)): s = r[i] if any(name in j for j in s): taskdetails.append('Yes') break return (taskdetails) except Exception as inst: print(inst) status = 'Error' return status def getTasks(mlflow,consumer,service): mlflowlist = [] consumerlist=[] servicelist = [] #r = os.popen('tasklist /v').read().strip().split('\\n') try: if platform.system() == 'Windows': r = ([line.split() for line in subprocess.check_output('tasklist /v /FI "IMAGENAME eq conhost.exe"').decode('UTF-8').splitlines()]) r.append([line.split() for line in subprocess.check_output('tasklist /v /FI "IMAGENAME eq cmd.exe"').decode('UTF-8').splitlines()]) else: r = ([line.split() for line in subprocess.check_output("ps -ef | grep .py",shell=True).decode('UTF-8').splitlines()]) except Exception as e: print(e) r = [] #print(r) #print ('# of tasks is %s' % (len(r))) for i in range(len(r)): s = r[i] if any(mlflow in j for j in s): mlflowlist.append('Yes') if any(consumer in j for j in s): consumerlist.append('Yes') if any(service in j for j in s): servicelist.append('Yes') return (mlflowlist,consumerlist,servicelist) def running_setting(): otherApps = {} if platform.system() == 'Windows': mlflowlist,consumerlist,servicelist = getTasks('AION_MLFlow','AION_Consumer','AION_Service') else: mlflowlist,consumerlist,servicelist = getTasks('run_mlflow','AION_Consumer','run_service') if len(mlflowlist): otherApps['modeltracking'] = 'Running' else: otherApps['modeltracking'] = 'Not Running' #nooftasks = getTasks('AION_Consumer') if len(consumerlist): otherApps['consumer'] = 'Running' else: otherApps['consumer'] = 'Not Running' #nooftasks = getTasks('AION_Service') if len(servicelist): otherApps['service'] = 'Running' else: otherApps['service'] = 'Not Running' return(otherApps) #EDA Performance change # ---------------------------- def eda_setting(): configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config','eda.config') sample_size='' try: if(os.path.isfile(configfilepath)): file = open(configfilepath, "r") read = file.read() file.close() for line in read.splitlines(): if 'sample_size=' in line: sample_size = line.split('=',1)[1] except Exception as inst: pass return(sample_size) def get_telemetryoptout(): telemetryoptuout = "No" from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') try: if sqlite_obj.table_exists('settings'): data = sqlite_obj.read_data('settings') for values in data: telemetryoptuout = values[7] else: telemetryoptuout = 'No' except Exception as e: print(e) telemetryoptuout ='No' return telemetryoptuout def get_edafeatures(): No_of_Permissible_Features_EDA = "" from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') try: if sqlite_obj.table_exists('settings'): data = sqlite_obj.read_data('settings') for values in data: No_of_Permissible_Features_EDA = values[3] else: configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config') if (os.path.isfile(configfilepath)): file = open(configfilepath, "r") read = file.read() file.close() for line in read.splitlines(): if 'No_of_Permissible_Features_EDA=' in line: No_of_Permissible_Features_EDA = line.split('=', 1)[1] except Exception as e: print(e) No_of_Permissible_Features_EDA =20 return No_of_Permissible_Features_EDA def get_graviton_data(): graviton_url = "" graviton_userid = "" from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') try: if sqlite_obj.table_exists('settings'): data = sqlite_obj.read_data('settings') for values in data: graviton_url = values[0] graviton_userid = values[1] else: configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'config', 'aion.config') if (os.path.isfile(configfilepath)): file = open(configfilepath, "r") read = file.read() file.close() for line in read.splitlines(): if 'graviton_url=' in line: graviton_url = line.split('=', 1)[1] if 'graviton_userid=' in line: graviton_userid = line.split('=', 1)[1] except Exception as e: print(e) graviton_url = "" graviton_userid = "" return graviton_url,graviton_userid def get_llm_data(): apiKeyIdLLM = "" apiUrlLLM = "" from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'config.db') try: if sqlite_obj.table_exists('openai'): data = sqlite_obj.read_data('openai')[0] param_keys
= ['api_type','api_key','api_base','api_version'] openai_data = dict((x,y) for x,y in zip(param_keys,data)) return openai_data['api_key'],openai_data['api_base'],openai_data['api_type'],openai_data[
write_data(pd.DataFrame.from_dict(newdata),'dataingest') else: raise Exception("Data Genration failed.") except Exception as e: print(e) raise Exception(str(e)) if __name__ == "__main__": generate_json_config('classification') generate_json_config('regression') generate_json_config('timeseriesforecasting') #task 11997<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import time from pathlib import Path import logging from datetime import datetime as dt class logg(): from appbe.dataPath import LOG_LOCATION def __init__(self, LOG_LOCATION): self.log_location = LOG_LOCATION def create_log(self,version): log_file_path = Path(self.log_location) log_file_path.mkdir(parents=True, exist_ok=True) time_stamp = dt.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H-%M-%S') fileName='log_ux_'+time_stamp+'.log' filehandler = logging.FileHandler(log_file_path/fileName, 'a','utf-8') formatter = logging.Formatter('%(asctime)s %(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('log_ux') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('********** AION_'+str(version)+' **********') return log<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import requests import json import os from datetime import datetime import socket import getmac from appbe.sqliteUtility import sqlite_db import pandas as pd from appbe.dataPath import DATA_DIR def TelemetryCreateSyncState(state): try: newdata = {} file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') now = datetime.now() SyncingTime = int(datetime.timestamp(now)) newdata.update({'ID':['1'],'state':[state],'syncingTime':[SyncingTime]}) sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'syncState') except Exception as e: print(e) pass def TelemetryUpdateSyncState(state): try: newdata = {} file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') now = datetime.now() SyncingTime = int(datetime.timestamp(now)) updated_data = '"state"="'+state+'","syncingTime"="'+str(SyncingTime)+'"' sqlite_obj.update_data(updated_data,'ID="1"','syncState') except Exception as e: print(e) pass def checkTelemtry(): import subprocess import sys scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','aion.py')) if os.path.exists(scriptPath): outputStr = subprocess.Popen([sys.executable,scriptPath,'-m','pushtelemetry']) def SyncTelemetry(): try: newdata = {} file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') if sqlite_obj.table_exists('syncState'): data = sqlite_obj.read_data('syncState')[0] param_keys = ['ID','state','syncingTime'] sync_data = dict((x,y) for x,y in zip(param_keys,data)) #print(sync_data['state'],sync_data['syncingTime']) if sync_data['state'].lower() != 'syncing': sync_time = sync_data['syncingTime'] now = datetime.now() currTime = datetime.timestamp(now) diffTime = int(float(currTime)) - int(float(sync_time)) #print(diffTime) if int(diffTime) > 86400: TelemetryUpdateSyncState('Syncing') SendTelemetryUpdate(sync_time) TelemetryUpdateSyncState('Done') else: TelemetryCreateSyncState('Initialize') except Exception as e: print(e) pass def UseCaseCreated(Usecase): try: file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') newdata = {} now = datetime.now() ID = datetime.timestamp(now) record_date = int(datetime.timestamp(now)) computername = socket.getfqdn() macaddress = getmac.get_mac_address() try: user = os.getlogin() except: user = 'NA' newdata.update({'ID':[str(int(ID))],'RecordDate': [record_date],'Usecase': [Usecase],'Operation':['Created'],'User':[str(user)],'HostName' :[computername],'MACAddress':[macaddress],'ProblemType':[''],'Algorithms':[''],'EDA':['No'],'Prediction':['No'],'MLaC':['No'],'Drift':['No'],'TrustedAI':['No']}) sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'logs') except Exception as e: print(e) pass def UpdateTelemetry(Usecase,operation,value): try: file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') data = sqlite_obj.read_data('logs','Usecase="'+Usecase+'"') #print(data) if sqlite_obj.table_exists('logs'): updated_data = operation+'="'+value+'"' now = datetime.now() ID = datetime.timestamp(now) record_date = int(datetime.timestamp(now)) updated_data += ',"RecordDate"="'+str(record_date)+'"' sqlite_obj.update_data(updated_data,'Usecase="'+Usecase+'"','logs') except Exception as e: print(e) pass def SendTelemetryUpdate(sync_time): file_path = os.path.join(DATA_DIR, 'sqlite') sqlite_obj = sqlite_db(file_path, 'telemetry.db') if sqlite_obj.table_exists('logs'): ddata = sqlite_obj.read_data("logs","RecordDate >= '"+str(sync_time)+"'") #print(ddata) keys = sqlite_obj.column_names('logs') for data in ddata: now = datetime.now() ID = datetime.timestamp(now) item = {} item['ID'] = str(int(ID)) item['RecordID'] = data[ keys.index('ID')] item['RecordDate'] = data[ keys.index('RecordDate')] item['Usecase'] = data[ keys.index('Usecase')] item['Operation'] = data[ keys.index('Operation')] item['User'] = data[ keys.index('User')] item['HostName'] = data[ keys.index('HostName')] item['MACAddress'] = data[ keys.index('MACAddress')] item['Algorithms'] = data[ keys.index('Algorithms')] item['ProblemType'] = data[ keys.index('ProblemType')] item['EDA'] = data[ keys.index('EDA')] item['Prediction'] = data[ keys.index('Prediction')] item['MLaC'] = data[ keys.index('MLaC')] item['Drift'] = data[ keys.index('Drift')] item['TrustedAI'] = data[ keys.index('TrustedAI')] url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' record = {} record['TableName'] = 'AION_LOGS' record['Item'] = item record = json.dumps(record) #print(record) try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) except Exception as e: print(e) def telemetry_data(operation,Usecase,data): now = datetime.now() ID = datetime.timestamp(now) record_date = now.strftime("%y-%m-%d %H:%M:%S") computername = socket.getfqdn() macaddress = getmac.get_mac_address() try: user = os.getlogin() except: user = 'NA' item = {} item['ID'] = str(int(ID)) item['record_date'] = record_date item['UseCase'] = Usecase item['operation'] = operation item['remarks'] = data item['user'] = str(user) item['hostname'] = computername item['macaddress'] = macaddress url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' record = {} record['TableName'] = 'AION_OPERATION' record['Item'] = item record = json.dumps(record) try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) check_telemetry_file() except Exception as inst: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') f=open(filename, "a+") f.write(record+'\\n') f.close() def check_telemetry_file(): file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') if(os.path.isfile(file_path)): f = open(file_path, 'r') url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' file_content = f.read() f.close() matched_lines = file_content.split('\\n') write_lines = [] for record in matched_lines: try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) except: write_lines.append(record) f = open(file_path, "a") f.seek(0) f.truncate() for record in write_lines: f.write(record+'\\n') f.close() else: return True<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import time import subprocess import sys import json import pandas as pd def getDataSetRecordsCount(datalocation): try: records = 0 if os.path.isfile(datalocation): for chunk in pd.read_csv(datalocation, chunksize=20000): records = records+len(chunk) if records == 0: records = 'NA' except Exception as e: print(e) records = 'NA' return records def get_train_model_details(deploy_location,request): updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() usename = request.session['usecaseid'].replace(" ", "_") outputfile = os.path.join(deploy_location,usename,str(request.session['ModelVersion']),'etc','output.json') if os.path.isfile(outputfile): f1 = open(outputfile, "r+", encoding="utf-8") outputStr = f1.read() f1.close() resultJsonObj = json.loads(outputStr) trainingStatus = resultJsonObj['status'] if trainingStatus.lower() == 'success': details = resultJsonObj['data'] modelType = details['ModelType'] bestModel = details['BestModel'] return trainingStatus,modelType,bestModel else: return trainingStatus,'NA','NA' else: return 'Not Trained','NA','NA'<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import os import rsa import boto3 #usnish import pandas as pd import time def add_new_GCSBucket(request): try: file_path = os.path.abspath(
os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf')) with open(file_path, 'r') as f: data = json.load(f) f.close() if data == '': data = [] except: data = [] print(request.POST["aionreferencename"]) print(request.POST["serviceaccountkey"]) print(request.POST["bucketname"]) if request.POST["aionreferencename"] =='' or request.POST["serviceaccountkey"] == '' or request.POST["bucketname"] == '' : return 'error' newdata = {} newdata['Name'] = request.POST["aionreferencename"] newdata['GCSServiceAccountKey'] = request.POST["serviceaccountkey"] newdata['GCSbucketname'] = request.POST["bucketname"] data.append(newdata) with open(file_path, 'w') as f: json.dump(data, f) f.close() return 'success' def get_gcs_bucket(): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] return data def read_gcs_bucket(name,filename,DATA_FILE_PATH): try: file_path = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..','config','gcsbuckets.conf')) with open(file_path, 'r') as f: data = json.load(f) except: data = [] found = False print(data) for x in data: if x['Name'] == name: GCSServiceAccountKey = x['GCSServiceAccountKey'] GCSbucketname = x['GCSbucketname'] found = True break print(found) print(name) try: if found: import io from google.cloud import storage storage_client = storage.Client.from_service_account_json(GCSServiceAccountKey) print(GCSServiceAccountKey) print(GCSbucketname) bucket = storage_client.get_bucket(GCSbucketname) blob = bucket.blob(filename) data = blob.download_as_string() df = pd.read_csv(io.BytesIO(data), encoding = 'utf-8', sep = ',',encoding_errors= 'replace') return 'Success',df except Exception as e: print(e) return 'Error', pd.DataFrame()<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import os import pandas as pd import numpy as np import subprocess import sys import re import plotly.graph_objects as go import plotly.figure_factory as ff def global_explain(request): try: selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() != 'classification' and problemType.lower() != 'regression': return 'Problem Type Error','Explainable AI only available for classification and regression problem','NA','NA','NA','NA',0,0,'NA','NA','NA','NA',0,'NA','NA',0,'NA','NA','NA','NA','NA','NA' displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeatures = inputFeatures.split(',') if targetFeature in inputFeatures: inputFeatures.remove(targetFeature) dataFilePath = str(configSettingsJson['basic']['dataLocation']) from utils.file_ops import read_df_compressed status,df = read_df_compressed(config['postprocessedData'],encoding='utf8',nrows=10) #print(df) df.rename(columns=lambda x: x.strip(), inplace=True) df = df[inputFeatures] #print(df) singleInstanceData = df.loc[5, inputFeatures] inputFieldsDict = singleInstanceData.to_dict() inputFields = [] inputFields.append(inputFieldsDict) if 'nrows' in config: nrows = config['nrows'] else: nrows = 'Not Available' if 'ncols' in config: ncols = config['ncols'] else: ncols = 'Not Available' if 'targetFeature' in config: targetFeature = config['targetFeature'] else: targetFeature = '' labelMaps = config['labelMaps'] modelfeatures = config['modelFeatures'] mfcount = len(modelfeatures) df_proprocessed = pd.read_csv(dataFilePath) if 'targetFeature' != '': target_classes = df_proprocessed[targetFeature].unique() numberofclasses = len(target_classes) else: target_classes = [] numberofclasses = 'Not Available' dataPoints = df_proprocessed.shape[0] df_proprocessed = df_proprocessed.head(5) df_proprocessed = df_proprocessed.to_json(orient="records") df_proprocessed = json.loads(df_proprocessed) expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') outputStr = subprocess.check_output([sys.executable,expainableAIPath,'global']) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() ale_json = json.loads(str(outputStr)) ale_json = ale_json['data'] ale_view = ale_json['data'] sentences = ale_json['sentences'] scoreMessage = '' feature_importance = ale_json['feature_importance'] dfimp = pd.DataFrame.from_dict(feature_importance) dfimp = dfimp.sort_values(by=['values'],ascending=False).reset_index() yaxis_data = dfimp['values'].tolist() xaxis_data = dfimp['labels'].tolist() cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data,y=yaxis_data,name='Feature Importance')) cfig.update_layout(barmode='stack',xaxis_title='Features') bargraph = cfig.to_html(full_html=False, default_height=450,default_width=1000) dftoprecords = dfimp.head(2) topTwoFeatures = dfimp['labels'].tolist() topFeaturesMsg = [] for i in range(0,len(dfimp)): value = round(dfimp.loc[i, "values"],2)*100 value = round(value,2) tvalue = str(dfimp.loc[i, "labels"])+' contributing to '+ str(value)+'%' topFeaturesMsg.append(tvalue) most_influencedfeature = ale_json['most_influencedfeature'] interceppoint = ale_json['interceptionpoint'] anchorjson = ale_json['anchorjson'] return 'Success','Success',ale_view,sentences,bargraph,inputFields,nrows,ncols,targetFeature,dataPoints,target_classes,df_proprocessed,numberofclasses,modelfeatures,problemType,mfcount,topTwoFeatures,topFeaturesMsg,most_influencedfeature,interceppoint,anchorjson,labelMaps except Exception as Inst: print(Inst) return 'Error','Exception: '+str(Inst),'NA','NA','NA','NA',0,0,'NA','NA','NA','NA',0,'NA','NA',0,'NA','NA','NA','NA','NA','NA'<s><s> import json import os import sys import re import numpy as np def check_unsupported_col(config): #bugId14444 unsupported_chars = '[]<>#{}@&' try: featureList = config['basic']['featureList'] return any([x in y for x in unsupported_chars for y in featureList]) except Exception as e: print(str(e)) return False def check_granularity(configSettingsJson,datapath=None): try: from AION.appbe.utils import get_true_option import pandas as pd from pathlib import Path seconds_per_unit = {'second':1,'minute':60,'hour':60 * 60,'day':24 * 60 * 60,'week':7 * 24 * 60 * 60,'month':30 * 24 * 60 * 60,'year':365 * 24 * 60 * 60} if not get_true_option(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['type']): return '' if isinstance( configSettingsJson['basic']['dateTimeFeature'], list): datetime_feature = configSettingsJson['basic']['dateTimeFeature'][0] else: datetime_feature = configSettingsJson['basic']['dateTimeFeature'] if get_true_option(configSettingsJson['basic']['analysisType']) == 'timeSeriesForecasting' and datetime_feature: if not datapath: datapath = configSettingsJson['basic']['dataLocation'] if Path( datapath).exists(): df = pd.read_csv(datapath, nrows=2) datetime = pd.to_datetime(df[ datetime_feature]) if len(datetime) > 1: source_time_delta = (datetime[1] - datetime[0]).total_seconds() granularity_unit = get_true_option(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['unit']) size = int(configSettingsJson['basic']['preprocessing']['timeSeriesForecasting']['aggregation']['granularity']['size']) target_time_delta = size * seconds_per_unit[granularity_unit] amplify = int(source_time_delta / target_time_delta) if amplify > 20: return f'Current Granularity setting will amplify the data approx {amplify} times. Depending on your system configuration, this may cause Memory error' return '' except Exception as e: return '' def getStatusCount(matched_lines,total_steps): stepsdone = 0 leaner = True #print(matched_lines) for line in matched_lines: if 'AION feature transformation completed' in line: stepsdone = stepsdone + 1 elif 'AION feature engineering completed' in line: stepsdone = stepsdone + 1 elif 'AION Association Rule completed' in line: stepsdone = stepsdone + 1 elif 'AION Image Classification completed' in line: stepsdone = stepsdone + 1 elif 'AION Association Rule completed' in line: stepsdone = stepsdone + 1 elif 'AION State Transition completed' in line: stepsdone = stepsdone + 1 elif 'AION SurvivalAnalysis completed' in line: stepsdone = stepsdone + 1 elif 'AION Recommender completed' in line: stepsdone = stepsdone + 1 elif 'AION Gluon Stop' in line: stepsdone = stepsdone + 1 elif 'AION Evaluation Stop' in line: stepsdone = stepsdone + 1 elif 'AION Object Detection completed' in line: stepsdone = stepsdone + 1 elif ('training completed' in line) and leaner: stepsdone = stepsdone + 1 leaner = False elif 'Prediction Service completed' in line: stepsdone = stepsdone + 1 elif 'AION TimeSeries Forecasting started' in line: #task 11997 stepsdone = stepsdone + 1 elif 'Distributed Learning Completed' in line: stepsdone = stepsdone + 4 elif 'AION Batch Deployment completed' in line: stepsdone = stepsdone + 2 match_lines = [] for line in matched_lines: count = len(line)-len(line.lstrip()) uline = line.split('...') uline = uline[1] if count == 0: uline = '|... <span style="border: 1px solid black; line-height:2; padding: 2px">'+uline+'</span>' elif count == 8 or count == 1: uline = ' |... <span style="border: 1px dashed darkblue; line-height:2; padding: 2px">'+uline+'</span>' elif count == 16 or count == 2: uline = ' |... <span style="border: 1px dotted darkgray; line-height:2; padding: 2px">'+uline+'</span>' elif count == 32 or count == 3: uline = ' |... <span style="border: 1px dotted lightgray ; line-height:2; padding: 2px">'+uline+'</span>' else: uline = line match_lines.append(uline) stepline = '<b>Stage: ' + str(stepsdone) + '/' + str(total_steps) + ' Complete</b>' match_lines.insert(0, stepline) #print(match_lines) output = "\\n".join([status_text for status_text in match_lines]) output = "<pre>{}</pre>".format(output) #print(output) return(output) def calculate_total_interations(config): try: noOfIterations = 0 problemtypes = config['basic']['analysisType'] problem_type = "" for key in problemtypes: if config['basic']['analysisType'][key] == 'True': problem_type = key break if problem_type.lower
() in ['classification','regression']: algorithms = config['basic']['algorithms'][problem_type] for key in algorithms: if config['basic']['algorithms'][problem_type][key] == 'True': if key not in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Deep Q Network','Dueling Deep Q Network']: if problem_type.lower() == 'classification': configparam = config['advance']['mllearner_config']['modelParams']['classifierModelParams'][key] else: configparam = config['advance']['mllearner_config']['modelParams']['regressorModelParams'][key] param = paramDefine(configparam,config['advance']['mllearner_config']['optimizationMethod']) interationsum = 1 for x in param.values(): interationsum = interationsum*len(x) if config['advance']['mllearner_config']['optimizationMethod'].lower() == 'random': if interationsum > int(config['advance']['mllearner_config']['optimizationHyperParameter']['iterations']): interationsum = int(config['advance']['mllearner_config']['optimizationHyperParameter']['iterations']) noOfIterations = noOfIterations+interationsum else: if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']: if problem_type.lower() == 'classification': configparam = config['advance']['dllearner_config']['modelParams']['classifierModelParams'][key] else: configparam = config['advance']['dllearner_config']['modelParams']['regressorModelParams'][key] interationsum = 1 for j in list(configparam.keys()): if isinstance(configparam[j],(list,dict,tuple,str)): x = configparam[j].split(',') interationsum = interationsum*len(x) noOfIterations = noOfIterations+interationsum elif key in ['Deep Q Network','Dueling Deep Q Network']: if problem_type.lower() == 'classification': configparam = config['advance']['rllearner_config']['modelParams']['classifierModelParams'][key] interationsum = 1 for j in list(configparam.keys()): if isinstance(configparam[j],(list,dict,tuple,str)): x = configparam[j].split(',') interationsum = interationsum*len(x) noOfIterations = noOfIterations+interationsum elif problem_type.lower() in ['llmfinetuning']: algorithms = config['basic']['algorithms'][problem_type] for key in algorithms: if config['basic']['algorithms'][problem_type][key] == 'True': noOfIterations = configparam = config['advance']['llmFineTuning']['modelParams'][key]['epochs'] break else: noOfIterations= 'NA' except Exception as e: print(e) noOfIterations = 'NA' pass return(noOfIterations) def paramDefine(paramSpace, method): paramDict = {} for j in list(paramSpace.keys()): inp = paramSpace[j] try: isLog = False isLin = False isRan = False isList = False isString = False try: # check if functions are given as input and reassign paramspace v = paramSpace[j] if 'logspace' in paramSpace[j]: paramSpace[j] = v[v.find("(") + 1:v.find(")")].replace(" ", "") isLog = True elif 'linspace' in paramSpace[j]: paramSpace[j] = v[v.find("(") + 1:v.find(")")].replace(" ", "") isLin = True elif 'range' in paramSpace[j]: paramSpace[j] = v[v.find("(") + 1:v.find(")")].replace(" ", "") isRan = True elif 'list' in paramSpace[j]: paramSpace[j] = v[v.find("(") + 1:v.find(")")].replace(" ", "") isList = True elif '[' and ']' in paramSpace[j]: paramSpace[j] = v.split('[')[1].split(']')[0].replace(" ", "") isList = True x = paramSpace[j].split(',') except: x = paramSpace[j] str_arg = paramSpace[j] # check if arguments are string try: test = eval(x[0]) except: isString = True if isString: paramDict.update({j: hp.choice(j, x)} if method == 'bayesopt' else {j: x}) else: res = eval(str_arg) if isLin: y = eval('np.linspace' + str(res)) paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y}) elif isLog: y = eval('np.logspace' + str(res)) paramDict.update( {j: hp.uniform(j, 10 ** eval(x[0]), 10 ** eval(x[1]))} if method == 'bayesopt' else {j: y}) elif isRan: y = eval('np.arange' + str(res)) paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y}) # check datatype of argument elif isinstance(eval(x[0]), bool): y = list(map(lambda i: eval(i), x)) paramDict.update({j: hp.choice(j, eval(str(y)))} if method == 'bayesopt' else {j: y}) elif isinstance(eval(x[0]), float): res = eval(str_arg) if len(str_arg.split(',')) == 3 and not isList: y = eval('np.linspace' + str(res)) #print(y) paramDict.update({j: hp.uniform(j, eval(x[0]), eval(x[1]))} if method == 'bayesopt' else {j: y}) else: y = list(res) if isinstance(res, tuple) else [res] paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y}) else: res = eval(str_arg) if len(str_arg.split(',')) == 3 and not isList: y = eval('np.linspace' +str(res)) if eval(x[2]) >= eval(x[1]) else eval('np.arange'+str(res)) else: y = list(res) if isinstance(res, tuple) else [res] paramDict.update({j: hp.choice(j, y)} if method == 'bayesopt' else {j: y}) except Exception as inst: print(inst) return paramDict def calculate_total_activities(config): req_step = 0 problemtypes = config['basic']['analysisType'] problem_type = "" for key in problemtypes: if config['basic']['analysisType'][key] == 'True': problem_type = key break Modelproblem = problem_type if Modelproblem.lower() in ['classification','regression','clustering','anomalydetection','topicmodelling']: req_step = req_step+4 if Modelproblem.lower() in ['timeseriesforecasting','imageclassification','objectdetection','multilabelprediction','similarityidentification','contextualsearch']: #task 11997 req_step = req_step+2 if Modelproblem.lower() in ['survivalanalysis']: req_step = req_step+3 if Modelproblem.lower() in ['recommendersystem']: if config['basic']['algorithms']['recommenderSystem']['ItemRating'] == 'True': req_step = req_step+3 if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'] == 'True': req_step = req_step+1 if Modelproblem.lower() in ['statetransition']: req_step = req_step+1 return (req_step) def getModelStatus(Existusecases,modelid): model = Existusecases.objects.get(id=modelid) return(model.Status) def changeModelStatus(Existusecases,modelid,status,problemType,deployPath): model = Existusecases.objects.get(id=modelid) model.Status = status model.ProblemType = problemType model.DeployPath = deployPath model.save() def checkversionrunningstatus(modelid,usecasedetails,Existusecases): modelx = Existusecases.objects.get(id=modelid) ConfigPath = str(modelx.ConfigPath) status = 'Running' try: if os.path.exists(ConfigPath): with open(ConfigPath, 'r') as json_file: data = json.load(json_file) json_file.close() deployPath = str(data['basic']['deployLocation']) modelName = data['basic']['modelName'] modelVersion = data['basic']['modelVersion'] modelName = modelName.replace(" ", "_") logfile = os.path.join(deployPath,modelName,str(modelVersion),'log','model_training_logs.log') print(logfile) if os.path.exists(logfile): with open(logfile) as f: contents = f.read() f.close() contents = re.search(r'aion_learner_status:(.*)', str(contents), re.IGNORECASE).group(1) contents = contents.strip() print(contents) if contents != '': resultJsonObj = json.loads(contents) odataFile = str(modelx.TrainOuputLocation) with open(odataFile, 'w') as json_file: json.dump(resultJsonObj, json_file) json_file.close() modelx.Status = resultJsonObj['status'] status = modelx.Status if resultJsonObj['status'] == 'SUCCESS': modelx.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection']: modelx.ProblemType = 'unsupervised' else: modelx.ProblemType = 'supervised' modelx.save() except Exception as e: pass return status def updateLLM_Model_training_logs(deployPath,modelName,modelVersion,model,configPath): from appbe.prediction import get_instance hypervisor,instanceid,region,image = get_instance(modelName+'_'+str(modelVersion)) from llm.llm_tuning import llm_logs cloudconfig = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config','compute_conf.json')) llm_logs(configPath,cloudconfig,instanceid,hypervisor,model) def checkModelUnderTraining(request,usecasedetails,Existusecases): try: models = Existusecases.objects.filter(Status='Running') for model in models: ConfigPath = str(model.ConfigPath) try: if os.path.exists(ConfigPath): with open(ConfigPath, 'r') as json_file: data = json.load(json_file) json_file.close() deployPath = str(data['basic']['deployLocation']) modelName = data['basic']['modelName'] modelVersion = data['basic']['modelVersion'] modelName = modelName.replace(" ", "_") if data['basic']['analysisType']['llmFineTuning'] == 'True': mlmodels ='' algorihtms = data['basic']['algorithms']['llmFineTuning'] for k in algorihtms.keys(): if data['basic']['algorithms']['llmFineTuning'][k] == 'True': if mlmodels != '': mlmodels += ', ' mlmodels += k updateLLM_Model_training_logs(deployPath,modelName,modelVersion,mlmodels,ConfigPath) logfile = os.path.join(deployPath,modelName,str(modelVersion),'log','model_training_logs.log') if os.path.exists(logfile): with open(logfile,encoding="utf-8") as f: contents = f.read() f.close() contents = re.search(r'aion_learner_status:(.*)', str(contents), re.IGNORECASE).group(1) contents = contents.strip() if contents != '': resultJsonObj = json.loads(contents) odataFile = str(model.TrainOuputLocation) with open(odataFile, 'w') as json_file: json.dump(resultJsonObj, json_file) json_file.close() modelx = Existusecases.objects.get(id=model.id) modelx.Status = resultJsonObj['status'] if resultJsonObj['status'] == 'SUCCESS': modelx.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection']: modelx.ProblemType = 'unsupervised' else: modelx.ProblemType = 'supervised' modelx.save() except Exception as e: print(ConfigPath) print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb
.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) pass except Exception as e: print(e) <s> from typing import Union import numpy as np import pandas as pd from sklearn.neighbors import BallTree def hopkins(data_frame: Union[np.ndarray, pd.DataFrame], sampling_size: int) -> float: if type(data_frame) == np.ndarray: data_frame = pd.DataFrame(data_frame) data_frame_sample = sample_observation_from_dataset(data_frame, sampling_size) sample_distances_to_nearest_neighbours = get_distance_sample_to_nearest_neighbours( data_frame, data_frame_sample ) uniformly_selected_observations_df = simulate_df_with_same_variation( data_frame, sampling_size ) df_distances_to_nearest_neighbours = get_nearest_sample( data_frame, uniformly_selected_observations_df ) x = sum(sample_distances_to_nearest_neighbours) y = sum(df_distances_to_nearest_neighbours) if x + y == 0: raise Exception("The denominator of the hopkins statistics is null") return x / (x + y)[0] def get_nearest_sample(df: pd.DataFrame, uniformly_selected_observations: pd.DataFrame): tree = BallTree(df, leaf_size=2) dist, _ = tree.query(uniformly_selected_observations, k=1) uniformly_df_distances_to_nearest_neighbours = dist return uniformly_df_distances_to_nearest_neighbours def simulate_df_with_same_variation( df: pd.DataFrame, sampling_size: int ) -> pd.DataFrame: max_data_frame = df.max() min_data_frame = df.min() uniformly_selected_values_0 = np.random.uniform( min_data_frame[0], max_data_frame[0], sampling_size ) uniformly_selected_values_1 = np.random.uniform( min_data_frame[1], max_data_frame[1], sampling_size ) uniformly_selected_observations = np.column_stack( (uniformly_selected_values_0, uniformly_selected_values_1) ) if len(max_data_frame) >= 2: for i in range(2, len(max_data_frame)): uniformly_selected_values_i = np.random.uniform( min_data_frame[i], max_data_frame[i], sampling_size ) to_stack = (uniformly_selected_observations, uniformly_selected_values_i) uniformly_selected_observations = np.column_stack(to_stack) uniformly_selected_observations_df = pd.DataFrame(uniformly_selected_observations) return uniformly_selected_observations_df def get_distance_sample_to_nearest_neighbours(df: pd.DataFrame, data_frame_sample): tree = BallTree(df, leaf_size=2) dist, _ = tree.query(data_frame_sample, k=2) data_frame_sample_distances_to_nearest_neighbours = dist[:, 1] return data_frame_sample_distances_to_nearest_neighbours def sample_observation_from_dataset(df, sampling_size: int): if sampling_size > df.shape[0]: raise Exception("The number of sample of sample is bigger than the shape of D") data_frame_sample = df.sample(n=sampling_size) return data_frame_sample <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' # def exploratorory_help(): # # # # return (data_overview_tip, feature_importance_tip, correlation_analysis_tip, exploratory_analysis_tip, data_deep_drive_tip, drift_tip) drift_tip = 'A data distribution represents a list of all of the possible values of each of the variables as provided in the data. Based on how the data values are distributed, it can be mapped to some well-known distribution curves so that the nature of the distribution can be shown.' data_overview_tip = 'Data Overview give users a quick understanding of the distribution of values across the features and provides summary statistics of the features. It helps to uncover several uncommon and common issues such as unexpected feature values, missing feature values and data skew.' timeseries_analysis_tip = "Time Series Analysis provides information about the stationarity and seasonality of each of the features in the ingested data." feature_importance_tip = 'Feature Importance provides a features and grades the features on a scale of relative importance' correlation_analysis_tip = 'Correlation Analysis provides the strength of relationships among various features. Values range from 0 (least correlation) to 1 (highest correlation). A high correlation means that two or more variables have a strong relationship with each other, while a weak correlation means that the variables are hardly related.' exploratory_analysis_tip = 'This provides an unsupervised clustering view of the data and provides insights on how the data is distributed. It helps profile the attributes of different clusters and gives insight into underlying patterns of different clusters and find similarities in the data points.' data_deep_drive_tip = 'Data Deep Dive provides an interactive interface for exploring the relationship between data points across all the different features of a dataset. Each individual item in the visualization represents a data point. Data can be grouped and binned in multiple dimensions based on their feature values.' pair_graph_tip = 'It is used to present the correlations between two selected features.' fair_metrics_tip = 'It provides interface to detect the bias in data associated with a sensitive or protected attribute and used for training.' hopkins_tip =['Since the value is in between (0.0, 0.3), it indicates that the data has a high tendency to cluster.','Since the value is around 0.5, it indicates that the data distriution is random.','Since the value is in between (0.7, 0.99), it indicates that the data is regularly spaced.'] basic_help={'RowFiltering':'You can easily filter rows based on whether the column match a condition or not'} advance_help = {'NumericFillMethod':'This is used to handle the null values present in the numerical dataset.','NumericFillMethod_Median':'Replace with middle value of the data set. Efficient and not affected by outliers.','NumericFillMethod_Mean':'Replace with average value of the columns. Affected by outliers.','NumericFillMethod_Max':'Replace all nulls with maximum value in the column.','NumericFillMethod_KNN':'This implements KNN algorithm to replace the null','NumericFillMethod_Zero':'Replace the null with 0 value','NumericFillMethod_Drop':'To remove all the null values in the dataset','NumericFillMethod_Min':'Replace all null with minimum value present in the column','CategoricalFillMethod':'This is used to handle the null values present in the categorical dataset.','CategoricalFillMethod_Mode':'Replace with most common values in the dataset. Suggested for categorical columns.','CategoricalFillMethod_Zero':'Replace the null with 0 value.','CategoricalFillMethod_KNN':'This implements KNN algorithm to replace the null','CategoricalFillMethod_Drop':'To remove all the null values in the dataset.','OutlierDetection':'An unusual data point that differs significantly from other data points.','OutlierDetection_IQR':'Identifying the outliers with interquatile range by dividing the data into quartiles.','OutlierDetection_Zscore':'If the z score of a data point is more than 3, it indicates that the data point is an outlier.','OutlierDetection_Isolation':'Randomly sub-sampled data is processed in a tree structure based on randomly selected features.','MissValueRatio':'Permitted Missing Value Ratio i.e., Number of missing values by total number of obervation. If the number of missing value in a columns is more than ratio than the columns will be assumped as empty column','NumericFeatureRatio':'In case column is mix of number and text value. If the number of numeric columns to number of rows ratio is greator than the value mentioned it is assumed as numeric columns and remaining rows which have text values will be removed','NormalStandard':'Standardize features by removing the mean and scaling to unit variance.','NormalMinMax':'This scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.','NormalLogNormal':'When a feature does not follow a linear distributio, that helps minimize skewness and map any distribution to a normal one as close as possible.','RemoveNoise':'Used to remove the noise present in the text data. Noise like special characters, unicode, emojis, hyperlinks,hashtags, html parameters etc.','ExpandContractions':'Contractions are words or combinations of words that are shortened by dropping letters and replacing them by an apostrophe.','Normalize':'Normalization is the process of converting a token into its base form. In the normalization process, the inflectional form of a word is removed so that the base form can be obtained.','Lemmatization':'It is a more effective option than stemming because it converts the word into its root word, rather than just stripping the suffices.','Stemming':'It refers to the removal of suffices, like ing,ly,s etc. by a simple rule-based approach.','NGrams':'The combination of multiple words used together.','PosTags':'The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, or simply POS-tagging.','FeatureSelection':'Feature selection is for filtering irrelevant or redundant features from your dataset. The key difference between feature selection and extraction is that feature selection keeps a subset of the original features while feature extraction creates brand new ones.','FeatureEngineering':'Feature extraction is for creating a new, smaller set of features that stills captures most of the useful information. Again, feature selection keeps a subset of the original features while feature extraction creates new ones.','PCA':'Principle Component Analysis (PCA) is a common feature extraction method in data science. Technically, PCA finds the eigenvectors of a covariance matrix with the highest eigenvalues and then uses those to project the data into a new subspace of equal or less dimensions.','StatisticalBased':'Features are selected on the basis of statistics measures. This method does not depend on the learning algorithm and chooses the features as a pre-processing step. The filter method filters out the irrelevant feature and redundant columns from the model by using different metrics through ranking.','ModelBased':'Different tree-based methods of feature selection help us with feature importance to provide a way of selecting features. Here, feature importance specifies which feature has more importance in model building or has a great impact on the target variable.','CorrelationThreshold':'Correlation Threshold for Statistican Based Feature Selection. Correlation relation analysis done on input features vs target feature and features having correlation value grather then threshold picks for training','PValue':'P Value again for Statistical Based Feature Selection','Variance':'For Feature Selection, features should have higher variance from threshold.','Normalization':'The goal of normalization is to change the values of numeric columns in the dataset to use a common scale , without distoring differences in the ranges of values or losing information.','SVD':'The singular value decomposition (SVD) provides another way to factorize a matrix, into singular vectors and singular values. The SVD allows us to discover some of the same kind of information as the eigendecomposition.','ReplaceAcro':'Replace any abrivations into its full form Eg:{"DM":"DirectMessage"}', 'Factoranalysis':' This algorithm creates factors from the observed variables to represent the common variance i.e. variance due to correlation among the observed variables.','ICA':'ICA stands for Independent Components Analysis and it is a linear dimension reduction method, which transforms the dataset into columns of independent components.','optimizationmethod':'Optimization is the process where we train the model iteratively that results in a maximum and minimum function evaluation.','Random':'Random search is a method in which random combinations of hyperparameters are selected and used to train a model. The best random hyperparameter combinations are used. Random search bears some similarity to grid search.','Grid':'Grid search is essentially an optimization algorithm which lets to select the best parameters for your optimization problemfrom a list of parameter options that provided, hence automating the trial-and-error method.','Bays':'Bayesian optimisation in turn takes into account past evaluations when choosing the hyperparameter set to evaluate next. This approach typically requires less iterations to get to the optimal set of hyperparameter values.','Stopwords':'Stop words are commonly eliminated which are commonly used that they carry very little useful information. They are passed in a list ["Stopword1","Stopword2"]','Tokenization':'It is essentially splitting a phrase, sentence, paragraph, or an entire text document into smaller units, such as individual words or terms. Choose the library for tokenization','Lemma':'In lemmatization, the transformation uses a dictionary to map different variants of a word back to its root format.','Stopwords1':'Stop words are commonly eliminated which are commonly used that they carry very little useful information.Select from the below library to remove them', 'Genetic':'The genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm selects individuals at random from the current population to be parents and uses them to produce the children for the next generation. Over successive generations, the population evolves toward an optimal solution.','CV':'Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The procedure has a single parameter called k that refers to the number of groups that a given data sample is to be split into.','Ensemble':'Ensemble learning is a general meta approach to machine learning that seeks better predictive performance by combining the predictions from multiple models.','EnsembleStatus':'Enable or disable according to the preference','TargetEncoding':'Target encoding is the process of replacing a categorical value with the mean of the target variable','OneHotEndoding':'Encode categorical features as a one-hot numeric array.','LabelEncoding':'Encode target labels with value between 0 and n_classes-1.','SMCStrategy':'A most_frequent model - The default. In regression the prediction is equal to the mean value, in classification the prediction is equal to the most common value.\\n A uniform model - In regression, selects a random value from the y range. In classification, selects one of the labels by random.\\n A stratified model - Draws the prediction from the distribution of the labels in the train.\\n A tree model - Trains a simple decision tree with a given depth. The depth can be customized using the max_depth parameter.','SMCGain':'The gain is calculated as:\\ngain = (model score - simple score)/(perfect score - simple score)','SMCTreeDepth':'the max depth of the tree (used only if simple model type is tree).','MIcondition':'Measure model average inference time (in seconds) per sample'}<s> from langkit import textstat from whylogs.experimental.core.udf_schema import udf_schema import pandas as pd import whylogs as why from langkit import light_metrics from whylogs.experimental.core.udf_schema import udf_schema from whylogs.experimental.core.udf_schema import register_dataset_udf import whylogs as why import json from sentence_transformers import SentenceTransformer, util from langkit import lang_config, response_column def evaluate_prompt_metrics(prompt_msg: any): """ Evaluate prompt only information.""" text_schema = udf_schema() llm_schema = light_metrics.init() df = pd.DataFrame({ "prompt": [ prompt_msg ]}) results = why.log(df, schema=udf_schema()) # .profile() view = results.view() automated_readability_index_prompt = view.get_column("prompt.automated_readability_index").to_summary_dict() automated_readability_index_prompt_mean = automated_readability_index_prompt['distribution/mean'] arip_m = lambda x:1 if x < 1 else (14 if x > 14 else x
) automated_readability_index_prompt_mean = arip_m(automated_readability_index_prompt_mean) automated_readability_index_prompt_value = get_readability_index_range_value(automated_readability_index_prompt_mean) flesch_reading_ease_prompt = view.get_column("prompt.flesch_reading_ease").to_summary_dict() flesch_reading_ease_prompt_mean = flesch_reading_ease_prompt['distribution/mean'] frep_m = lambda x:1 if x < 1 else (100 if x > 100 else x) flesch_reading_ease_prompt_mean = frep_m(flesch_reading_ease_prompt_mean) flesch_reading_ease_prompt_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_prompt_mean) prompt_results = {'prompt_readability_score': str(automated_readability_index_prompt_mean), 'prompt_readability_value': automated_readability_index_prompt_value, 'prompt_reading_ease': str(flesch_reading_ease_prompt_mean), 'prompt_reading_ease_value': flesch_reading_ease_prompt_value} prompt_results_json = json.dumps(prompt_results, indent=4) return prompt_results_json,prompt_results model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') @register_dataset_udf(["prompt", "response"], "response.relevance_to_prompt") def similarity_MiniLM_L6_v2(text): x = text["prompt"] y = text["response"] embedding_1 = model.encode(x, convert_to_tensor=True) embedding_2 = model.encode(y, convert_to_tensor=True) similarity = util.pytorch_cos_sim(embedding_1, embedding_2) result = similarity.item() return result def get_readability_index_range_value(readability_value): if readability_value <= 1: ## Grade level Kindergarden to fourth grade return "Kindergarten" elif 1 < readability_value <= 2: ## Grade level Kindergarden to fourth grade return "First Grade" elif 2 < readability_value <= 3: ## Grade level Fifth grade to Ninth grade return "Second Grade" elif 3 < readability_value <= 4: ## Grade level Fifth grade to Ninth grade return "Third Grade" elif 4 < readability_value <= 5: ## Grade level Fifth grade to Ninth grade return "Fourth Grade" elif 5 < readability_value <= 6: ## Grade level Fifth grade to Ninth grade return "Fifth Grade" elif 6 < readability_value <= 7: ## Grade level Fifth grade to Ninth grade return "Sixth Grade" elif 7 < readability_value <= 8: ## Grade level Fifth grade to Ninth grade return "Seventh Grade" elif 8 < readability_value <= 9: ## Grade level Fifth grade to Ninth grade return "Eighth Grade" elif 9 < readability_value <=10: ## Grade level Fifth grade to Ninth grade return "Ninth Grade" elif 10 < readability_value <=11: ## Grade level Fifth grade to Ninth grade return "Tenth Grade" elif 11 < readability_value <=12: ## Grade level Fifth grade to Ninth grade return "Eleventh Grade" elif 12 < readability_value <= 13: ## Grade level Fifth grade to Ninth grade return "Twelfth Grade" elif readability_value > 13: ## Grade level Fifth grade to Ninth grade return "College Grade" else: return "College Grade" def get_flesch_reading_ease_prompt_value(readability_value): """ Get flesch readability score range approximation""" if readability_value <= 29: return "Very Confusing" elif 29 < readability_value <= 49: return "Difficult" elif 49 < readability_value <= 59: return "Fairly Difficult" elif 59 < readability_value <= 69: return "Standard" elif 69 < readability_value <= 79: return "Fairly Easy" elif 79 < readability_value <= 89: return "Easy" elif 89 < readability_value <= 100: return "Very Easy" else: return "Very Easy" def get_relevence_to_response_value(similarity_score): """ To findout relevence to response results based on similarity score.""" if similarity_score <=0.3: return "Low" elif 0.3 < similarity_score <= 0.5: return "Average" elif 0.5 < similarity_score <= 0.8: return "Good" elif similarity_score > 0.8: return "High" def evaluate_prompt_response_inputs (prompt_msg:any, response_msg:any)->str: """ Predict the text quality, text relevence for both prompt and response messages.""" df = pd.DataFrame({ "prompt": [prompt_msg], "response": [response_msg]}) results = why.log(df, schema=udf_schema()) view = results.view() automated_readability_index_prompt = view.get_column("prompt.automated_readability_index").to_summary_dict() automated_readability_index_prompt_mean = automated_readability_index_prompt['distribution/mean'] arip_m = lambda x:1 if x < 1 else (14 if x > 14 else x) automated_readability_index_prompt_mean = arip_m(automated_readability_index_prompt_mean) automated_readability_index_prompt_value = get_readability_index_range_value(automated_readability_index_prompt_mean) flesch_reading_ease_prompt = view.get_column("prompt.flesch_reading_ease").to_summary_dict() flesch_reading_ease_prompt_mean = flesch_reading_ease_prompt['distribution/mean'] frep_m = lambda x:1 if x < 1 else (100 if x > 100 else x) flesch_reading_ease_prompt_mean = frep_m(flesch_reading_ease_prompt_mean) flesch_reading_ease_prompt_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_prompt_mean) automated_readability_index_response = view.get_column("response.automated_readability_index").to_summary_dict() automated_readability_index_response_mean = automated_readability_index_response['distribution/mean'] arir_m = lambda x:1 if x < 1 else (14 if x > 14 else x) automated_readability_index_response_mean = arir_m(automated_readability_index_response_mean) automated_readability_index_response_value = get_readability_index_range_value(automated_readability_index_response_mean) flesch_reading_ease_response = view.get_column("response.flesch_reading_ease").to_summary_dict() flesch_reading_ease_response_mean = flesch_reading_ease_response['distribution/mean'] frer_m = lambda x:1 if x < 1 else (100 if x > 100 else x) flesch_reading_ease_response_mean = frer_m(flesch_reading_ease_response_mean) flesch_reading_ease_response_value = get_flesch_reading_ease_prompt_value(flesch_reading_ease_response_mean) relevance_to_response = view.get_column("response.relevance_to_prompt").to_summary_dict() relevance_to_response_mean = relevance_to_response['distribution/mean'] r2r_m = lambda x:0 if x < 0 else (1 if x > 1 else x) relevance_to_response_mean = r2r_m(relevance_to_response_mean) relevance_to_response_value = get_relevence_to_response_value(relevance_to_response_mean) sentence_count_response = view.get_column("response.sentence_count").to_summary_dict() sentence_count_response_mean = sentence_count_response['distribution/mean'] word_count_response = view.get_column("response.lexicon_count").to_summary_dict() word_count_response_mean = word_count_response['distribution/mean'] prompt_response_results = {'prompt_readability_score': str(automated_readability_index_prompt_mean), 'prompt_readability_value': automated_readability_index_prompt_value, 'prompt_reading_ease': str(flesch_reading_ease_prompt_mean), 'prompt_reading_ease_value': flesch_reading_ease_prompt_value, 'response_readability': str(automated_readability_index_response_mean), 'response_readability_value': str(automated_readability_index_response_value), 'response_reading_ease': str(flesch_reading_ease_response_mean), 'response_reading_ease_value': str(flesch_reading_ease_response_value), 'response_sentence_count': str(sentence_count_response_mean), 'response_word_count_response': str(word_count_response_mean), 'relevance_to_response': str(relevance_to_response_mean), 'relevance_to_response_value': relevance_to_response_value } final_output_json = json.dumps(prompt_response_results, indent=4) return final_output_json,prompt_response_results if __name__ == "__main__": ##Test only prompt message information option = 'predict' if option == 'evaluate': prompt_only_response_msg = "A large language model is an advanced artificial intelligence (AI) system designed to process, understand, and generate human-like text based on massive amounts of data. These models are typically built using deep learning techniques, such as neural networks, and are trained on extensive datasets that include text from a broad range, such as books and websites, for natural language processing.Fine-tuning a large language model involves adjusting and adapting a pre-trained model to perform specific tasks or to cater to a particular domain more effectively. The process usually entails training the model further on a smaller, targeted dataset that is relevant to the desired task or subject matter.Few-shot learning (FSL) can be considered as a meta-learning problem where the model learns how to learn to solve the given problem. In this approach, the model is provided with a very limited number of examples (i.e., “few shots”) from the new task, and it uses this information to adapt and perform well on that task. Adapter Training: Adapter training is a method that involves training lightweight modules that are plugged into the pre-trained model, allowing for fine-tuning on a specific task without affecting the original model’s performance on other tasks.Multi-task Learning: Multi-task learning is a method where the pre-trained model is fine-tuned on multiple tasks simultaneously. This approach enables the model to learn and leverage the shared representations across different tasks, leading to better generalization and performance. Task-specific Fine-tuning: Task-specific fine-tuning is a method where the pre-trained model is fine-tuned on a specific task or domain using a task-specific dataset. This method requires more data and time than transfer learning but can result in higher performance on the specific task. Sequential Fine-tuning: Sequential fine-tuning is a method where a pre-trained model is fine-tuned on multiple related tasks or domains sequentially. This allows the model to learn more nuanced and complex language patterns across different tasks, leading to better generalization and performance.A noteworthy avenue of research within LLM fine-tuning explores strategies to reduce the expenses associated with updating model parameters. This endeavor is the essence of parameter-efficient fine-tuning (PEFT), a collection of techniques aiming to curtail the number of parameters requiring adjustments.Various PEFT techniques exist, and one prominent example is a low-rank adaptation (LoRA), a technique gaining popularity among open-source language models." prompt_res = evaluate_prompt_metrics(prompt_only_response_msg) elif option == 'predict': prompt_msg = "What is AION?" response_msg = "AION (Artificial Intelligence ONline) is an open -source software platform for building, deploying and operating the entire lifecycle of AI applications. It supports various use cases such as predictive analytics , machine learning and deep learning . Key features: 1. Data Ingestion : Supports multiple data sources like text files, excel sheet, database etc." evaluation_metrics_json = evaluate_prompt_response_inputs(prompt_msg,response_msg) print("evaluation_metrics_json: \\n",evaluation_metrics_json)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging from appbe.dataIngestion import getcommonfields from appbe.dataIngestion import getusercasestatus from appbe import service_url import json from appbe.dataIngestion import delimitedsetting import os,sys import pandas as pd from django.http import HttpResponse import time from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg def get_instance_id(modelID): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID) print(data) if len(data) > 0: return (data[3]+' instance '+data[2]) else: return 'Instance ID not available' else: return 'Instance ID not available' def get_instance(modelID): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LL
MTuning"): data = sqlite_obj.get_data('LLMTuning','usecaseid',modelID) if len(data) > 0: return (data[3],data[2],data[5],data[6]) else: return '','','','' else: return '','','','' def getprompt(promptfeature,contextFeature,responseFeature,promptFriendlyName,responseFriendlyName,data): if contextFeature != '': promptData = data[promptfeature].replace('\\n','') inputData = data[contextFeature].replace('\\n','') prompt = ( f"Below is an {promptFriendlyName} that describes a task, paired with an Input that provides further context. " f"Write a {responseFriendlyName} that appropriately completes the request.\\n\\n" f"### {promptFriendlyName}:\\n{promptData}\\n\\n### Input:\\n{inputData}\\n\\n### {responseFriendlyName}:\\n") else: promptData = data[promptfeature].replace('\\n','') prompt=( f"Below is an {promptFriendlyName} that describes a task. " f"Write a {responseFriendlyName} that appropriately completes the request.\\n\\n" f"### {promptFriendlyName}:\\n{promptData}\\n\\n### {responseFriendlyName}:\\n") return prompt def getDataInstance(problem_type,mlmodels,configSettingsJson): log = logging.getLogger('log_ux') delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier']) if problem_type == 'timeSeriesForecasting': #task 11997 inputFieldsDict = {'noofforecasts': 10} elif problem_type == 'recommenderSystem' and mlmodels =='ItemRating': inputFieldsDict = {"uid": 1, "iid": 31, "rating": 0} elif problem_type == 'stateTransition': inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'} else: inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) if problem_type == 'survivalAnalysis': inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature']) dataFilePath = str(configSettingsJson['basic']['dataLocation']) if os.path.isfile(dataFilePath): df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,encoding_errors= 'replace') try: singleInstanceData = df.loc[0, inputFeaturesList] except: singleInstanceData = pd.Series(0, index =inputFeaturesList) inputFieldsDict = singleInstanceData.to_dict() else: inputFieldsDict = {"File":"EnterFileContent"} inputFields = [] inputFields.append(inputFieldsDict) return inputFields def createInstanceFeatures(configSettingsJson,problem_type,mlmodels,usecaseid,version,ser_url): delimiters,textqualifier = delimitedsetting(configSettingsJson['basic']['fileSettings']['delimiters'],configSettingsJson['basic']['fileSettings']['textqualifier']) inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] if inputFeatures != '': inputFeaturesList = inputFeatures.split(',') else: inputFeaturesList = [] if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) if configSettingsJson['basic']['contextFeature'] != '': inputFeaturesList.append(configSettingsJson['basic']['contextFeature']) if problem_type == 'llmFineTuning': inputFeaturesList.append('Temperature') inputFeaturesList.append('Max Tokens') if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997 if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na': inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature']) dataFilePath = str(configSettingsJson['basic']['dataLocation']) if problem_type == 'timeSeriesForecasting': #task 11997 inputFieldsDict = {'noofforecasts': 10} elif problem_type == 'recommenderSystem' and mlmodels=='ItemRating': inputFieldsDict = {"uid": 1, "numberOfRecommendation":10} elif problem_type == 'stateTransition': inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] if inputFeatures != '': inputFeaturesList = inputFeatures.split(',') else: inputFeaturesList = [] inputFieldsDict = {inputFeatures:'session',targetFeature:'Activity'} elif problem_type != 'llmFineTuning': if os.path.isfile(dataFilePath): df = pd.read_csv(dataFilePath,encoding='utf8',nrows=2,sep=delimiters,quotechar=textqualifier,skipinitialspace = True,encoding_errors= 'replace') try: inputFieldsDict = df.to_dict(orient='index')[0] except: inputFieldsDict = pd.Series(0, index =inputFeaturesList).to_dict() else: inputFieldsDict = {"File":"EnterFileContent"} else: inputFieldsDict = pd.Series('', index =inputFeaturesList).to_dict() inputFieldsDict['Temperature'] = '0.1' hypervisor,instanceid,region,image = get_instance(usecaseid+'_'+str(version)) if hypervisor.lower() == 'AWS': inputFieldsDict['Max Tokens'] = '1024' else: inputFieldsDict['Max Tokens'] = '4096' inputFields = [] inputFields.append(inputFieldsDict) if problem_type == 'llmFineTuning': ser_url = get_instance_id(usecaseid+'_'+str(version)) elif problem_type == 'stateTransition': ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+usecaseid+'&version='+str(version) else: ser_url = ser_url+'predict?usecaseid='+usecaseid+'&version='+str(version) return inputFields,ser_url def singleInstancePredict(request, Existusecases, usecasedetails): log = logging.getLogger('log_ux') modelType='' context = getcommonfields() submittype = request.POST.get('predictsubmit') selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) t1 = time.time() try: try: model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() training_output = json.loads(training_output) featureused = training_output['data']['featuresused'] except: featureused = [] from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Prediction','Yes') usecasename = request.session['usecaseid'].replace(" ", "_") context.update({'usecasename':usecasename}) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r", encoding = "utf-8") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] if inputFeatures != '': inputFeaturesList = inputFeatures.split(',') else: inputFeaturesList = [] if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) if configSettingsJson['basic']['contextFeature'] != '': inputFeaturesList.append(configSettingsJson['basic']['contextFeature']) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = '' modelSize = '' for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type == 'llmFineTuning': inputFeaturesList.append('Temperature') inputFeaturesList.append('Max Tokens') mlmodels ='' algorihtms = configSettingsJson['basic']['algorithms'][problem_type] for k in algorihtms.keys(): if configSettingsJson['basic']['algorithms'][problem_type][k] == 'True': if mlmodels != '': mlmodels += ', ' mlmodels += k if problem_type == 'llmFineTuning': ser_url = get_instance_id(usecasename+'_'+str(request.session['ModelVersion'])) if 'modelSize' in configSettingsJson['basic']: selectedModelSize = configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels] for k in selectedModelSize.keys(): if configSettingsJson['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True': modelSize = k break elif problem_type == 'stateTransition': ser_url = service_url.read_service_url_params(request) ser_url = ser_url+'pattern_anomaly_predict?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion']) else: ser_url = service_url.read_service_url_params(request) ser_url = ser_url+'predict?usecaseid='+usecasename+'&version='+str(request.session['ModelVersion']) if submittype.lower() == 'predict': inputFieldsDict = {} if problem_type == 'timeSeriesForecasting': #task 11997 inputFieldsDict['noofforecasts'] = int(request.POST.get('noofforecasts')) elif problem_type == 'stateTransition': inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] sessionid = request.POST.get('SessionID') activity = request.POST.get(targetFeature) inputFieldsDict[inputFeatures] = request.POST.get(inputFeatures) inputFieldsDict[targetFeature] = request.POST.get(targetFeature) elif problem_type == 'recommenderSystem' and mlmodels == 'ItemRating': inputFieldsDict['uid'] = request.POST.get('uid') inputFieldsDict['numberOfRecommendation'] = int(request.POST.get('numberOfRecommendation')) #Task 11190 else: if problem_type in ['survivalAnalysis','anomalyDetection', 'timeSeriesAnomalyDetection']: #task 11997 if configSettingsJson['basic']['dateTimeFeature'] != '' and configSettingsJson['basic']['dateTimeFeature'] != 'na': inputFeaturesList.insert(0,configSettingsJson['basic']['dateTimeFeature']) for feature in inputFeaturesList: inputFieldsDict[feature] = request.POST.get(feature) if problem_type.lower() not in ['contextualsearch','similarityidentification']: for key, value in inputFieldsDict.items(): if value == 'nan': inputFieldsDict[key] = '' if value == '': if key in featureused: context.update({'tab': 'predict','ser_url':ser_url, 'error': ' Error : Mandatory field(s) are empty', 'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion}) return context inputFieldsJson = json.dumps(inputFieldsDict) if problem_type == 'llmFineTuning': modelType = request.POST.get('modelTypeforInferencing') x = inputFieldsDict.keys() from appbe.dataPath import DATA_DIR prompt = inputFieldsDict[configSettingsJson['basic']['trainingFeatures']] promptobj = {'prompt':prompt} if configSettingsJson['basic']['contextFeature'] != '': inputData = inputFieldsDict[configSettingsJson['basic']['contextFeature']] promptobj.update({'input':inputData}) filetimestamp = str(int(time.time())) file_path = os.path.join(DATA_DIR,'logs',filetimestamp+'.json') f= open(file_path,"w",encoding="utf-8") #print(promptobj) json.dump(promptobj,f) f.close() from llm.llm_inference import LLM_predict cloudconfig = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config','compute_conf.json')) hypervisor,instanceid,region,image = get_instance(usecasename+'_'+str(request.session['ModelVersion'])) if hypervisor and instanceid: if modelSize != '': mlmodels = mlmodels+'-'+modelSize cachepath = os.path.join(DATA_DIR,'sqlite','cachePrompt.db') import sqlite3 conn = sqlite3.connect(cachepath) from llm.llm_cache import CachePrompt cachepromptObj = CachePrompt(conn) searchFlag,result = cachepromptObj.selectFromCache(prompt,usecasename+'_'+str(request.session['ModelVersion']),modelType,temperature=inputFieldsDict['Temperature'],max_token=inputFieldsDict['Max Tokens']) if searchFlag: buf = LLM_predict(cloudconfig,instanceid,file_path,hypervisor,mlmodels,usecasename+'_'+str(request.session['ModelVersion']),region,image,inputFieldsDict['Temperature'],inputFieldsDict['Max Tokens'],modelType) import re outputStr = buf.split('ModelOutput:')[1] cachepromptObj.insertRecord(prompt,outputStr,usecasename+'_'+str(request.session['ModelVersion']),modelType,temperature=inputFieldsDict['Temperature'],max_token=inputFieldsDict['Max Tokens']) else: outputStr = result if configSettingsJson['basic']['folderSettings']['fileType'].lower() != 'llm_document': outputStr = outputStr.split('### '+configSettingsJson['basic']['preprocessing']['llmFineTuning']['friendlyNames']['response']+':')[1] singlePredictionResults = []
singlePredictionsummary="" Results={} Results['Response'] = outputStr singlePredictionResults.append(Results) else: context.update( {'tab': 'tabconfigure', 'error': 'Prediction Error: Instance ID not found ', 'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'mlmodels':mlmodels}) log.info('Predict Instance :' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Prediction Error, Instance ID not found') return context else: try: import requests #response = requests.post(ser_url,auth=(aion_service_username,aion_service_password),data=inputFieldsJson,headers={"Content-Type":"application/json",}) response = requests.post(ser_url,data=inputFieldsJson,headers={"Content-Type":"application/json",}) if response.status_code != 200: outputStr=response.content context.update({'tab': 'tabconfigure', 'error': outputStr.decode('utf-8'), 'selected': 'prediction'}) log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : '+str(outputStr.decode('utf-8'))) return context except Exception as inst: if 'Failed to establish a new connection' in str(inst): context.update({'tab': 'tabconfigure', 'error': 'AION service need to be started', 'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion}) log.info('Predict Instance :'+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0'+' sec'+' : '+'Error : AION service need to be started, '+str(inst)) return context else: context.update({'tab': 'tabconfigure', 'error': 'Prediction Error '+str(inst),'selected': 'prediction', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion}) log.info('Predict Instance :'+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : Prediction Error, '+str(inst)) return context outputStr=response.content outputStr = outputStr.decode('utf-8','ignore') outputStr = outputStr.strip() predict_dict = json.loads(str(outputStr)) #print(predict_dict) singlePredictionsummary="" if (predict_dict['status'] == 'SUCCESS'): data = predict_dict['data'] singlePredictionResults = [] Results = {} if problem_type == 'multiModalLearning': data = data[0] Results['prediction'] = data['predict'] singlePredictionResults.append(Results) if problem_type == 'textSummarization': data = data[0] Results['msg'] = predict_dict['msg'] singlePredictionResults.append(Results) Results['prediction'] = predict_dict['data'] singlePredictionResults.append(Results) Results1 = {} Results1['prediction'] = predict_dict['data'] print("prdata------------",predict_dict['data']) singlePredictionsummary=predict_dict['data'] print("singlePredictionsummary",singlePredictionsummary) t2 = time.time() elif problem_type == 'multiLabelPrediction': prediction = '' for x in data: for y in x: if 'predict' in y: if prediction != '': prediction += ',' prediction += str(y)+':'+str(x[y]) Results['prediction'] = prediction singlePredictionResults.append(Results) elif problem_type == 'timeSeriesForecasting': #task 11997 Results['prediction'] = json.dumps(data) singlePredictionResults.append(Results) elif problem_type == 'stateTransition': if str(data['Anomaly']) == 'False': Results['prediction'] = 'No Anomaly' else: Results['prediction'] = str(data['Remarks']) singlePredictionResults.append(Results) elif problem_type.lower() in ['similarityidentification','contextualsearch']: data = data[0] prediction = data['prediction'] i = 1 for x in prediction: te = '' for y in x: info = (str(x[y])[:50] + '...') if len(str(x[y])) > 50 else str(x[y]) te += y+': '+info+'\\n\\n' Results[i] = te i = i+1 singlePredictionResults.append(Results) else: data = data[0] if 'prediction' in data: Results['prediction'] = data['prediction'] if 'probability' in data: Results['probability'] = data['probability'] if 'remarks' in data: Results['remarks'] = json.loads(data['remarks']) singlePredictionResults.append(Results) t2 = time.time() log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+str(round(t2-t1))+' sec'+' : '+'Success') else: context.update({'tab': 'tabconfigure', 'error': 'Prediction Error '+str(predict_dict['message']), 'selected': 'prediction','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion}) log.info('Predict Instance : '+str(selected_use_case) + ' : ' + str(ModelVersion) + ' : '+'0 '+'sec'+' : '+'Error : Prediction Error') return context inputFields = [] inputFields.append(inputFieldsDict) ##Below added by sjayaram for llm langkit evaluation metrics Task:17109 prompt_response_results = '' if problem_type == 'llmFineTuning': try: response_msg = outputStr prompt_msg = prompt except: response_msg = '' prompt_msg = '' from appbe.evaluate_prompt import evaluate_prompt_response_inputs final_output_json,prompt_response_results = evaluate_prompt_response_inputs(prompt_msg,response_msg) #ser_url = service_url.read_service_url_params(request) #ser_url = ser_url+'predict?usecaseid='+usecasename+'&version='+str(ModelVersion) context.update({'tab': 'predict','mlmodels':mlmodels,'fineTunedModelType':modelType,'ser_url':ser_url, 'inputFields': inputFields,'singlePredictionResults': singlePredictionResults,'singlePredictionsummary':singlePredictionsummary,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction', 'prompt_response_results':prompt_response_results}) return context elif submittype.lower() == 'script': scriptdata="'''\\n" scriptdata+="* =============================================================================\\n" scriptdata+="* COPYRIGHT NOTICE\\n" scriptdata+="* =============================================================================\\n" scriptdata+="* @ Copyright HCL Technologies Ltd. 2021, 2022, 2023\\n" scriptdata+="* Proprietary and confidential. All information contained herein is, and\\n" scriptdata+="* remains the property of HCL Technologies Limited. Copying or reproducing the\\n" scriptdata+="* contents of this file, via any medium is strictly prohibited unless prior\\n" scriptdata+="* written permission is obtained from HCL Technologies Limited.\\n" scriptdata+="'''\\n" scriptdata+='import sys\\n' scriptdata+='import json\\n' scriptdata+='import requests\\n' scriptdata+='import pandas as pd\\n' scriptdata+='from pandas import json_normalize\\n' scriptdata+='ser_url ="'+ser_url+'"\\n\\n' scriptdata+="def predict(data):\\n" scriptdata+=" if data.endswith('.tsv'):\\n" scriptdata+=" df=pd.read_csv(data,encoding='utf-8',encoding_errors= 'replace',sep='\\\\t')\\n" scriptdata+=" else:\\n" scriptdata+=" df=pd.read_csv(data,encoding='utf-8',encoding_errors= 'replace')\\n" scriptdata+=' features = "'+",".join([feature for feature in inputFeaturesList])+'"\\n' scriptdata+=" features = features.split(',')\\n" scriptdata+=" df = df[features]\\n" scriptdata+=" data = df.to_json(orient='records')\\n" scriptdata+=" try:\\n" scriptdata+=' response = requests.post(ser_url,data=data,headers={"Content-Type":"application/json",})\\n' scriptdata+=" if response.status_code == 200:\\n" scriptdata+=" outputStr=response.content\\n" scriptdata+=" outputStr = outputStr.decode('utf-8')\\n" scriptdata+=" outputStr = outputStr.strip()\\n" scriptdata+=" predict_dict = json.loads(str(outputStr))\\n" scriptdata+=" print(predict_dict)\\n" scriptdata+=" except Exception as e:\\n" scriptdata+=' print(e)\\n' scriptdata+='\\nif __name__ == "__main__":\\n' scriptdata+=' predict(sys.argv[1])' response = HttpResponse() response['content_type'] = 'text/plain' response['Content-Disposition'] = 'attachment; filename=prediction.py' response.write(scriptdata) return response except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) context.update({'tab': 'tabconfigure', 'error': 'Failed To perform prediction','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'prediction'}) log.info('Predict Instance :' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + ' 0 ' + 'sec' + ' : ' + 'Error : Failed To perform prediction, '+ str(inst)) return context <s> import os import openai from langchain.llms import AzureOpenAI from sentence_transformers.SentenceTransformer import SentenceTransformer import time import datetime import pandas as pd import sys import subprocess import importlib from appbe.aion_config import get_llm_data from appbe.dataPath import DATA_FILE_PATH remote_data_dir = "/home/aion/data/storage/llm_testing_data" remote_data_processeddata_dir = '/home/aion/data/storage/processed_data' remote_config_dir = '/home/aion/data/config' sh_file_path = '/home/aion/llm/sbin/llm_testing.sh' prompt_command = '/home/aion/llm/sbin/llm_testing.sh' PRE_CONTEXT = "Answer the following question in a concise manner.\\n" DEFAULT_PARAMS = { 'OPENAI_API_TYPE' : "azure", 'OPENAI_API_BASE' : "", 'OPENAI_API_KEY' : "", 'OPENAI_API_VERSION' : "2023-03-15-preview" } faq="" def getAMIDetails(config,selectedAMI): y = {} for x in config: print(x) if x['id'] == selectedAMI: return x return y class test_LLM(): def __init__(self, deployment_name='Text-Datvinci-03', params=DEFAULT_PARAMS, transformer=None, sentence_txfr_model='sentence-transformers/paraphrase-mpnet-base-v2'): self.deployment_name=deployment_name self.set_params( params) self.transformer = transformer self.sentence_txfr_model = sentence_txfr_model def fiddlerAuditorCheck(self): status = importlib.util.find_spec('auditor') if not status: subprocess.check_call([sys.executable, "-m", "pip","uninstall", "-q","-y","notebook"]) subprocess.check_call([sys.executable, "-m", "pip", "install","-q", "notebook==6.4.5" ]) subprocess.check_call([sys.executable, "-m", "pip", "install","-q","fiddler-auditor==0.0.2"]) subprocess.check_call([sys.executable, "-m", "pip", "install","-q","notebook==7.0.2"]) status = importlib.util.find_spec('auditor') return status def set_params(self, params={}): valid_params = ['OPENAI_API_TYPE','OPENAI_API_KEY','OPENAI_API_BASE','OPENAI_API_VERSION'] for key, value in params.items(): if 'OPENAI_API_TYPE' == key: openai.api_type = value os.environ['OPENAI_API_TYPE'] = openai.api_type elif 'OPENAI_API_KEY' == key: openai.api_key = value os.environ['OPENAI_API_KEY'] = openai.api_key elif 'OPENAI_API_BASE' == key: openai.api_base = value os.environ['OPENAI_API_BASE'] = openai.api_base elif key in valid_params: os.environ[key] = value def run(self,modelName, temperature, similarity_threshold, perturbations_per_sample, prompts, reference_generation,pre_context=PRE_CONTEXT): if not self.fiddlerAuditorCheck(): raise ValueError('Fiddler-auditor is not instlled "python -m pip install fiddler-auditor==0.0.2"') openai_llm = AzureOpenAI(deployment_name=self.deployment_name, temperature=temperature, openai_api_key=open
ai.api_key) from auditor.perturbations import Paraphrase from auditor.evaluation.expected_behavior import SimilarGeneration from auditor.evaluation.evaluate import LLMEval # For Azure OpenAI, it might be the case the api_version for chat completion # is different from the base model so we need to set that parameter as well. if self.transformer: azure_perturber = self.transformer else: azure_perturber = Paraphrase( model="GPT-35-Turbo", api_version="2023-03-15-preview", num_perturbations=perturbations_per_sample, ) sent_xfmer = SentenceTransformer(self.sentence_txfr_model) similar_generation = SimilarGeneration( similarity_model=sent_xfmer, similarity_threshold=similarity_threshold,) llm_eval = LLMEval( llm=openai_llm, expected_behavior=similar_generation, transformation=azure_perturber,) test_result = llm_eval.evaluate_prompt_correctness( prompt=prompts, pre_context=pre_context, reference_generation=reference_generation, perturbations_per_sample=perturbations_per_sample ) return test_result def runmultiple(self,modelName, temperature, similarity_threshold, perturbations_per_sample, prompts, reference_generation,pre_context=PRE_CONTEXT,faq=faq): if not self.fiddlerAuditorCheck(): raise ValueError('Fiddler-auditor is not instlled "python -m pip install fiddler-auditor==0.0.2"') from auditor.evaluation.expected_behavior import SimilarGeneration from auditor.evaluation.evaluate import LLMEval openai_llm = AzureOpenAI(deployment_name=self.deployment_name, temperature=temperature, openai_api_key=openai.api_key) from auditor.perturbations import Paraphrase # For Azure OpenAI, it might be the case the api_version for chat completion # is different from the base model so we need to set that parameter as well. if self.transformer: azure_perturber = self.transformer else: azure_perturber = Paraphrase( model="GPT-35-Turbo", api_version="2023-03-15-preview", num_perturbations=perturbations_per_sample, ) sent_xfmer = SentenceTransformer(self.sentence_txfr_model) similar_generation = SimilarGeneration( similarity_model=sent_xfmer, similarity_threshold=similarity_threshold,) llm_eval = LLMEval( llm=openai_llm, expected_behavior=similar_generation, transformation=azure_perturber,) rows = faq.shape[0] prompts = list(faq['Question']) listofDf = [] for i in range(rows): test_result = llm_eval.evaluate_prompt_robustness( prompt=prompts[i], pre_context=pre_context, ) try: now = datetime.datetime.now().strftime("%H%M%S") name = str(i)+str(now)+'.html' test_result.save(name) df_iter=pd.read_html(name) df_actual = df_iter[0] listofDf.append(df_actual) except: pass perturbatedDF = pd.concat(listofDf) return perturbatedDF def run_offline_model(self, usecasename,modelName, temperature, similarity_threshold, perturbations_per_sample, reference_generation, prompts,isfinetuned): from appbe.compute import readComputeConfig from appbe.prediction import get_instance cloud_infra = readComputeConfig() dataFile = os.path.join(DATA_FILE_PATH, 'prompt.csv') remoteFile = os.path.join(remote_data_dir, 'prompt.csv') if not reference_generation: reference_generation = '' prompt = pd.DataFrame([{'prompts':prompts, 'reference_generation':reference_generation}]) prompt.to_csv(dataFile, index=False) hypervisor, instanceid, region, image = get_instance(usecasename) key, url, api_type, api_version = get_llm_data() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] currentDirectory = os.path.dirname(os.path.abspath(__file__)) LLM_DIR = os.path.normpath(os.path.join(currentDirectory, '..', 'llm')) if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import start_instance # print(aws_access_key_id, aws_secret_key, instanceid, region) status, msg, ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region) if status.lower() == 'success': pem_file = os.path.join(LLM_DIR, amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] # cope file to server for sinfle prompt from AION.llm.ssh_command import copy_files_to_server copy_files_to_server(ip,pem_file,dataFile,'',username,'',remote_data_dir,remote_config_dir) if isfinetuned: command = prompt_command + ' ' + usecasename + ' ' + str(modelName) \\ + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \\ + str(perturbations_per_sample) + \\ ' '+ str(key) + \\ ' '+ str(url) + \\ ' '+ str(api_type) + \\ ' '+ str(api_version)+ \\ ' '+ str("single") else: command = prompt_command + ' ' + 'BaseModel' + ' ' + str(modelName) \\ + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \\ + str(perturbations_per_sample) + \\ ' '+ str(key) + \\ ' '+ str(url) + \\ ' '+ str(api_type) + \\ ' '+ str(api_version)+ \\ ' '+ str("single") from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(ip, pem_file, username, '', '', command) print(buf) return buf def run_multiple_offline_model(self, usecasename,modelName, temperature, similarity_threshold, perturbations_per_sample, faq,isfinetuned): dataFile = os.path.join(DATA_FILE_PATH, 'prompt.csv') remoteFile = os.path.join(remote_data_dir, 'prompt.csv') faq.to_csv(dataFile, index=False) print("This is done") from appbe.compute import readComputeConfig from appbe.prediction import get_instance cloud_infra = readComputeConfig() hypervisor, instanceid, region, image = get_instance(usecasename) key, url, api_type, api_version = get_llm_data() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] currentDirectory = os.path.dirname(os.path.abspath(__file__)) LLM_DIR = os.path.normpath(os.path.join(currentDirectory, '..', 'llm')) if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import start_instance # print(aws_access_key_id, aws_secret_key, instanceid, region) status, msg, ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region) if status.lower() == 'success': pem_file = os.path.join(LLM_DIR, amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] #print(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir) from AION.llm.ssh_command import copy_files_to_server copy_files_to_server(ip,pem_file,dataFile,'',username,'',remote_data_dir,remote_config_dir) if isfinetuned: command = prompt_command + ' ' + usecasename + ' ' + str(modelName) \\ + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \\ + str(perturbations_per_sample) + \\ ' '+ str(key) + \\ ' '+ str(url) + \\ ' '+ str(api_type) + \\ ' '+ str(api_version)+ \\ ' '+ str("multiple") else: command = prompt_command + ' ' + 'BaseModel' + ' ' + str(modelName) \\ + ' ' + str(temperature) + ' ' + str(similarity_threshold) + ' ' \\ + str(perturbations_per_sample) + \\ ' '+ str(key) + \\ ' '+ str(url) + \\ ' '+ str(api_type) + \\ ' '+ str(api_version)+ \\ ' '+ str("multiple") from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(ip, pem_file, username, '', '', command) print(buf) return buf <s> import pandas as pd import numpy as np def get_leaderboard(file_content): matched_lines = [line.replace('Model:-', '') for line in file_content.split('\\n') if "Model:-" in line] df = pd.DataFrame(columns = ['Model', 'Iterations', 'Score (%)', 'Score Type', 'Best Score (%)']) import re try: for line in matched_lines: if 'Model Name::' in line: MODEL = line.split('::') model = MODEL[1] if 'ScoringType::' in line: S = line.split('::') #SC = ScorTyp[1] if 'make_scorer'in line: ST = line.split('make_scorer') ScorTyp = ST[1] df['Score Type'] = np.where(df['Model'] == model, ScorTyp,df['Score Type']) if 'Validation Score::' in line: BS = line.split('::') BestSc = round(float(BS[1]), 4)*100 BestSc = abs(BestSc) df['Best Score (%)'] = np.where(df['Model'] == model, BestSc, df['Best Score (%)']) if 'Iteration::' in line: l = line.split('::') word = re.findall(r'\\[(.*?)\\]', l[1]) if ';, score=' in line: sc = line.split('score=') SCR = sc[1].split(' ') Score = round(float(SCR[0]), 4)*100 Score = abs(Score) # df = df.concat({'Model': model, 'Iterations': word,'Score (%)': Scor,'Score Type': '', 'Best Score (%)': 0}, ignore_index=True) newdf = pd.DataFrame([{'Model': model, 'Iterations': word,'Score (%)': Score,'Score Type': '', 'Best Score (%)': 0}]) df = pd.concat([df,newdf],axis=0, ignore_index=True) LIST = [] for i in range(int(len(df['Score (%)'])/5)): l = (sum(df['Score (%)'][5*i:5*(i+1)])/5) #LIST.concat(l) LIST.append(l) for i in range(len(LIST)): df['Score (%)'][5*i:5*(i+1)]=LIST[i] CL = [line.replace('------->Type of Model :classification', 'Model :classification') for line in file_content.split('\\n') if "------->Type of Model :classification" in line] for l in CL: if 'Model :classification' in l: df = df.sort_values(by = ['Best Score (%)'], ascending=False) RE = [line.replace('------->Type of Model :regression', 'Model :regression') for line in file_content.split('\\n') if "------->Type of Model :regression" in line] for l in RE: if 'Model :regression' in l: df = df.sort_values(by = ['Best Score (%)']) except Exception as e: print(e) return df if __name__ == "__main__": file_path = r"C:\\Users\\richard.mochahari\\AppData\\Local\\Programs\\HCLTech\\AION\\data\\target\\AI0335\\1\\log\\model_training_logs.log" my_file = open(file_path, 'r') file_content = my_file.read() my_file.close() print(get_leaderboard(file_content))<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import sqlite3 from pathlib import Path import json import os import rsa import boto3 #usnish import pandas as pd import time import sqlite3 class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file:
self.database_name = database_file else: self.database_name = location.stem db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() def table_exists(self, name): query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() return len(listOfTables) > 0 def read_data(self, table_name): query = f"SELECT * FROM {table_name}" row = self.cursor.execute(query).fetchall() return list(row) #return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def delete_record(self,table_name,col_name, col_value): try: query = f"DELETE FROM {table_name} WHERE {col_name}='{col_value}'" self.conn.execute(query) self.conn.commit() return 'success' except Exception as e : print(str(e)) print("Deletion Failed") return 'error' def get_data(self,table_name,col_name,col_value): query = f"SELECT * FROM {table_name} WHERE {col_name}='{col_value}'" row = self.cursor.execute(query).fetchone() if(row == None): return [] return list(row) def write_data(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def close(self): self.conn.close() def add_new_azureStorage(request): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if request.POST["azurename"] =='' or request.POST["azureaccountkey"] == '' or request.POST["containername"] == '' : return 'error' newdata = {} newdata['azurename'] = [request.POST["azurename"]] newdata['azureaccountkey'] = [request.POST["azureaccountkey"]] newdata['containername'] = [request.POST["containername"]] name = request.POST["azurename"] if sqlite_obj.table_exists("azurebucket"): if(len(sqlite_obj.get_data('azurebucket','azurename',name))>0): return 'error1' sqlite_obj.write_data(pd.DataFrame.from_dict(newdata),'azurebucket') except: return 'error' def get_azureStorage(): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') temp_data = sqlite_obj.read_data('azurebucket') data = [] for x in temp_data: data_dict = {} data_dict['azurename'] = x[0] data_dict['azureaccountkey'] = x[1] data_dict['containername'] = x[2] data.append(data_dict) except Exception as e: print(e) data = [] return data def read_azureStorage(name,directoryname,DATA_FILE_PATH): try: from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') data = sqlite_obj.get_data('azurebucket','azurename',name) except: data = [] found = False if len(data)!=0: storage_account_name = str(data[0]) storage_account_key = str(data[1]) azure_container_name = data[2] found = True try: if found: root_dir = str(directoryname) from azure.storage.filedatalake import DataLakeServiceClient import io import pandavro as pdx from detect_delimiter import detect try: service_client = DataLakeServiceClient(account_url="{}://{}.dfs.core.windows.net".format("https", storage_account_name), credential=storage_account_key) print(azure_container_name) file_system_client = service_client.get_file_system_client(azure_container_name) print(root_dir) file_paths = file_system_client.get_paths(path=root_dir) main_df = pd.DataFrame() for path in file_paths: if not path.is_directory: file_client = file_system_client.get_file_client(path.name) file_ext = os.path.basename(path.name).split('.', 1)[1] if file_ext in ["csv", "tsv"]: with open(csv_local, "wb") as my_file: download = file_client.download_file() download.readinto(my_file) with open(csv_local, 'r') as file: data = file.read() row_delimiter = detect(text=data, default=None, whitelist=[',', ';', ':', '|', '\\t']) processed_df = pd.read_csv(csv_local, sep=row_delimiter) if file_ext == "parquet": download = file_client.download_file() stream = io.BytesIO() download.readinto(stream) processed_df = pd.read_parquet(stream, engine='pyarrow') if file_ext == "avro": with open(avro_local, "wb") as my_file: download = file_client.download_file() download.readinto(my_file) processed_df = pdx.read_avro(avro_local) if not main_df.empty: main_df = main_df.append(processed_df, ignore_index=True) else: main_df = pd.DataFrame(processed_df) except Exception as e: msg = str(e).split(".")[0] print(msg) return 'Error',str(msg), pd.DataFrame() return "Success","",main_df except: return 'Error',"Please check bucket configuration", pd.DataFrame() def remove_azure_bucket(name): from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') return sqlite_obj.delete_record('azurebucket','azurename',name)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import json import os,sys from appbe import help_Text as ht def save(request): from appbe.dataPath import DEFAULT_FILE_PATH if request.method == 'POST': submittype = request.POST.get('AdvanceSubmit') if submittype != 'AdvanceDefault': configFile = request.session['config_json'] f = open(configFile, "r+") configSettingsData = f.read() configSettings = json.loads(configSettingsData) try: if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'false': numericselectedmethod = request.POST.get('numericfillmethod') for x in list(configSettings['advance']['profiler']['numericalFillMethod'].keys()): configSettings['advance']['profiler']['numericalFillMethod'][x] = 'False' configSettings['advance']['profiler']['numericalFillMethod'][numericselectedmethod] = 'True' categoricalselectedmethod = request.POST.get('categorialfillmethod') for x in list(configSettings['advance']['profiler']['categoricalFillMethod'].keys()): configSettings['advance']['profiler']['categoricalFillMethod'][x] = 'False' configSettings['advance']['profiler']['categoricalFillMethod'][categoricalselectedmethod] = 'True' categoryEncodingMethod = request.POST.get('categoryencoding') for x in list(configSettings['advance']['profiler']['categoryEncoding'].keys()): configSettings['advance']['profiler']['categoryEncoding'][x] = 'False' configSettings['advance']['profiler']['categoryEncoding'][categoryEncodingMethod] = 'True' outlierDetection = request.POST.get('outlierDetection') for x in list(configSettings['advance']['profiler']['outlierDetection'].keys()): configSettings['advance']['profiler']['outlierDetection'][x] = 'False' if outlierDetection != 'Disable': configSettings['advance']['profiler']['outlierDetection'][outlierDetection] = 'True' #configSettings['advance']['profiler']['outlierDetectionStatus'] = request.POST.get('AnamolyDetectionStatus') #configSettings['advance']['profiler']['outlierDetectionMethod'] = request.POST.get('AnaTreatmentMethod') configSettings['advance']['profiler']['misValueRatio'] = request.POST.get('MisValueRatio') #configSettings['advance']['profiler']['categoricalToNumeric'] = request.POST.get('CategoricalToNumeric') configSettings['advance']['profiler']['numericFeatureRatio'] = request.POST.get('NumFeatureRatio') configSettings['advance']['profiler']['categoryMaxLabel'] = request.POST.get('CatMaxLabels') configSettings['advance']['selector']['categoryMaxLabel'] = request.POST.get('CatMaxLabels') normalizationtypes = configSettings['advance']['profiler']['normalization'] for k in normalizationtypes.keys(): configSettings['advance']['profiler']['normalization'][k] = 'False' if request.POST.get('NormalizationMethod').lower() != 'none': configSettings['advance']['profiler']['normalization'][request.POST.get('NormalizationMethod')] = 'True' #configSettings['advance']['profiler']['normalizationMethod'] = request.POST.get('NormalizationMethod') configSettings['advance']['profiler']['removeDuplicate'] = request.POST.get('removeDuplicate') # ---------------------------------------------- Debiasing Changes ---------------------------------------------- configSettings['advance']['profiler']['deBiasing']['FeatureName'] = request.POST.get('InputFeature') configSettings['advance']['profiler']['deBiasing']['ClassName'] = request.POST.get('InputClass') configSettings['advance']['profiler']['deBiasing']['Algorithm'] = request.POST.get('InputAlgorithm') configSettings['advance']['profiler']['deBiasing']['TargetFeature'] = configSettings['basic']['targetFeature'] # ---------------------------------------------- ---------------------------------------------- problemtypes = configSettings['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'false' and configSettings['basic']['onlineLearning'].lower() == 'false' and configSettings['basic']['distributedLearning'].lower() == 'false': configSettings['advance']['profiler']['textCleaning']['removeNoise'] = request.POST.get('noiseStatus') # -------------------------------- 12301:Remove Noise Config related Changes S T A R T -------------------------------- if request.POST.get('noiseStatus') == 'True': configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['decodeHTML'] = request.POST.get('DecodeHTML') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHyperLinks'] = request.POST.get('removeHyperlinks') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeMentions'] = request.POST.get('RemoveMentions') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHashtags'] = request.POST.get('removeHashtags') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeEmoji'] = request.POST.get('removeEmoji') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['unicodeToAscii'] = request.POST.get('unicodeToAscii') configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeNonAscii'] = request.POST.get('removeNonAscii') else: configSettings['advance']['profiler']['textCleaning
']['removeNoiseConfig']['decodeHTML'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHyperLinks'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeMentions'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeHashtags'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeEmoji'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['unicodeToAscii'] = "False" configSettings['advance']['profiler']['textCleaning']['removeNoiseConfig']['removeNonAscii'] = "False" # ---------------------------------------------------------------- E N D ---------------------------------------------------------------- configSettings['advance']['profiler']['textCleaning']['expandContractions'] = request.POST.get( 'expandContractions') configSettings['advance']['profiler']['textCleaning']['normalize'] = request.POST.get('normalize') if (request.POST.get('normalizeMethod') == 'Lemmatization'): configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['lemmatization'] = "True" configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['stemming'] = "False" else: configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['stemming'] = "True" configSettings['advance']['profiler']['textCleaning']['normalizeMethod']['lemmatization'] = "False" configSettings['advance']['profiler']['textCleaning']['replaceAcronym'] = request.POST.get('replaceAcronym') if request.POST.get('acronymDict') != '' and request.POST.get('acronymDict') != 'None': configSettings['advance']['profiler']['textCleaning']['acronymConfig']['acronymDict'] = eval(request.POST.get( 'acronymDict')) configSettings['advance']['profiler']['textCleaning']['correctSpelling'] = request.POST.get( 'correctSpelling') configSettings['advance']['profiler']['textCleaning']['removeStopwords'] = request.POST.get( 'removeStopwords') if (request.POST.get('ExtendOrReplace') == 'NA'): configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = "False" configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = "False" elif (request.POST.get('ExtendOrReplace') == 'Extend'): configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = "True" configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = "False" else: configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['extend'] = "False" configSettings['advance']['profiler']['textCleaning']['stopWordsConfig']['replace'] = "True" configSettings['advance']['profiler']['textCleaning']['stopWordsConfig'][ 'stopwordsList'] = request.POST.get('stopwordsList') configSettings['advance']['profiler']['textCleaning']['removePunctuation'] = request.POST.get( 'removePunctuation') configSettings['advance']['profiler']['textCleaning']['removePunctuationConfig'][ 'removePuncWithinTokens'] = request.POST.get('removePuncWithinTokens') configSettings['advance']['profiler']['textCleaning']['removeNumericTokens'] = request.POST.get( 'removeNumericTokens') configSettings['advance']['profiler']['textCleaning']['removeNumericConfig'][ 'removeNumeric_IncludeSpecialCharacters'] = request.POST.get('removeNumeric_IncludeSpecialCharacters') if (request.POST.get('tokenizationLib') == 'nltk'): configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'gensim'] = "False" elif (request.POST.get('tokenizationLib') == 'textblob'): configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'textblob'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'gensim'] = "False" elif (request.POST.get('tokenizationLib') == 'spacy'): configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'gensim'] = "False" elif (request.POST.get('tokenizationLib') == 'keras'): configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'gensim'] = "False" else: configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['spacy'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['keras'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['tokenizationLib']['gensim'] = "True" if (request.POST.get('lemmatizationLib') == 'nltk'): configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][ 'spacy'] = "False" elif (request.POST.get('lemmatizationLib') == 'textblob'): configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][ 'textblob'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][ 'spacy'] = "False" else: configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib'][ 'textblob'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['lemmatizationLib']['spacy'] = "True" if (request.POST.get('stopwordsRemovalLib') == 'nltk'): configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'nltk'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'gensim'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'spacy'] = "False" elif (request.POST.get('stopwordsRemovalLib') == 'gensim'): configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'gensim'] = "True" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'spacy'] = "False" else: configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'nltk'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'gensim'] = "False" configSettings['advance']['profiler']['textCleaning']['libConfig']['stopwordsRemovalLib'][ 'spacy'] = "True" configSettings['advance']['profiler']['textFeatureExtraction']['n_grams'] = request.POST.get('n_grams') configSettings['advance']['profiler']['textFeatureExtraction']['n_grams_config'][ 'min_n'] = int(request.POST.get('range_min_n')) configSettings['advance']['profiler']['textFeatureExtraction']['n_grams_config'][ 'max_n'] = int(request.POST.get('range_max_n')) configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags'] = request.POST.get('pos_tags') if (request.POST.get('pos_tags_lib') == 'nltk'): configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = "True" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = "False" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = "False" elif (request.POST.get('pos_tags_lib') == 'textblob'): configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = "False" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = "True" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = "False" else: configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['nltk'] = "False" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['textblob'] = "False" configSettings['advance']['profiler']['textFeatureExtraction']['pos_tags_lib']['spacy'] = "True" textconvertionmethods = configSettings['advance']['profiler']['textConversionMethod'] for k in textconvertionmethods.keys(): configSettings['advance']['profiler']['textConversionMethod'][k] = 'False' if problem_type.lower() not in ['similarityidentification','contextualsearch']: configSettings['advance']['profiler']['textConversionMethod'][request.POST.get('textConvertionMethod')] = 'True' if 'embeddingSize' in configSettings['advance']['profiler']: glove = configSettings['advance']['profiler']['embeddingSize']['Glove'] for k in glove.keys(): configSettings['advance']['profiler']['embeddingSize']['Glove'][k] = 'False' configSettings['advance']['profiler']['embeddingSize']['Glove'][request.POST.get('txtglovedimensions')] = 'True' fastText = configSettings['advance']['profiler']['embeddingSize']['FastText'] for k in fastText.keys(): configSettings['advance']['profiler']['embeddingSize']['FastText'][k] = 'False' configSettings['advance']['profiler']['embeddingSize']['FastText'][request.POST.get('txtFastTextdimensions')] = 'True' if 'LatentSemanticAnalysis' in configSettings['advance']['profiler']['embeddingSize']: LatentSemanticAnalysis = configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] for k in LatentSemanticAnalysis.keys(): configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'][k] = 'False' configSettings['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'][request.POST.get('txttfidfdimensions')] = 'True' if 'TF_IDF' in configSettings['advance']['profiler']['embeddingSize']: configSettings['advance']['profiler']['embeddingSize']['TF_IDF']['maxFeatures'] = request.POST.get('tfidfmaxfeatures') if 'CountVectors' in configSettings['advance']['profiler']['embeddingSize']: configSettings['advance']['profiler']['embeddingSize']['CountVectors']['maxFeatures'] = request.POST.get('cvmaxfeatures') if problem_type.lower() == 'imageclassification': configSettings['advance']['image_config']['img_width'] = int(request.POST.get('img_width')) configSettings['advance']['image_config']['img_height'] = int(request.POST.get('img_height')) configSettings['advance']['image_config']['img_channel'] = int(request.POST.get('img_channel')) configSettings['advance']['image_config']['lr'] = float(request.POST.get('lr')) configSettings['advance']['image_config']['epochs'] = int(request.POST.get('epoch
s')) configSettings['advance']['image_config']['test_split_ratio'] = float(request.POST.get('test_split_ratio')) if problem_type.lower() == "llmfinetuning": configSettings = llmadvancesettings(configSettings,request) if problem_type.lower() == 'objectdetection' or problem_type.lower() == 'imageclassification': configSettings['advance']['ImageAugmentation']['Enable'] = request.POST.get('advance_ImageAugmentation_Enable') configSettings['advance']['ImageAugmentation']['KeepAugmentedImages'] = request.POST.get('advance_ImageAugmentation_keepAugmentedImages') configSettings['advance']['ImageAugmentation']['Noise']['Blur'] = request.POST.get('advance_ImageAugmentation_Noise_Blur') configSettings['advance']['ImageAugmentation']['Noise']['Brightness'] = request.POST.get('advance_ImageAugmentation_Noise_Brightness') configSettings['advance']['ImageAugmentation']['Noise']['Contrast'] = request.POST.get('advance_ImageAugmentation_Noise_Contrast') configSettings['advance']['ImageAugmentation']['Transformation']['Flip'] = request.POST.get('advance_ImageAugmentation_Transformation_Flip') configSettings['advance']['ImageAugmentation']['Transformation']['Rotate'] = request.POST.get('advance_ImageAugmentation_Transformation_Rotate') configSettings['advance']['ImageAugmentation']['Transformation']['Shift'] = request.POST.get('advance_ImageAugmentation_Transformation_Shift') configSettings['advance']['ImageAugmentation']['Transformation']['Crop'] = request.POST.get('advance_ImageAugmentation_Transformation_Crop') configSettings['advance']['ImageAugmentation']['configuration']['Blur']['noOfImages'] = request.POST.get('noofblurimages') configSettings['advance']['ImageAugmentation']['configuration']['Blur']['limit'] = request.POST.get('limitblurimage') configSettings['advance']['ImageAugmentation']['configuration']['Brightness']['noOfImages'] = request.POST.get('noofbrightnessimages') configSettings['advance']['ImageAugmentation']['configuration']['Brightness']['limit'] = request.POST.get('limitbrightnessimage') configSettings['advance']['ImageAugmentation']['configuration']['Contrast']['noOfImages'] = request.POST.get('noofcontrastimages') configSettings['advance']['ImageAugmentation']['configuration']['Contrast']['limit'] = request.POST.get('limitcontrastimage') configSettings['advance']['ImageAugmentation']['configuration']['Flip']['noOfImages'] = request.POST.get('noofflipimages') configSettings['advance']['ImageAugmentation']['configuration']['Rotate']['noOfImages'] = request.POST.get('noofrotateimages') configSettings['advance']['ImageAugmentation']['configuration']['Shift']['noOfImages'] = request.POST.get('noofshiftimages') configSettings['advance']['ImageAugmentation']['configuration']['Crop']['noOfImages'] = request.POST.get('noofcropimages') configSettings['advance']['selector']['selectionMethod']['featureSelection'] = 'False' configSettings['advance']['selector']['selectionMethod']['featureEngineering'] = 'False' configSettings['advance']['selector']['featureSelection']['allFeatures'] = 'False' configSettings['advance']['selector']['featureSelection']['statisticalBased'] = 'False' configSettings['advance']['selector']['featureSelection']['modelBased'] = 'False' if(request.POST.get('selectionMethod') == 'FeatureSelection'): configSettings['advance']['selector']['selectionMethod']['featureSelection'] = 'True' else: configSettings['advance']['selector']['selectionMethod']['featureEngineering'] = 'True' if request.POST.get('allFeatures'): configSettings['advance']['selector']['featureSelection']['allFeatures'] = request.POST.get('allFeatures') if request.POST.get('statisticalBased'): configSettings['advance']['selector']['featureSelection']['statisticalBased'] = request.POST.get('statisticalBased') if request.POST.get('modelBased'): configSettings['advance']['selector']['featureSelection']['modelBased'] = request.POST.get('modelBased') dimentionalityreductionmethod = request.POST.get('dimentionalityreductionmethod') for x in list(configSettings['advance']['selector']['featureEngineering'].keys()): if x != 'numberofComponents': configSettings['advance']['selector']['featureEngineering'][x] = 'False' configSettings['advance']['selector']['featureEngineering'][dimentionalityreductionmethod] = 'True' configSettings['advance']['selector']['featureEngineering']['numberofComponents'] = request.POST.get('numberofComponents') #configSettings['advance']['selector']['categoricalFeatureRatio'] = request.POST.get('CatFeatureRatio') configSettings['advance']['selector']['statisticalConfig']['correlationThresholdFeatures'] = request.POST.get('correlationThresholdFeatures') configSettings['advance']['selector']['statisticalConfig']['correlationThresholdTarget'] = request.POST.get('correlationThresholdTarget') configSettings['advance']['selector']['statisticalConfig']['pValueThresholdFeatures'] = request.POST.get('pValueThresholdFeatures') configSettings['advance']['selector']['statisticalConfig']['pValueThresholdTarget'] = request.POST.get('pValueThresholdTarget') configSettings['advance']['selector']['statisticalConfig']['varianceThreshold'] = request.POST.get('VarianceThreshold') if problem_type.lower() == 'recommendersystem': configSettings['advance']['recommenderparam']['svd_params']= eval(request.POST.get('svd_params')) configSettings['advance']['associationrule']['modelParams']['apriori'] = eval(request.POST.get('apriori')) configSettings['advance']['textSimilarityConfig'] = eval(request.POST.get('textsimilarity')) if configSettings['basic']['distributedLearning'].lower() == 'true': configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('classDistributedXGBoost')) configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('classDistributedLightGBM')) configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('DistributedXGBoostreg')) configSettings['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('DistributedLightGBMreg')) if configSettings['basic']['onlineLearning'].lower() != 'true' and configSettings['basic']['distributedLearning'].lower() != 'true': if (problem_type.lower() == 'classification') or (problem_type.lower() == 'regression') or (problem_type.lower() == 'clustering') or (problem_type.lower() == 'topicmodelling'): if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Logistic Regression'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression'] = eval(request.POST.get('classification_LogisticRegression')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Naive Bayes'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes'] = eval(request.POST.get('classification_GaussianNB')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Support Vector Machine'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Support Vector Machine'] = eval(request.POST.get('classification_SVC')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['K Nearest Neighbors'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors'] = eval(request.POST.get('classification_KNeighborsClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Decision Tree'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree'] = eval(request.POST.get('classification_DecisionTreeClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Random Forest'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest'] = eval(request.POST.get('classification_RandomForestClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Gradient Boosting'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting'] = eval(request.POST.get('classification_GradientBoostingClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Extreme Gradient Boosting (XGBoost)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('classification_ExtremeGradientBoostingClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Light Gradient Boosting (LightGBM)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('classification_LightGradientBoostingClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Categorical Boosting (CatBoost)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Categorical Boosting (CatBoost)'] = eval(request.POST.get('classification_CategoricalBoostingClassifier')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Linear Regression'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression'] = eval(request.POST.get('regression_LinearRegression')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Lasso'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Lasso'] = eval(request.POST.get('regression_Lasso')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Ridge'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Ridge'] = eval(request.POST.get('regression_Ridge')) if problem_type.lower() == 'topicmodelling' and configSettings['basic']['algorithms']['topicModelling']['LDA'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['topicModellingParams']['LDA']= eval(request.POST.get('topicmodeling_lda')) if problem_type.lower() == 'clustering' and configSettings['basic']['algorithms']['clustering']['KMeans'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['clusteringModelParams']['KMeans']= eval(request.POST.get('cluster_kmeans')) if problem_type.lower() == 'clustering' and configSettings['basic']['algorithms']['clustering']['DBSCAN'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['clusteringModelParams']['DBSCAN']= eval(request.POST.get('cluster_DBSCAN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Decision Tree'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree'] = eval(request.POST.get('regression_DecisionTreeRegressor')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Random Forest'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest'] = eval(request.POST.get('regression_RandomForestRegressor')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Extreme Gradient Boosting (XGBoost)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Extreme Gradient Boosting (XGBoost)'] = eval(request.POST.get('regression_XGBoostRegressor')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Light Gradient Boosting (LightGBM)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Light Gradient Boosting (LightGBM)'] = eval(request.POST.get('regression_LightGBMRegressor')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Categorical Boosting (CatBoost)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Categorical Boosting (CatBoost)'] = eval(request.POST.get('regression_CatBoostRegressor')) configSettings['advance']['mllearner_config']['modelparamsfile'] = request.POST.get('ModelParamFile') configSettings['advance']['mllearner_config']['optimizationMethod'] = request.POST.get('OptimizationMethod') configSettings['advance']['mllearner_config']['optimizationHyperParameter'][ 'iterations'] = request.POST.get('iterations') configSettings['advance']['mllearner_config']['optimizationHyperParameter'][ 'trainTestCVSplit'] = request.POST.get('trainTestCVSplit') configSettings['advance']['mllearner_config']['thresholdTunning'] = request.POST.get('thresholdTunning') configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] = request.POST.get('EnsembleStacking') configSettings['advance']['mllearner_config']['Voting (Ensemble)'] = request.POST.get('EnsembleVoting') configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['enable'] = request.POST.get('ensemple_bagging_
lr_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Logistic Regression']['param'] = eval(request.POST.get('classi_ensemple_bagging_lr_param')) configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['enable'] = request.POST.get('ensemple_bagging_naivebayes_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Naive Bayes']['param'] = eval(request.POST.get('classi_ensemple_bagging_naivebayes_param')) configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['enable'] = request.POST.get('ensemple_bagging_svm_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Support Vector Machine']['param'] = eval(request.POST.get('classi_ensemple_bagging_svm_param')) configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['enable'] = request.POST.get('ensemple_bagging_knn_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['K Nearest Neighbors']['param'] = eval(request.POST.get('classi_ensemple_bagging_knn_param')) configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] = request.POST.get('ensemple_bagging_dt_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Decision Tree']['param'] = eval(request.POST.get('classi_ensemple_bagging_dt_param')) configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['enable'] = request.POST.get('ensemple_bagging_rf_enable') if configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)']['Random Forest']['param'] = eval(request.POST.get('classi_ensemple_bagging_rf_param')) configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['enable'] = request.POST.get('ensemple_bagging_lir_enable') if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Linear Regression']['param'] = eval(request.POST.get('reg_ensemple_bagging_lir_param')) configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] = request.POST.get('ensemple_bagging_dit_enable') if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Decision Tree']['param'] = eval(request.POST.get('reg_ensemple_bagging_dit_param')) configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['enable'] = request.POST.get('ensemple_bagging_ridge_enable') if configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['enable'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)']['Ridge']['param'] = eval(request.POST.get('reg_ensemple_bagging_ridge_param')) if problem_type.lower() == 'classification': if configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)'] = eval(request.POST.get('ensamblestackingClassifierparams')) if problem_type.lower() == 'regression': if configSettings['advance']['mllearner_config']['Stacking (Ensemble)'] == 'True': configSettings['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)'] = eval(request.POST.get('ensamblestackingRegressorparams')) configSettings['basic']['filterExpression'] = request.POST.get('filterExpression') #configSettings['advance']['mllearner_config']['trainPercentage'] = request.POST.get('trainPercentage') if (problem_type.lower() == 'classification') or (problem_type.lower() == 'regression'): configSettings['advance']['modelEvaluation']['smcStrategy'] = request.POST.get('smcStrategy') configSettings['advance']['modelEvaluation']['smcMaxDepth'] = request.POST.get('smcMaxDepth') configSettings['advance']['modelEvaluation']['smcCondition'] = request.POST.get('smcCondition') configSettings['advance']['modelEvaluation']['miCondition'] = request.POST.get('miCondition') if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Neural Network'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network'] = eval( request.POST.get('dl_classification_SNN')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network'] = eval( request.POST.get('dl_classification_RNN')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network (GRU)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (GRU)'] = eval( request.POST.get('dl_classification_GRURNN')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Recurrent Neural Network (LSTM)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (LSTM)'] = eval( request.POST.get('dl_classification_LSTMRNN')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Convolutional Neural Network (1D)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Convolutional Neural Network (1D)'] = eval( request.POST.get('dl_classification_CNN')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification'].get('Neural Architecture Search') == 'True': configSettings['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Architecture Search'] = eval( request.POST.get('dl_classification_NAS')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Neural Network'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network'] = eval( request.POST.get('dl_regression_SNN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network'] = eval( request.POST.get('dl_regression_RNN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network (GRU)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)'] = eval( request.POST.get('dl_regression_GRURNN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Recurrent Neural Network (LSTM)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)'] = eval( request.POST.get('dl_regression_LSTMRNN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Convolutional Neural Network (1D)'] == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Convolutional Neural Network (1D)'] = eval( request.POST.get('dl_regression_CNN')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression'].get('Neural Architecture Search') == 'True': configSettings['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Architecture Search'] = eval( request.POST.get('dl_regression_NAS')) #configSettings['advance']['dllearner_config']['optimizationMethod'] = request.POST.get('DLOptimizationMethod') else: if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Logistic Regression'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Logistic Regression'] = eval(request.POST.get('OnlineLogisticRegression')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Decision Tree Classifier'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Decision Tree Classifier'] = eval(request.POST.get('OnlineDecisionTreeClassifier')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online Softmax Regression'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Softmax Regression'] = eval(request.POST.get('OnlineSoftmaxRegression')) if problem_type.lower() == 'classification' and configSettings['basic']['algorithms']['classification']['Online KNN Classifier'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online KNN Classifier'] = eval(request.POST.get('OnlineKNNClassifier')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online Linear Regression'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Linear Regression'] = eval(request.POST.get('OnlineLinearRegression')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online Decision Tree Regressor'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Decision Tree Regressor'] = eval(request.POST.get('OnlineDecisionTreeRegressor')) if problem_type.lower() == 'regression' and configSettings['basic']['algorithms']['regression']['Online KNN Regressor'] == 'True': configSettings['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online KNN Regressor'] = eval(request.POST.get('OnlineKNNRegressor')) configSettings['advance']['profiler']['targetEncodingParams'] = eval(request.POST.get('targetEncodingParams')) configSettings['advance']['profiler']['outlierDetectionParams'] = eval(request.POST.get('outlierDetectionParams')) if problem_type.lower() == 'objectdetection': configSettings['advance']['objectDetection']['pretrainedModel']= request.POST.get('objectdetectionpretrainedmodel') configSettings['advance']['objectDetection']['n_epoch'] = int(request.POST.get('objectDetection_n_epoch')) configSettings['advance']['objectDetection']['batch_size'] = int(request.POST.get('objectDetection_batch_size')) if problem_type.lower() == 'timeseriesforecasting': #task 11997 #task 13052 configSettings['advance']['timeSeriesForecasting']['fix_seasonality'] = request.POST.get('seasionality') # task 13052 configSettings['advance']['timeSeriesForecasting']['fix_stationarity'] =request.POST.get('stationarity') # task 13052 configSettings['advance']['timeSeriesForecasting']['modelParams']['ARIMA'] = eval(request.POST.get('ARIMA')) #task 11997 configSettings['advance']['timeSeriesForecasting']['modelParams']['FBPROPHET'] = eval(request.POST.get('FBPROPHET')) #task 11997 configSettings['advance']['timeSeriesForecasting']['modelParams']['LSTM'] = eval(request.POST.get('TSLSTM')) #task 11997 configSettings['advance']['timeSeriesForecasting']['modelParams']['Encoder_Decoder_LSTM_MVI_UVO'] = eval(request.POST.get('TSLSTMencoderdecoder')) configSettings['advance']['timeSeriesForecasting']['modelParams']['MLP'] = eval(request.POST.get('TSMLP')) #task 11997 if problem_type.lower() == 'timeseriesan
omalydetection': configSettings['advance']['timeSeriesAnomalyDetection']['modelParams']['AutoEncoder'] = eval(request.POST.get('autoEncoderAD')) #task 11997 configSettings['advance']['timeSeriesAnomalyDetection']['modelParams']['DBScan'] = eval(request.POST.get('dbscanAD')) #task 13316 if problem_type.lower() == 'anomalydetection': configSettings['advance']['anomalyDetection']['modelParams']['IsolationForest'] = eval(request.POST.get('IsolationForest')) configSettings['advance']['anomalyDetection']['modelParams']['oneclassSVM'] = eval(request.POST.get('oneclassSVM')) configSettings['advance']['anomalyDetection']['modelParams']['DBScan'] = eval(request.POST.get('DBScanAD')) updatedConfigSettingsJson = json.dumps(configSettings) f.seek(0) f.write(updatedConfigSettingsJson) f.truncate() f.close() errormsg = 'NA' request.session['ModelStatus'] = 'Not Trained' except Exception as e: import sys exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) errormsg = 'Input value error' print(e) if 'NoOfRecords' in request.session: records = request.session['NoOfRecords'] else: records = 'NA' if request.session['datatype'] in ['Video', 'Image','Document']: folderLocation = str(request.session['datalocation']) dataFilePath = os.path.join(folderLocation, request.session['csvfullpath']) else: dataFilePath = str(request.session['datalocation']) # dataFilePath = configSettings['basic']['dataLocation'] #df = pd.read_csv(dataFilePath, encoding='latin1') featuresList = configSettings['basic']['featureList'] config = {} config['modelName'] = configSettings['basic']['modelName'] config['modelVersion'] = configSettings['basic']['modelVersion'] config['datetimeFeatures'] = configSettings['basic']['dateTimeFeature'] config['sequenceFeatures'] = configSettings['basic']['indexFeature'] config['FeaturesList'] = featuresList config['unimportantFeatures'] = list(set(featuresList) - set(configSettings['basic']['trainingFeatures'])) config['targetFeature'] = configSettings['basic']['targetFeature'] scoring = configSettings['basic']['scoringCriteria'] scoringCriteria = "" for k in scoring.keys(): if configSettings['basic']['scoringCriteria'][k] == 'True': scoringCriteria = k break config['scoringCriteria'] = scoringCriteria temp = {} temp['ModelName'] = configSettings['basic']['modelName'] temp['Version'] = configSettings['basic']['modelVersion'] selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'tab': 'advconfig', 'config': config, 'temp': temp, 'advconfig': configSettings, 'noOfRecords': records, 'advance_status_msg': 'Configuration Done', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'errormsg':errormsg, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraining'} return context elif submittype == 'AdvanceDefault': try: MachineLearningModels = [] configFile = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json') f = open(configFile, "r") configSettings = f.read() f.close() updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+") configSettingsData = f.read() updateconfigSettingsJson = json.loads(configSettingsData) configSettingsJson = json.loads(configSettings) temp = {} temp['ModelName'] = request.session['UseCaseName'] temp['Version'] = request.session['ModelVersion'] config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = updateconfigSettingsJson['basic']['dateTimeFeature'] config['sequenceFeatures'] = updateconfigSettingsJson['basic']['indexFeature'] config['FeaturesList'] = updateconfigSettingsJson['basic']['trainingFeatures'] config['unimportantFeatures'] = '' config['targetFeature'] = updateconfigSettingsJson['basic']['targetFeature'] problemtypes = updateconfigSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if updateconfigSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break selectAlgo = "" if problem_type in ['classification','regression','timeSeriesForecasting', 'timeSeriesAnomalyDetection', 'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition']: #task 11997 for key in updateconfigSettingsJson['basic']['algorithms'][problem_type]: if updateconfigSettingsJson['basic']['algorithms'][problem_type][key] == 'True': if selectAlgo != "": selectAlgo += ',' selectAlgo += key if problem_type not in ['classification','regression']: break for key in updateconfigSettingsJson['basic']['algorithms'][problem_type]: if updateconfigSettingsJson['basic']['algorithms'][problem_type][key] == 'True': MachineLearningModels.append(key) if problem_type == 'objectDetection': from AION import pretrainedModels ptmObj = pretrainedModels() obModels = ptmObj.get_info(selectAlgo) else: obModels = {} problemType = problem_type selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 2 if request.session['finalstate'] <= 2: request.session['finalstate'] = 2 outlierDetection = 'False' updateconfigSettingsJson['advance'] = configSettingsJson['advance'] for x in list(updateconfigSettingsJson['advance']['profiler']['outlierDetection'].keys()): if updateconfigSettingsJson['advance']['profiler']['outlierDetection'][x] == 'True': outlierDetection = 'True' if outlierDetection == 'False': updateconfigSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'True' else: updateconfigSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'False' updateconfigSettingsJson = advanceConfigfields(updateconfigSettingsJson) #print(configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['ExtremeGradientBoostingClassifier']) updateconfigSettingsJson['advance']['profiler']['normalizationMethod'] = 'None' normalizationtypes = updateconfigSettingsJson['advance']['profiler']['normalization'] for k in normalizationtypes.keys(): if updateconfigSettingsJson['advance']['profiler']['normalization'][k] == 'True': updateconfigSettingsJson['advance']['profiler']['normalizationMethod'] = k break #---------------- default Hypermarameter changes--- ----------Usnish-------------- hyperparamFile = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config', 'hyperparam_config.json')) with open(hyperparamFile) as json_file: hyperparamConfig = json.load(json_file) context = {'tab': 'advconfig','temp': temp,'advconfig': updateconfigSettingsJson, 'config': config, 'selected_use_case': selected_use_case,'MachineLearningModels':MachineLearningModels, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,"obModels":obModels,"problemType":problemType, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','advance_help':ht.advance_help,'hyperparamConfig':hyperparamConfig} return context except Exception as e: print(e) def llmadvancesettings(configSettings,request): algo = '' for x in list(configSettings['basic']['algorithms']['llmFineTuning'].keys()): if configSettings['basic']['algorithms']['llmFineTuning'][x] == 'True': algo = x if algo == 'LLaMA-2': configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['fineTuningMethod'] = request.POST.get('llama2fullfinemethod') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['epochs'] = request.POST.get('llama2epochs') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['learning_rate'] = request.POST.get('llama2learningrate') if request.POST.get('llama2fullfinemethod') != 'Full Fine-Tuning': configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['lora_rank'] = request.POST.get('llama2lorarank') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2']['lora_alpha'] = request.POST.get('llama2loraalpha') if algo == 'LLaMA-2-Chat': configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['fineTuningMethod'] = request.POST.get('llama2chatfullfinemethod') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['epochs'] = request.POST.get('llmllama2chatepochs') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['learning_rate'] = request.POST.get('llama2chatlearningrate') if request.POST.get('llama2chatfullfinemethod') != 'Full Fine-Tuning': configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['lora_rank'] = request.POST.get('llama2chatlorarank') configSettings['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat']['lora_alpha'] = request.POST.get('llama2chatloraalpha') if algo == 'CodeLLaMA-2': configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['fineTuningMethod'] = request.POST.get('CodeLLaMA2fullfinemethod') configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['epochs'] = request.POST.get('CodeLLaMA2epochs') configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['learning_rate'] = request.POST.get('CodeLLaMA2learningrate') if request.POST.get('CodeLLaMA2fullfinemethod') != 'Full Fine-Tuning': configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['lora_rank'] = request.POST.get('CodeLLaMA2lorarank') configSettings['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2']['lora_alpha'] = request.POST.get('CodeLLaMA2loraalpha') if algo == 'Falcon': configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['fullFineTuning'] = request.POST.get('falconfullfinetuning') configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['epochs'] = request.POST.get('falconepochs') configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['learning_rate'] = request.POST.get('falconlearningrate') configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['lora_rank'] = request.POST.get('falconlorarank') configSettings['advance']['llmFineTuning']['modelParams']['Falcon']['lora_alpha'] = request.POST.get('falconloraalpha') return configSettings def advanceConfigfields(configSettingsJson): try: configSettingsJson['advance']['mllearner_config']['EnsembleStacking'] = \\ configSettingsJson['advance']['mllearner_config']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['EnsembleVoting'] = \\ configSettingsJson['advance']['mllearner_config']['Voting (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'LogisticRegression'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GaussianNB'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['SVC'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'Support Vector Machine'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'KNeighborsClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'DecisionTreeClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'RandomForestClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'GradientBoostingClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'ExtremeGradientBoostingClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['mllearner_config']['
modelParams']['classifierModelParams'][ 'LightGradientBoostingClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'CategoricalBoostingClassifier'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams'][ 'Categorical Boosting (CatBoost)'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SimpleRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][ 'Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['GRURNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][ 'Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['LSTMRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][ 'Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleStacking'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'LogisticRegression'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'Logistic Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'NaiveBayes'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'Naive Bayes'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'SVM'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'Support Vector Machine'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'KNN'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'K Nearest Neighbors'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'DecisionTree'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'RandomForest'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging'][ 'Random Forest'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DQN'] = \\ configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Deep Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DDQN'] = \\ configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams'][ 'Dueling Deep Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DQN'] = \\ configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DDQN'] = \\ configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams'][ 'Dueling Deep Q Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['CNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][ 'Convolutional Neural Network (1D)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LinearRegression'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][ 'DecisionTreeRegressor'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][ 'RandomForestRegressor'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['XGBoostRegressor'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][ 'Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LightGBMRegressor'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][ 'Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['CatBoostRegressor'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams'][ 'Categorical Boosting (CatBoost)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleStacking'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][ 'LinearRegression'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][ 'Linear Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][ 'DecisionTree'] = \\ configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging'][ 'Decision Tree'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['NAS'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Neural Architecture Search'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['NAS'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'][ 'Neural Architecture Search'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['CNN'] = \\ configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'][ 'Convolutional Neural Network (1D)'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'OnlineLogisticRegression'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'Online Logistic Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'OnlineDecisionTreeClassifier'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'Online Decision Tree Classifier'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'OnlineSoftmaxRegression'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'Online Softmax Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'OnlineKNNClassifier'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams'][ 'Online KNN Classifier'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'OnlineLinearRegression'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'Online Linear Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'OnlineDecisionTreeRegressor'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'Online Decision Tree Regressor'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'OnlineKNNRegressor'] = \\ configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams'][ 'Online KNN Regressor'] configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] = \\ configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] = \\ configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] if 'llmFineTuning' in configSettingsJson['advance']: configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2'] = \\ configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2'] configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2Chat'] = \\ configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2-Chat'] configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA2'] = \\ configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA-2'] configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2'] = \\ configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2'] configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2Chat'] = \\ configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat'] configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA2'] = \\ configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2'] configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2'] configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2Chat'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2-Chat'] configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA2'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA-2'] if 'distributedlearner_config' in configSettingsJson['advance']: configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][ 'DistributedXGBoost'] = \\ configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][ 'Distributed Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][ 'DistributedLightGBM'] = \\ configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams'][ 'Distributed Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][ 'DistributedXGBoost'] = \\ configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][ 'Distributed Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][ 'DistributedLightGBM'] = \\ configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams'][ 'Distributed Light Gradient Boosting (LightGBM)'] problem_type = "" problemtypes = configSettingsJson['basic']['
analysisType'] for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break deepLearning = 'False' machineLearning = 'False' reinforcementLearning = 'False' selectAlgo = "" if problem_type.lower() in ['classification','regression']: for key in configSettingsJson['basic']['algorithms'][problem_type]: if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True': if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Neural Architecture Search']: deepLearning = 'True' if key in ['Logistic Regression','Naive Bayes','Decision Tree','Random Forest','Support Vector Machine','K Nearest Neighbors','Gradient Boosting','Extreme Gradient Boosting (XGBoost)','Light Gradient Boosting (LightGBM)','Categorical Boosting (CatBoost)','Linear Regression','Lasso','Ridge','Decision Tree','Random Forest','Bagging (Ensemble)']: machineLearning = 'True' if key in ['Deep Q Network','Dueling Deep Q Network']: reinforcementLearning = 'True' elif problem_type.lower() in ['clustering','topicmodelling']:#clustering(Bug 12611) machineLearning = 'True' configSettingsJson['basic']['deepLearning'] = deepLearning configSettingsJson['basic']['machineLearning'] = machineLearning configSettingsJson['basic']['reinforcementLearning'] = reinforcementLearning except Exception as e: print(e) return (configSettingsJson) def basicconfignex(request): #pemfilename = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','modelTraining','static','key','AION_GPU.pem')) try: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) #---------------- default Hypermarameter changes-------------Usnish-------------- hyperparamFile = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','config', 'hyperparam_config.json')) with open(hyperparamFile) as json_file: hyperparamConfig = json.load(json_file) #---------------- default Hypermarameter changes end-------------Usnish-------------- # ------------------ Debiasing Changes ------------------ categorical_features = [] class_list = [] MachineLearningModels = [] check_traget = configSettingsJson['basic']['targetFeature'] selectedDebiasingFeature = 'None' selectedDebiasingClass = 'None' selectedDebiasingAlgorithm = '' problemtypes = configSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break if request.method == 'GET': for key in configSettingsJson['basic']['algorithms'][problem_type]: if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True': MachineLearningModels.append(key) else: MachineLearningModels = request.POST.getlist('MachineLearningModels') if problem_type.lower() in ['classification','regression']: if check_traget != '': try: if 'deBiasing' in configSettingsJson['advance']['profiler']: deBiasing = configSettingsJson['advance']['profiler']['deBiasing'] selectedDebiasingFeature = deBiasing.get('FeatureName','None') selectedDebiasingClass = deBiasing.get('ClassName','None') selectedDebiasingAlgorithm = deBiasing.get('Algorithm','') if selectedDebiasingFeature != 'None': df = pd.read_csv(configSettingsJson['basic']['dataLocation'],encoding='utf8',encoding_errors= 'replace') classeslist = [] classeslist = df[selectedDebiasingFeature].unique().tolist() for item in classeslist: class_list.append(item) else: class_list.append('None') except: pass feature_dict = configSettingsJson['advance']['profiler']['featureDict'] for feature_config in feature_dict: if feature_config.get('type', '') == 'categorical' and feature_config['feature'] != check_traget: categorical_features.append(feature_config['feature']) # ------------------ ------------------ #print(categorical_features) temp = {} temp['ModelName'] = request.session['UseCaseName'] temp['Version'] = request.session['ModelVersion'] config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = configSettingsJson['basic']['dateTimeFeature'] config['sequenceFeatures'] = configSettingsJson['basic']['indexFeature'] config['FeaturesList'] = configSettingsJson['basic']['trainingFeatures'] config['unimportantFeatures'] = '' config['targetFeature'] = configSettingsJson['basic']['targetFeature'] deepLearning = 'False' machineLearning = 'False' reinforcementLearning = 'False' selectAlgo = "" print(problem_type) if problem_type.lower() in ['classification','regression']: for key in configSettingsJson['basic']['algorithms'][problem_type]: if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True': if key in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','Neural Architecture Search']: deepLearning = 'True' if key in ['Logistic Regression','Naive Bayes','Decision Tree','Random Forest','Support Vector Machine','K Nearest Neighbors','Gradient Boosting','Extreme Gradient Boosting (XGBoost)','Light Gradient Boosting (LightGBM)','Categorical Boosting (CatBoost)','Linear Regression','Lasso','Ridge','Decision Tree','Random Forest','Bagging (Ensemble)']: machineLearning = 'True' if key in ['Deep Q Network','Dueling Deep Q Network']: reinforcementLearning = 'True' elif problem_type.lower() in ['clustering','topicmodelling']:#clustering(Bug 12611) machineLearning = 'True' configSettingsJson['basic']['deepLearning'] = deepLearning configSettingsJson['basic']['machineLearning'] = machineLearning configSettingsJson['basic']['reinforcementLearning'] = reinforcementLearning if problem_type in ['classification','regression','timeSeriesForecasting', 'timeSeriesAnomalyDetection', 'recommenderSystem','clustering','anomalyDetection','topicModelling','survivalAnalysis','videoForecasting','imageClassification','objectDetection','stateTransition']: #task 11997 for key in configSettingsJson['basic']['algorithms'][problem_type]: if configSettingsJson['basic']['algorithms'][problem_type][key] == 'True': if selectAlgo != "": selectAlgo += ',' selectAlgo += key if problem_type not in ['classification','regression']: break if problem_type == 'objectDetection': from AION import pretrainedModels ptmObj = pretrainedModels() obModels = ptmObj.get_info(selectAlgo) else: obModels = {} problemType = problem_type selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 2 #configSettingsJson['advance']['remoteTraining']['ssh']['keyFilePath'] = pemfilename if request.session['finalstate'] <= 2: request.session['finalstate'] = 2 outlierDetection = 'False' for x in list(configSettingsJson['advance']['profiler']['outlierDetection'].keys()): if configSettingsJson['advance']['profiler']['outlierDetection'][x] == 'True': outlierDetection = 'True' if outlierDetection == 'False': configSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'True' else: configSettingsJson['advance']['profiler']['outlierDetection']['Disable'] = 'False' if 'distributedLearning' not in configSettingsJson['basic']: configSettingsJson['basic']['distributedLearning'] = 'False' configSettingsJson['advance']['mllearner_config']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['EnsembleVoting']=configSettingsJson['advance']['mllearner_config']['Voting (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['LogisticRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Logistic Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GaussianNB'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Naive Bayes'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['SVC'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Support Vector Machine'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['KNeighborsClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['K Nearest Neighbors'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['DecisionTreeClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['RandomForestClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Random Forest'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['GradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Gradient Boosting'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['ExtremeGradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['LightGradientBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['CategoricalBoostingClassifier'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Categorical Boosting (CatBoost)'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']=configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Bagging (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['LogisticRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Logistic Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['NaiveBayes'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Naive Bayes'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['SVM'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Support Vector Machine'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['KNN'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['K Nearest Neighbors'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['DecisionTree'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['RandomForest'] = configSettingsJson['advance']['mllearner_config']['modelParams']['classifierModelParams']['EnsembleBagging']['Random Forest'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Deep
Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['DDQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['classifierModelParams']['Dueling Deep Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network'] configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['DDQN'] = configSettingsJson['advance']['rllearner_config']['modelParams']['regressorModelParams']['Dueling Deep Q Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['CNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['Convolutional Neural Network (1D)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LinearRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Linear Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['DecisionTreeRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Decision Tree'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['RandomForestRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Random Forest'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['XGBoostRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['LightGBMRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['CatBoostRegressor'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Categorical Boosting (CatBoost)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleStacking']=configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Stacking (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']=configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['Bagging (Ensemble)'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['LinearRegression'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['Linear Regression'] configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['DecisionTree'] = configSettingsJson['advance']['mllearner_config']['modelParams']['regressorModelParams']['EnsembleBagging']['Decision Tree'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['NAS'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams'].get('Neural Architecture Search') configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams']['NAS'] = configSettingsJson['advance']['dllearner_config']['modelParams']['classifierModelParams'].get('Neural Architecture Search') configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['SimpleRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['GRURNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (GRU)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['LSTMRNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Recurrent Neural Network (LSTM)'] configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['CNN'] = configSettingsJson['advance']['dllearner_config']['modelParams']['regressorModelParams']['Convolutional Neural Network (1D)'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineLogisticRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Logistic Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineDecisionTreeClassifier'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Decision Tree Classifier'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineSoftmaxRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online Softmax Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['OnlineKNNClassifier'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['classifierModelParams']['Online KNN Classifier'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineLinearRegression'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Linear Regression'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineDecisionTreeRegressor'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online Decision Tree Regressor'] configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['OnlineKNNRegressor'] = configSettingsJson['advance']['onlinelearner_config']['modelParams']['regressorModelParams']['Online KNN Regressor'] configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] = configSettingsJson['advance']['profiler']['textConversionMethod']['LatentSemanticAnalysis'] configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] = configSettingsJson['advance']['profiler']['embeddingSize']['LatentSemanticAnalysis'] if 'llmFineTuning' in configSettingsJson['advance']: configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2'] configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA2Chat'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['LLaMA-2-Chat'] configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA2'] = configSettingsJson['basic']['algorithms']['llmFineTuning']['CodeLLaMA-2'] configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2'] configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA2Chat'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['LLaMA-2-Chat'] configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA2'] = configSettingsJson['advance']['llmFineTuning']['modelParams']['CodeLLaMA-2'] configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2'] configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA2Chat'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['LLaMA-2-Chat'] configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA2'] = \\ configSettingsJson['basic']['modelSize']['llmFineTuning']['CodeLLaMA-2'] if 'distributedlearner_config' in configSettingsJson['advance']: configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['DistributedXGBoost'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['DistributedLightGBM'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['classifierModelParams']['Distributed Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['DistributedXGBoost'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['Distributed Extreme Gradient Boosting (XGBoost)'] configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['DistributedLightGBM'] = configSettingsJson['advance']['distributedlearner_config']['modelParams']['regressorModelParams']['Distributed Light Gradient Boosting (LightGBM)'] configSettingsJson['advance']['profiler']['normalizationMethod'] = 'None' normalizationtypes = configSettingsJson['advance']['profiler']['normalization'] for k in normalizationtypes.keys(): if configSettingsJson['advance']['profiler']['normalization'][k] == 'True': configSettingsJson['advance']['profiler']['normalizationMethod'] = k break context = {'temp': temp, 'advconfig': configSettingsJson, 'MachineLearningModels':MachineLearningModels,'hyperparamConfig':hyperparamConfig,'config': config, 'selected_use_case': selected_use_case, 'categorical_features': categorical_features, 'selectedDebiasingFeature': selectedDebiasingFeature, 'selectedDebiasingAlgorithm': selectedDebiasingAlgorithm, 'Class_list': class_list, 'selectedDebiasingClass': selectedDebiasingClass, #Debiasing Changes 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,"obModels":obModels,"problemType":problemType, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','advance_help':ht.advance_help} return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context={'erroradvance':'Fail to load advance config Json file'} return context <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' def analysis_images(folder_path): from AIX import image_eda qualityscore = image_eda.img_MeasureImageQuality(folder_path) eda_result = image_eda.img_EDA(folder_path) #Image Duplicate Finder duplicate_img = image_eda.img_duplicatefinder(folder_path) color_plt = image_eda.img_plot_colour_hist(folder_path) return qualityscore,eda_result,duplicate_img,color_plt<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import time import os import subprocess import base64 import sys import re from appbe.dataIngestion import getcommonfields from appbe.dataIngestion import getusercasestatus def startSummarization(request,DEFAULT_FILE_PATH,CONFIG_PATH,DATA_FILE_PATH): try: if request.FILES: Datapath = request.FILES['summarypath'] ext = str(Datapath).split('.')[-1] filetimestamp = str(int(time.time())) if ext.lower() in ['txt','pdf','doc','docs']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() configFile = os.path.join(DEFAULT_FILE_PATH,'aion_textSummerization.json') filetimestamp = str(int(time.time())) config_json_filename = os.path.join(CONFIG_PATH, 'AION_' + filetimestamp + '.json') f = open(configFile) data = json.load(f) f.close() data['basic']['dataLocation'] = dataFile type = request.POST.get('type') model = request.POST.get('model') slength = request.POST.get('length') types = data['basic']['analysisAproach']['textSummarization'] for x in list(types.keys()): data['basic']['analysisAproach']['textSummarization'][x] = 'False' data['basic']['analysisAproach']['textSummarization'][type] = 'True' format = request.POST.get('format') algorithm = data['basic']['algorithms']['textSummarization'] for x in list(algorithm.keys()): data['basic']['algorithms']['textSummarization'][x] = 'False' data['basic']['algorithms']['textSummarization'][model]='True' length = data['advance']['textSummarization']['summaryLength'] for x in list(types.keys()): data['advance']['textSummarization']['summaryLength'][x] = 'False' data['advance']['textSummarization']['summaryLength'][slength] = 'True' with open(config_json_filename, "w") as outfile: json.dump(data, outfile) outfile.close() from bin.aion_text_summarizer import aion_textsummary outputStr = aion_textsummary(config_json_filename)
#scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..','bin','aion_text_summarizer.py')) #outputStr = subprocess.check_output([sys.executable, scriptPath, config_json_filename]) #outputStr = outputStr.decode('utf-8') #outputStr = re.search(r'Summary:(.*)', str(outputStr), re.IGNORECASE).group(1) predict_dict = json.loads(str(outputStr)) summary = predict_dict['summary'] except Exception as e: print(e) summary = str(e) context = getcommonfields() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) context.update({'selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion}) context.update({'summary':summary}) return context <s> import os import re import json import time import sys import tiktoken import openai import requests from appbe.aion_config import get_llm_data import logging import pdfplumber from docx import Document openai.api_key = '' openai.api_base = '' openai.api_type = '' openai.api_version = '' deployment_name="GPT-35-Turbo" model_name='gpt-3.5-turbo' set_tokens_limit = 500 set_tokens_limit_offline = 400 set_prompt="You are an expert user generating questions and answers. You will be passed a page extracted from a documentation. Generate a numbered list of questions as Q. and equivelant answer as A. for every question based *solely* on the given text." # QnA Generator using LLM related changes # -------------------------------------------------------- def ingestDataForQA(request, DATA_FILE_PATH): log = logging.getLogger('log_ux') try: Datapath = request.FILES['DataFileQnA'] from appbe.eda import ux_eda ext = str(Datapath).split('.')[-1] request.session['uploadfiletype'] = 'Local' request.session['datatype'] = 'Normal' filetimestamp = str(int(time.time())) if ext.lower() in ['txt','pdf','docx']: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp+'.'+ext) else: dataFile = os.path.join(DATA_FILE_PATH,'AION_' + filetimestamp) with open(dataFile, 'wb+') as destination: for chunk in Datapath.chunks(): destination.write(chunk) destination.close() dataPath = dataFile request.session['textdatapathQA'] = dataPath llm_choice = request.POST.get("llm_choice") _result = '' # if llm_choice == 'Haystack': # _result = generateQA_Haystack(request, DATA_FILE_PATH) if llm_choice == 'Offline': _result = generateQA_Offline(request, DATA_FILE_PATH) else: _result = generateQA_OpenAI(request, DATA_FILE_PATH) return _result except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'error': 'Failed to read data','emptytxt' : 'emptytxt'} log.info('Text Data Ingestion -- Error : Failed to read data, '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context # ---------------------- E N D --------------------------- def generateQA_OpenAI(request, DATA_FILE_PATH): log = logging.getLogger('log_ux') try: file_path = request.session['textdatapathQA'] # Read the file content if file_path.endswith('.pdf'): pdf_file=pdfplumber.open(file_path) file_content = " ".join([x.extract_text() for x in pdf_file.pages]) elif file_path.endswith('.docx'): doc_file=Document(file_path) file_content = " \\n".join([x.text for x in doc_file.paragraphs]) else: with open(file_path, "r", encoding="utf-8",errors = "ignore") as file: file_content = file.read() text = file_content.strip() #text = text.strip() extracted_QnA = [] chunk_counter = 0 num_tokens_text = count_tokens_text(text) if num_tokens_text > set_tokens_limit: for sub_text in split_text(text): chunk_counter = chunk_counter + 1 _result = extract_questions_from_splittedtext(sub_text) print(f"Currently executed chunk no is - {chunk_counter}.") extracted_QnA.extend(_result) else: _prompt = set_prompt msg = [ {"role": "system", "content": _prompt}, {"role": "user", "content": text} ] extracted_QnA = run_model(msg) quesCount = len(extracted_QnA) context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount} filetimestamp = str(int(time.time())) output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt') # Save the extracted questions as a JSON file with open(output_filepath, 'w') as output_file: json.dump(extracted_QnA, output_file, indent=4) print(f"QnAs have been saved to {output_filepath}.") request.session['QnAfilepath'] = output_filepath return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() errormsg = str(e) if 'Invalid URL' in errormsg or 'No connection adapters' in errormsg or 'invalid subscription key' in errormsg: errormsg = 'Access denied due to invalid subscription key or wrong API endpoint. Please go to settings and make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.' if 'The API type provided in invalid' in errormsg: errormsg = "The API type provided is invalid. Please select one of the supported API types:'azure', 'azure_ad' or 'open_ai'" if 'Max retries exceeded with url' in errormsg: errormsg = 'Please make sure you have good internet connection and access to API endpoint for your resource.' fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'error': 'Failed to generate QnA List using openAI','LLM' : 'openAI', 'selected':'DataOperations', 'errormessage':errormsg} log.info('generateQA_OpenAI -- Error : Failed to generate QnA List using openAI.. '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context def run_model(msg): key,url,api_type,api_version = get_llm_data() openai.api_key = key openai.api_base = url openai.api_type = api_type openai.api_version = api_version completions = openai.ChatCompletion.create(engine=deployment_name, temperature=0.0, max_tokens=2000, n=1, stop=None, messages=msg) # return completions.choices[0].message.content _questionList = completions.choices[0].message.content question_pattern = re.compile(r"^Q\\s*\\d+\\.\\s*(.+)$", re.MULTILINE) questions = question_pattern.findall(_questionList) answer_pattern = re.compile(r"^A\\s*\\d+\\.\\s*(.+)$", re.MULTILINE) answers = answer_pattern.findall(_questionList) if (len(questions) > 0) and (not re.search(r"[.!?)]$", questions[-1].strip())): print(f"WARNING: Popping incomplete question: '{questions[-1]}'") questions.pop() extracted_QnA = [] for question, answer in zip(questions, answers): extracted_QnA.append({'question': question, 'answer': answer}) return extracted_QnA def count_tokens_text(text): import tiktoken model_type = model_name encoding = tiktoken.encoding_for_model(model_type) encoded_text = encoding.encode(text) return len(encoded_text) def extract_questions_from_splittedtext(text): _prompt = set_prompt msg = [ {"role": "system", "content": _prompt}, {"role": "user", "content": text} ] _ques_ans_List = run_model(msg) return _ques_ans_List def split_text(text): lines = text.split('\\n') current_section = '' sections = [] _lastsection = 0 for line in lines: num_tokens_text = count_tokens_text(''.join([current_section,line])) if num_tokens_text < set_tokens_limit: current_section = ''.join([current_section,line]) else: sections.append(current_section) current_section = line _lastsection = 1 if _lastsection == 1: sections.append(current_section) return sections # --------------------------------------------------------------------------------- # def generateQA_Haystack(request, DATA_FILE_PATH): file_path = request.session['textdatapathQA'] # Read the file content with open(file_path, "r", encoding="utf-8") as file: file_content = file.read() text = file_content.strip() text = text.strip() docs = [] num_tokens_text = count_tokens_text(text) if num_tokens_text > set_tokens_limit: for sub_text in split_text(text): docs.append({"content": sub_text}) else: docs = [{"content": text}] from pprint import pprint from tqdm.auto import tqdm from haystack.nodes import QuestionGenerator, BM25Retriever, FARMReader # from haystack.document_stores import ElasticsearchDocumentStore from haystack.document_stores import InMemoryDocumentStore # from haystack.document_stores import PineconeDocumentStore from haystack.pipelines import ( QuestionGenerationPipeline, RetrieverQuestionGenerationPipeline, QuestionAnswerGenerationPipeline, ) from haystack.utils import print_questions document_store = InMemoryDocumentStore(use_bm25=True) document_store.write_documents(docs) question_generator = QuestionGenerator() # reader = FARMReader("deepset/roberta-base-squad2") # reader.save("my_local_roberta_model") reader_local = FARMReader(model_name_or_path="my_local_roberta_model_1") qag_pipeline = QuestionAnswerGenerationPipeline(question_generator, reader_local) extracted_QnA = [] for idx, document in enumerate(tqdm(document_store)): print(f"\\n * Generating questions and answers for document {idx}: {document.content[:100]}...\\n") result = qag_pipeline.run(documents=[document]) print_questions(result) answers = [] questions = result['queries'] answerList = result["answers"] for _answers in answerList: for answer in _answers: ans = answer.answer answers.append(ans) for question, answer in zip(questions, answers): extracted_QnA.append({'question': question, 'answer': answer}) quesCount = len(extracted_QnA) context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount} filetimestamp = str(int(time.time())) output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt') # Save the extracted questions as a JSON file with open(output_filepath, 'w') as output_file: json.dump(extracted_QnA, output_file, indent=4) print(f"QnAs have been saved to {output_filepath}.") request.session['QnAfilepath'] = output_filepath return context # --------------------------------------------------------------------------------- # def generateQA_Offline(request, DATA_FILE_PATH): log = logging.getLogger('log_ux') try: file_path = request.session['textdatapathQA'] if file_path.endswith('.pdf'): pdf_file=pdfplumber.open(file_path) file_content = " ".join([x.extract_text() for x in pdf_file.pages]) elif file_path.endswith('.docx'): doc_file=Document(file_path) file_content = " \\n".join([x.text for x in doc_file.paragraphs]) else: with open(file_path, "r", encoding="utf-8",errors = "ignore") as file: file_content = file.read() # # Read the file content # with open(file_path, "r", encoding="utf-8") as file: # file_content = file.read() text = file_content.strip() # text = text.strip() docs = [] # num_tokens_text = count_tokens_text(text) # if num_tokens_text > set_tokens_limit: # for sub_text in split_text(text): # docs.append(sub_text) # else: # docs.append(text) model_name = "valhalla/t5-base-qg-hl" num_tokens_text = count_tokens_text_offline(text, model_name) if num_tokens_text > set_tokens_limit_offline: for sub_text in split_text_for_Off
line(text, model_name): docs.append(sub_text) else: docs.append(text) from question_generation.pipelines import pipeline extracted_QnA = [] extracted_QnAList = [] nlp = pipeline("question-generation", model = model_name) # nlp = pipeline("question-generation", model="valhalla/t5-base-e2e-qg") # nlp = pipeline("e2e-qg", model="valhalla/t5-base-qg-hl") # nlp = pipeline("multitask-qa-qg", model="valhalla/t5-base-qa-qg-hl") for _text in docs: res = nlp(_text) print(res) extracted_QnAList.extend(res) for _record in extracted_QnAList: extracted_QnA.append({'question': _record['question'], 'answer': _record['answer'].replace('<pad>', '')}) quesCount = len(extracted_QnA) context = {'extracted_QnA':extracted_QnA, 'quesCount':quesCount} filetimestamp = str(int(time.time())) output_filepath = os.path.join(DATA_FILE_PATH,'AION_QnA' + filetimestamp+'.txt') # Save the extracted questions as a JSON file with open(output_filepath, 'w') as output_file: json.dump(extracted_QnA, output_file, indent=4) print(f"T5 based QnAs have been saved to {output_filepath}.") request.session['QnAfilepath'] = output_filepath return context except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() errormsg = str(e) fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = {'error': 'Failed to generate QnA List using T5','LLM' : 'T5', 'selected':'DataOperations', 'errormessage':errormsg} log.info('generateQA_Offline -- Error : Failed to generate QnA List using T5.. '+str(e)) log.info('Details : '+ str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return context def split_text_for_Offline(text, model_name): lines = text.split('\\n') current_section = '' sections = [] _lastsection = 0 for line in lines: num_tokens = count_tokens_text_offline(''.join([current_section,line]), model_name) if num_tokens < set_tokens_limit_offline: current_section = ''.join([current_section,line]) else: sections.append(current_section) current_section = line _lastsection = 1 if _lastsection == 1: sections.append(current_section) return sections def count_tokens_text_offline(text, model_name): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] _token_count = len(input_ids[0]) return _token_count <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os from pathlib import Path def label_filename(request): filename = 'LabeledData.csv' labelPath = os.path.join(request.session['datalocation'],'AION','Labels') Path(labelPath).mkdir(parents=True, exist_ok=True) filePath = os.path.join(labelPath,filename) return filePath <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import kfp import kfp.dsl as dsl import json from pathlib import Path class aionpipeline(): containerRegistry = str() containerLabel = str() containerSecret = str() pipelineName = 'AION MLOps Pipeline {0}' exeCmd = 'python' codeFile = 'aionCode.py' mntPoint = '/aion' inputArg = '-i' msIP = '0.0.0.0' port = '8094' cachingStrategy = 'P0D' deafultVolume = '1Gi' volName = 'aion-pvc' volMode = 'ReadWriteMany' fileExt = '.tar.gz' fileName = 'aion_mlops_pipeline_{0}' containerMM = 'modelmonitoring' containerDI = 'dataingestion' containerDT = 'datatransformation' containerFE = 'featureengineering' containerMR = 'modelregistry' containerMS = 'modelserving' containerImage = '{0}/{1}:{2}' models = {} nameSeprator = '-' modelsLiteral = 'models' modelNameLiteral = 'modelname' msTemplate = '{"apiVersion": "v1", "kind": "Pod", "metadata": {"name": "{{workflow.name}}-{0}"}, "spec": {"containers": [{"name": "{0}", "image": "{1}", "command": ["python"], "args": ["aionCode.py", "-ip", "{2}", "-pn", "{3}"],"volumeMounts": [{"name": "aion-pvc", "mountPath": "{4}"}], "ports": [{"name": "http", "containerPort": {3}, "protocol": "TCP"}]}], "imagePullSecrets": [{"name": "{5}"}], "volumes": [{"name": "aion-pvc", "persistentVolumeClaim": {"claimName": "{{workflow.name}}-{6}"}}]}}' def __init__(self, models, containerRegistry, containerLabel, containerSecret=str()): self.models = models self.containerRegistry = containerRegistry self.containerLabel = containerLabel self.containerSecret = containerSecret @dsl.pipeline( name=pipelineName.format(containerLabel), description=pipelineName.format(containerLabel), ) def aion_mlops(self, inputUri=str(), volSize=deafultVolume): vop = dsl.VolumeOp( name=self.volName + self.nameSeprator + self.containerLabel, resource_name=self.volName, modes=[self.volMode], size=volSize ) mm = dsl.ContainerOp( name=self.containerMM, image=self.containerImage.format(self.containerRegistry,self.containerMM,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, self.inputArg, inputUri, ], pvolumes={self.mntPoint: vop.volume} ) mm.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy di = dsl.ContainerOp( name=self.containerDI, image=self.containerImage.format(self.containerRegistry,self.containerDI,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: mm.pvolume} ) di.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy dt = dsl.ContainerOp( name=self.containerDT, image=self.containerImage.format(self.containerRegistry,self.containerDT,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: di.pvolume} ) dt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy fe = dsl.ContainerOp( name=self.containerFE, image=self.containerImage.format(self.containerRegistry,self.containerFE,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: dt.pvolume} ) fe.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy dictMT = {} listMTOps = [] for model in self.models[self.modelsLiteral]: modelName = model[self.modelNameLiteral] mt=dsl.ContainerOp( name=modelName, image=self.containerImage.format(self.containerRegistry,modelName,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes={self.mntPoint: fe.pvolume}) mt.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy listMTOps.append(mt) dictMT[self.mntPoint]=mt.pvolume mr = dsl.ContainerOp( name=self.containerMR, image=self.containerImage.format(self.containerRegistry,self.containerMR,self.containerLabel), command=self.exeCmd, arguments=[ self.codeFile, ], pvolumes=dictMT ).after(*tuple(listMTOps)) mr.execution_options.caching_strategy.max_cache_staleness = self.cachingStrategy msJson = self.msTemplate.replace(str({0}),self.containerMS).replace(str({1}),self.containerImage.format(self.containerRegistry,self.containerMS,self.containerLabel)).replace(str({2}),self.msIP).replace(str({3}),self.port).replace(str({4}),self.mntPoint).replace(str({5}),self.containerSecret).replace(str({6}),self.volName) ms = dsl.ResourceOp( name=self.containerMS + self.nameSeprator + self.containerLabel, k8s_resource=json.loads(msJson), ) ms.after(mr) def compilepl(self, targetPath=str()): filePath = self.fileName.format(self.containerLabel.lower()) + self.fileExt if targetPath != str(): filePath = Path(targetPath, filePath) kfp.compiler.Compiler().compile(self.aion_mlops, str(filePath)) def executepl(self, kfhost=str()): client = kfp.Client(kfhost) client.create_run_from_pipeline_func(self.aion_mlops,arguments={}) <s><s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import logging logging.getLogger('tensorflow').disabled = True import shutil import warnings from config_manager.online_pipeline_config import OTAionConfigManager from records import pushrecords import logging import mlflow from pathlib import Path from pytz import timezone def pushRecordForOnlineTraining(): try: from appbe.pages import getversion status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) class server(): def __init__(self): self.response = None self.dfNumCols=0 self.dfNumRows=0 self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj): rowfilterexpression = '' grouperbyjson = '' model_tried='' learner_type = '' topics = {} numericContinuousFeatures='' discreteFeatures='' threshold=-1 targetColumn = '' categoricalFeatures='' dataFolderLocation = '' original_data_file = '' profiled_data_file = '' trained_data_file = '' predicted_data_file='' featureReduction = 'False' reduction_data_file='' params={} score = 0 labelMaps={} featureDataShape=[] self.riverModels = [] self.riverAlgoNames = ['Online Logistic Regression', 'Online Softmax Regression', 'Online Decision Tree Classifier', 'Online KNN Classifier', 'Online Linear Regression', 'Online Bayesian Linear Regression', 'Online Decision Tree Regressor','Online KNN Regressor'] #ConfigSettings iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier =
config_obj.getAIONLocationSettings() scoreParam = config_obj.getScoringCreteria() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() iterName = iterName.replace(" ", "_") deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile = config_obj.createDeploymentFolders(deployLocation,iterName,iterVersion) #Mlflow mlflowSetPath(deployLocation,iterName+'_'+iterVersion) #Logger filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v2.2.5 *************** \\n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} #ConfigSetting problemType,targetFeature,profilerStatus,selectorStatus,learnerStatus,visualizationstatus,deployStatus = config_obj.getModulesDetails() selectorStatus = False if(problemType.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output #DataReading from transformations.dataReader import dataReader objData = dataReader() if os.path.isfile(dataLocation): dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) dataFrame.rename(columns=lambda x:x.strip(), inplace=True) #FilterDataframe filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) #GroupDataframe timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) #KeepOnlyModelFtrs dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfNumRows=dataFrame.shape[0] self.dfNumCols=dataFrame.shape[1] dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if profilerStatus: log.info('\\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) from incremental.incProfiler import incProfiler incProfilerObj = incProfiler() dataFrame,targetColumn,self.mFeatures,self.numericalFeatures,self.nonNumericFeatures,labelMaps,self.configDict,self.textFeatures,self.emptyFeatures,self.wordToNumericFeatures = incProfilerObj.startIncProfiler(dataFrame,profilerJson,targetFeature,deployLocation,problemType) self.features = self.configDict['allFtrs'] log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\\n') dataFrame.to_csv(profiled_data_file,index=False) selectorStatus = False if learnerStatus: log.info('Status:-|... AION Learner data preparation started') ldp_mlstart = time.time() testPercentage = config_obj.getAIONTestTrainPercentage() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problemType.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if targetColumn != '': targetData = dataFrame[targetColumn] xtrain,ytrain,xtest,ytest = mlobj.split_into_train_test_data(featureData,targetData,testPercentage,modelType) categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) log.info('Status:-|... AION Learner data preparation completed') if learnerStatus: log.info('\\n================== ML Started ==================') log.info('Status:-|... AION training started') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() log.info('-------> Target Model Type:'+ modelType) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() from incremental.incMachineLearning import incMachineLearning incMlObj = incMachineLearning(mlobj) self.configDict['riverModel'] = False status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=incMlObj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,self.features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps) if model in self.riverAlgoNames: self.configDict['riverModel'] = True if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('Status:-|... AION training completed') log.info('================== ML Completed ==================\\n') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('Status:-|... AION Visualizer started') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfNumRows,self.dfNumCols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('Status:-|... AION Visualizer completed') try: os.remove(os.path.join(deployLocation,'aion_xai.py')) except: pass if deployStatus: if str(model) != 'None': log.info('\\n================== Deployment Started ==================') log.info('Status:-|... AION Deployer started') deployPath = deployLocation deployer_mlstart = time.time() src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','useCaseFiles') shutil.copy2(os.path.join(src,'incBatchLearning.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchLearning.py'),os.path.join(deployPath,'aion_inclearning.py')) shutil.copy2(os.path.join(src,'incBatchPrediction.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchPrediction.py'),os.path.join(deployPath,'aion_predict.py')) self.configDict['modelName'] = str(model) self.configDict['modelParams'] = params self.configDict['problemType'] = problemType.lower() self.configDict['score'] = score self.configDict['metricList'] = [] self.configDict['metricList'].append(score) self.configDict['trainRowsList'] = [] self.configDict['trainRowsList'].append(featureDataShape[0]) self.configDict['scoreParam'] = scoreParam self.configDict['partialFit'] = 0 with open(os.path.join(deployLocation,'production', 'Config.json'), 'w', encoding='utf8') as f: json.dump(self.configDict, f, ensure_ascii=False) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Batch Deployment completed') log.info('================== Deployment Completed ==================') # self.features = profilerObj.set_features(self.features,self.textFeatures,self.vectorizerFeatures) self.matrix += '}' self.trainmatrix += '}' matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) model_tried = eval('['+model_tried+']') try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":model
Type,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} print(output_json) if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w') as f: json.dump(output_json, f) output_json = json.dumps(output_json) log.info('\\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfNumRows)+','+str(self.dfNumCols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\\n') except Exception as inst: log.info('server code execution failed !....'+str(inst)) output_json = {"status":"FAIL","message":str(inst).strip('"')} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\\nTotal execution time(sec) :'+str(executionTime)) log.info('\\n------------- Output JSON ------------') log.info('-------> Output :'+str(output_json)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def aion_ot_train_model(arg): warnings.filterwarnings('ignore') try: valid, msg = pushRecordForOnlineTraining() if valid: serverObj = server() configObj = OTAionConfigManager() jsonPath = arg readConfistatus,msg = configObj.readConfigurationFile(jsonPath) if(readConfistatus == False): output = {"status":"FAIL","message":str(msg).strip('"')} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") return output output = serverObj.startScriptExecution(configObj) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") return output except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print("\\n") print("aion_learner_status:",output) print("\\n") return output if __name__ == "__main__": aion_ot_train_model(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time from pandas import json_normalize import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from sagemaker.aionMlopsService import aionMlopsService import logging import os.path from os.path import expanduser import platform,sys from pathlib import Path from sklearn.model_selection import train_test_split def getAWSConfiguration(mlops_params,log): awsId=mlops_params['awsSagemaker']['awsID'] if ((not awsId) or (awsId is None)): awsId="" log.info('awsId error. ') awsAccesskeyid=mlops_params['awsSagemaker']['accesskeyID'] if ((not awsAccesskeyid) or (awsAccesskeyid is None)): awsAccesskeyid="" log.info('awsAccesskeyid error. ') awsSecretaccesskey=mlops_params['awsSagemaker']['secretAccesskey'] if ((not awsSecretaccesskey) or (awsSecretaccesskey is None)): awsSecretaccesskey="" log.info('awsSecretaccesskey error. ') awsSessiontoken=mlops_params['awsSagemaker']['sessionToken'] if ((not awsSessiontoken) or (awsSessiontoken is None)): awsSessiontoken="" log.info('awsSessiontoken error. ') awsRegion=mlops_params['awsSagemaker']['region'] if ((not awsRegion) or (awsRegion is None)): awsRegion="" log.info('awsRegion error. ') IAMSagemakerRoleArn=mlops_params['awsSagemaker']['IAMSagemakerRoleArn'] if ((not IAMSagemakerRoleArn) or (IAMSagemakerRoleArn is None)): IAMSagemakerRoleArn="" log.info('IAMSagemakerRoleArn error. ') return awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn def getMlflowParams(mlops_params,log): modelInput = mlops_params['modelInput'] data = mlops_params['data'] mlflowtosagemakerDeploy=mlops_params['sagemakerDeploy'] if ((not mlflowtosagemakerDeploy) or (mlflowtosagemakerDeploy is None)): mlflowtosagemakerDeploy="True" mlflowtosagemakerPushOnly=mlops_params['deployExistingModel']['status'] if ((not mlflowtosagemakerPushOnly) or (mlflowtosagemakerPushOnly is None)): mlflowtosagemakerPushOnly="False" mlflowtosagemakerPushImageName=mlops_params['deployExistingModel']['dockerImageName'] if ((not mlflowtosagemakerPushImageName) or (mlflowtosagemakerPushImageName is None)): mlflowtosagemakerPushImageName="mlops_image" mlflowtosagemakerdeployModeluri=mlops_params['deployExistingModel']['deployModeluri'] if ((not mlflowtosagemakerdeployModeluri) or (mlflowtosagemakerdeployModeluri is None)): mlflowtosagemakerdeployModeluri="None" log.info('mlflowtosagemakerdeployModeluri error. ') cloudInfrastructure = mlops_params['modelOutput']['cloudInfrastructure'] if ((not cloudInfrastructure) or (cloudInfrastructure is None)): cloudInfrastructure="Sagemaker" endpointName=mlops_params['endpointName'] if ((not endpointName) or (endpointName is None)): sagemakerAppName="aion-demo-app" log.info('endpointName not given, setting default one. ') experimentName=str(endpointName) mlflowContainerName=str(endpointName) return modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName def getPredictionParams(mlops_params,log): predictStatus=mlops_params['prediction']['status'] if ((not predictStatus) or (predictStatus is None)): predictStatus="False" modelInput = mlops_params['modelInput'] data = mlops_params['data'] if (predictStatus == "True" or predictStatus.lower()== "true"): if ((not modelInput) or (modelInput is None)): log.info('prediction model input error.Please check given model file or its path for prediction ') if ((not data) or (data is None)): log.info('prediction data input error.Please check given data file or its path for prediction ') targetFeature=mlops_params['prediction']['target'] return predictStatus,targetFeature def sagemakerPrediction(mlopsobj,data,log): df = json_normalize(data) model=None predictionStatus=False try: endpointPrediction=mlopsobj.predict_sm_app_endpoint(df) if (endpointPrediction is None): log.info('Sagemaker endpoint application prediction Issue.') outputjson = {"status":"Error","msg":"Sagemaker endpoint application prediction Issue"} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=False else: log.info("sagemaker end point Prediction: \\n"+str(endpointPrediction)) df['prediction'] = endpointPrediction outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=True except Exception as e: #log.info("sagemaker end point Prediction error: \\n") outputjson = {"status":"Error","msg":str(e)} outputjson=None predictionStatus=False return outputjson,predictionStatus ## Main aion sagemaker fn call def sagemaker_exec(mlops_params,log): #mlops_params = json.loads(config) mlops_params=mlops_params modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName = getMlflowParams(mlops_params,log) mlflowModelname=None awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn = getAWSConfiguration(mlops_params,log) predictStatus,targetFeature = getPredictionParams(mlops_params,log) sagemakerDeployOption='create' deleteAwsecrRepository='False' sagemakerAppName=str(endpointName) ecrRepositoryName='aion-ecr-repo' #aws ecr model app_name should contain only [[a-zA-Z0-9-]], again rechecking here. import re if sagemakerAppName: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(sagemakerAppName) is not None: #print("Found match: ") pass else: log.info('wrong sagemaker Application Name, Nmae should contains only [A-Za-z0-9-] .') app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' #Following 3 aws parameter values are now hard coded , because currently we are not using. If aion using the options, please make sure to get the values from GUI . sagemakerDeployOption="create" deleteAwsecrRepository="False" ecrRepositoryName="aion_test_repo" log.info('mlops parameter check done.') # predictionStatus=False deploystatus = 'SUCCESS' try: log.info('cloudInfrastructure: '+str(cloudInfrastructure)) if(cloudInfrastructure.lower() == "sagemaker"): ## sagemaker app prediction call if (predictStatus.lower() == "true"): # df = json_normalize(data) model=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) outputjson,predictionStatus = sagemakerPrediction(mlopsobj,data,log) print("predictions: "+str(outputjson)) predictionStatus=predictionStatus return(outputjson) else: if Path(modelInput).is_file(): msg = '' model = joblib.load(modelInput) ProblemName = model.__class__.__name__ mlflowModelname=str(ProblemName) log.info('aion mlops Model name: '+str(mlflowModelname)) df=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPush
Only,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) mlflow2sm_status,localhost_container_status=mlopsobj.mlflow2sagemaker_deploy() log.info('mlflow2sm_status: '+str(mlflow2sm_status)) log.info('localhost_container_status: '+str(localhost_container_status)) # Checking deploy status if (mlflowtosagemakerPushOnly.lower() == "true" ): if (mlflow2sm_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker (Push eisting model container).\\n ') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker. (Push eisting model container).\\n ') else: pass elif(mlflowtosagemakerDeploy.lower() == "true"): if (mlflow2sm_status.lower() == "success"): deploystatus='SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker.\\n ') elif (mlflow2sm_status.lower() == "Notdeployed"): deploystatus= 'ERROR' msg = 'Sagemaker compatible container created' log.info('sagemaker endpoint not deployed, check aws connection and credentials. \\n') elif (mlflowtosagemakerDeploy.lower() == "false"): if(localhost_container_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Localhost mlops docker created successfully' log.info('Localhost mlops docker created successfully. \\n') elif(localhost_container_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Localhost mlops docker created failed' log.info('Localhost mlops docker creation failed. \\n') elif (localhost_container_status.lower() == "Notdeployed"): deploystatus= 'ERROR' log.info('Localhost mlops docker not deployed, check local docker status. \\n') else: pass else: pass else: deploystatus = 'ERROR' msg = 'Model Path not Found' print('Error: Model Path not Found') outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) except Exception as inst: outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) def aion_sagemaker(config): try: mlops_params = config print(mlops_params) from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' filepath = os.path.join(sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionMLOps') log.setLevel(logging.DEBUG) output = sagemaker_exec(mlops_params,log) return output except Exception as inst: print(inst) deploystatus = 'ERROR' output = {"status":str(deploystatus),"data":str(inst)} output = json.dumps(output) print("predictions: "+str(output)) return(output) #Sagemaker main fn call if __name__=='__main__': json_config = str(sys.argv[1]) output = aion_sagemaker(json.loads(json_config)) <s> """ /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import os from pathlib import Path os.chdir(Path(__file__).parent) import json import shutil from mlac.timeseries import app as ts_app from mlac.ml import app as ml_app import traceback def create_test_file(config): code_file = 'aionCode.py' text = """ from pathlib import Path import subprocess import sys import json import argparse def run_pipeline(data_path): print('Data Location:', data_path) cwd = Path(__file__).parent monitor_file = str(cwd/'ModelMonitoring'/'{code_file}') load_file = str(cwd/'DataIngestion'/'{code_file}') transformer_file = str(cwd/'DataTransformation'/'{code_file}') selector_file = str(cwd/'FeatureEngineering'/'{code_file}') train_folder = cwd register_file = str(cwd/'ModelRegistry'/'{code_file}') deploy_file = str(cwd/'ModelServing'/'{code_file}') print('Running modelMonitoring') cmd = [sys.executable, monitor_file, '-i', data_path] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running dataIngestion') cmd = [sys.executable, load_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running DataTransformation') cmd = [sys.executable, transformer_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running FeatureEngineering') cmd = [sys.executable, selector_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() train_models = [f for f in train_folder.iterdir() if 'ModelTraining' in f.name] for model in train_models: print('Running',model.name) cmd = [sys.executable, str(model/'{code_file}')] train_result = subprocess.check_output(cmd) train_result = train_result.decode('utf-8') print(train_result) print('Running ModelRegistry') cmd = [sys.executable, register_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running ModelServing') cmd = [sys.executable, deploy_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputPath', help='path of the input data') args = parser.parse_args() if args.inputPath: filename = args.inputPath else: filename = r"{filename}" try: print(run_pipeline(filename)) except Exception as e: print(e) """.format(filename=config['dataLocation'],search='{"Status":',code_file=code_file) deploy_path = Path(config["deploy_path"])/'MLaC' deploy_path.mkdir(parents=True, exist_ok=True) py_file = deploy_path/"run_pipeline.py" with open(py_file, "w") as f: f.write(text) def is_module_in_req_file(mod, folder): status = False if (Path(folder)/'requirements.txt').is_file(): with open(folder/'requirements.txt', 'r') as f: status = mod in f.read() return status def copy_local_modules(config): deploy_path = Path(config["deploy_path"]) local_modules_location = config.get("local_modules_location", None) if local_modules_location: folder_loc = local_modules_location else: folder_loc = Path(__file__).parent/'local_modules' if not folder_loc.exists(): folder_loc = None if folder_loc: file = folder_loc/'config.json' if file.exists(): with open(file, 'r') as f: data = json.load(f) for key, values in data.items(): local_module = folder_loc/key if local_module.exists(): for folder in values: target_folder = Path(deploy_path)/'MLaC'/folder if target_folder.is_dir(): if is_module_in_req_file(key, target_folder): shutil.copy(local_module, target_folder) def validate(config): error = '' if 'error' in config.keys(): error = config['error'] return error def generate_mlac_code(config): with open(config, 'r') as f: config = json.load(f) error = validate(config) if error: raise ValueError(error) if config['problem_type'] in ['classification','regression']: return generate_mlac_ML_code(config) elif config['problem_type'].lower() == 'timeseriesforecasting': #task 11997 return generate_mlac_TS_code(config) def generate_mlac_ML_code(config): try: ml_app.run_loader(config) ml_app.run_transformer(config) ml_app.run_selector(config) ml_app.run_trainer(config) ml_app.run_register(config) ml_app.run_deploy(config) ml_app.run_drift_analysis(config) copy_local_modules(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status) def generate_mlac_TS_code(config): try: ts_app.run_loader(config) ts_app.run_transformer(config) ts_app.run_selector(config) ts_app.run_trainer(config) ts_app.run_register(config) ts_app.run_deploy(config) ts_app.run_drift_analysis(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status)<s> #from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn from functools import partial from http.server import SimpleHTTPRequestHandler, test import base64 from appbe.dataPath import DEPLOY_LOCATION ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse from functools import partial import re import cgi from datetime import datetime import json import sys from datetime import datetime user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): username = kwargs.pop("username") password = kwargs.pop("password") self._auth = base64.b64encode(f"{username}:{password}".encode()).decode() super().__init__(*args) def do_HEAD(self): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() def do_AUTHHEAD(self): self.send_response(401) self.send_header("WWW-Authenticate", 'Basic realm="Test"') self.send_header("Content-type", "text/html") self.end_headers() def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': if self.headers.get("Authorization") == None: self.do_AUTHHEAD()
resp = "Authentication Failed: Auth Header Not Present" resp=resp.encode() self.wfile.write(resp) elif self.headers.get("Authorization") == "Basic " + self._auth: length = int(self.headers.get('content-length')) #data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-2] operation = self.path.split('/')[-1] home = expanduser("~") #data = json.loads(data) dataStr = data model_path = os.path.join(DEPLOY_LOCATION,model) isdir = os.path.isdir(model_path) if isdir: if operation.lower() == 'predict': predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'spredict': try: predict_path = os.path.join(model_path,'aion_spredict.py') print(predict_path) outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr except Exception as e: print(e) elif operation.lower() == 'features': predict_path = os.path.join(model_path,'featureslist.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'explain': predict_path = os.path.join(model_path,'explainable_ai.py') outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'monitoring': predict_path = os.path.join(model_path,'aion_ipdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'performance': predict_path = os.path.join(model_path,'aion_opdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'pattern_anomaly_predict': data = json.loads(data) anomaly = False remarks = '' clusterid = -1 configfilename = os.path.join(model_path,'datadetails.json') filename = os.path.join(model_path,'clickstream.json') clusterfilename = os.path.join(model_path,'stateClustering.csv') probfilename = os.path.join(model_path,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid outputStr = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' elif operation.lower() == 'pattern_anomaly_settings': data = json.loads(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] filename = os.path.join(model_path,'clickstream.json') data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite:
fpWrite.write(updatedConfig) fpWrite.close() outputStr = '{"Status":"SUCCESS"}' else: outputStr = "{'Status':'Error','Msg':'Operation not supported'}" else: outputStr = "{'Status':'Error','Msg':'Model Not Present'}" resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: self.do_AUTHHEAD() self.wfile.write(self.headers.get("Authorization").encode()) resp = "Authentication Failed" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def getModelFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} home = expanduser("~") if platform.system() == 'Windows': predict_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'featureslist.py') else: predict_path = os.path.join(home,'HCLT','AION','target',modelSignature,'featureslist.py') if(os.path.isfile(predict_path)): outputStr = subprocess.check_output([sys.executable,predict_path]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'features:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() displaymsg = outputStr #displaymsg = json.dumps(displaymsg) return(True,displaymsg) else: displaymsg = "{'status':'ERROR','msg':'Unable to fetch featuers'}" return(False,displaymsg) def getFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} urltext = '/AION/UseCase_Version/features' if modelSignature != '': status,displaymsg = self.getModelFeatures(modelSignature) if status: urltext = '/AION/'+modelSignature+'/features' else: displaymsg = json.dumps(datajson) else: displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Output: {displaymsg}. """.format(url=urltext,displaymsg=displaymsg) return(msg) def features_help(self,modelSignature): home = expanduser("~") if platform.system() == 'Windows': display_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'display.json') else: display_path = os.path.join(home,'HCLT','AION','target',modelSignature,'display.json') #display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json') datajson = {'Body':'Data Should be in JSON Format'} if(os.path.isfile(display_path)): with open(display_path) as file: config = json.load(file) file.close() datajson={} for feature in config['numericalFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Numeric Value' for feature in config['nonNumericFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' for feature in config['textFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' displaymsg = json.dumps(datajson) return(displaymsg) def predict_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/predict' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/predict' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: prediction,probability(if Applicable),remarks corresponding to each row. """.format(url=urltext,displaymsg=displaymsg) return(msg) def performance_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/performance' else: urltext = '/AION/UseCase_Version/performance' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def monitoring_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/monitoring' else: urltext = '/AION/UseCase_Version/monitoring' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: Affected Columns. HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def explain_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/explain' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/explain' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: anchor (Local Explanation),prediction,forceplot,multidecisionplot.""".format(url=urltext,displaymsg=displaymsg) return(msg) def help_text(self,modelSignature): predict_help = self.predict_help(modelSignature) explain_help = self.explain_help(modelSignature) features_help = self.getFeatures(modelSignature) monitoring_help = self.monitoring_help(modelSignature) performance_help = self.performance_help(modelSignature) msg=""" Following URL: Prediction {predict_help} Local Explaination {explain_help} Features {features_help} Monitoring {monitoring_help} Performance {performance_help} """.format(predict_help=predict_help,explain_help=explain_help,features_help=features_help,monitoring_help=monitoring_help,performance_help=performance_help) return msg def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() helplist = self.path.split('/')[-1] print(helplist) if helplist.lower() == 'help': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.help_text(model) elif helplist.lower() == 'predict': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.predict_help(model) elif helplist.lower() == 'explain': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.explain_help(model) elif helplist.lower() == 'monitoring': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.monitoring_help(model) elif helplist.lower() == 'performance': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.performance_help(model) elif helplist.lower() == 'features': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' status,msg = self.getModelFeatures(model) else: model = self.path.split('/')[-2] if model.lower() == 'aion': model =helplist msg = self.help_text(model) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class SimpleHttpServer(): def __init__(self, ip, port,username,password): handler_class = partial(HTTPRequestHandler,username=username,password=password,) self.server = ThreadedHTTPServer((ip,port), handler_class) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() def start_server(ip,port,username,password): server = SimpleHttpServer(ip,int(port),username,password) print('HTTP Server Running...........') server.start() server.waitForThread() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from uncertainties.uq_main import aionUQ import os from datetime import datetime from os.path import expanduser import platform import logging class run_uq: def __init__(self,modelfeatures,modelFile,csvFile,target): self.modelfeatures=modelfeatures self.modelFile=modelFile self.csvFile=csvFile self.target=target ##UQ classification fn def getUQclassification(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) # # object_cols = [col for col, col_type in df.dtypes.iteritems() if col_type == 'object'] -- Fix for python 3.8.11 update (in 2.9.0.8) object_cols = [col for col, col_type in zip(df.columns,df.dtypes) if col_type == 'object'] df = df.drop(object_cols, axis=1) df = df.dropna(axis=1) df = df.reset_index(drop=True) modelfeatures = self.modelfeatures #tar = args.target # target = df[tar] y=df[self.target].values y = y.flatten() X = df.drop(self.target, axis=1) try: uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,self.target) accuracy,uq_ece,output_jsonobject=uqObj.uqMain_BBMClassification() except Exception as e: print("uq error",e) # print("UQ Classification: \\n",output_jsonobject) # print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per) #print(output_jsonobject) return accuracy,uq_ece,output_jsonobject ##UQ regression fn def getUQregression(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) modelfeatures = self.modelfeatures dfp = df[modelfeatures] tar = self.target target = df[tar] uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar) total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BB
MRegression() return total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject def uqMain(self,model): #print("inside uq main.\\n") reg_status="" class_status="" algorithm_status="" try: model=model if Path(self.modelFile).is_file(): ProblemName = model.__class__.__name__ if ProblemName in ['LogisticRegression','SGDClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','GradientBoostingClassifier']: Problemtype = 'Classification' elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor']: Problemtype = 'Regression' else: Problemtype = "None" if Problemtype.lower() == 'classification': try: Params = model.get_params() accuracy,uq_ece,output = self.getUQclassification(model,ProblemName,Params) class_status="SUCCESS" #print(output) except Exception as e: print(e) class_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) elif Problemtype.lower() == 'regression' : try: Params = model.get_params() total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,output = self.getUQregression(model,ProblemName,Params) #print(uq_jsonobject) reg_status="SUCCESS" except Exception as e: output = {'Problem':'None','msg':str(e)} output = json.dumps(output) reg_status="FAILED" else: try: output={} output['Problem']="None" output['msg']="Uncertainty Quantification not supported for this algorithm." output = json.dumps(output) algorithm_status="FAILED" except: algorithm_status="FAILED" except Exception as e: print(e) reg_status="FAILED" class_status="FAILED" algorithm_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return class_status,reg_status,algorithm_status,output def aion_uq(modelFile,dataFile,features,targetfeatures): try: from appbe.dataPath import DEPLOY_LOCATION uqLogLocation = os.path.join(DEPLOY_LOCATION,'logs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' filepath = os.path.join(uqLogLocation, filename_uq) print(filepath) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.INFO) log.info('************* Version - v1.7.0 *************** \\n') if isinstance(features, list): modelfeatures = features else: if ',' in features: modelfeatures = [x.strip() for x in features.split(',')] else: modelfeatures = features.split(',') model = joblib.load(modelFile) uqobj = run_uq(modelfeatures,modelFile,dataFile,targetfeatures) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): log.info('Problem type issue, UQ only support classification and regression. May be selected algorithm not supported by Uncertainty Quantification currently./n') except Exception as e: log.info('uq test failed.n'+str(e)) #print(e) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return(output) #Sagemaker main fn call if __name__=='__main__': try: parser = argparse.ArgumentParser() parser.add_argument('savFile') parser.add_argument('csvFile') parser.add_argument('features') parser.add_argument('target') args = parser.parse_args() home = expanduser("~") if platform.system() == 'Windows': uqLogLocation = os.path.join(home,'AppData','Local','HCLT','AION','uqLogs') else: uqLogLocation = os.path.join(home,'HCLT','AION','uqLogs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') # self.sagemakerLogLocation=str(sagemakerLogLocation) filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(uqLogLocation, filename_uq) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.DEBUG) if ',' in args.features: args.features = [x.strip() for x in args.features.split(',')] else: args.features = args.features.split(',') modelFile = args.savFile modelfeatures = args.features csvFile = args.csvFile target=args.target model = joblib.load(args.savFile) ##Main uq function call uqobj = run_uq(modelfeatures,modelFile,csvFile,target) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): msg = 'Uncertainty Quantification not supported for this algorithm' log.info('Algorithm not supported by Uncertainty Quantification./n') output = {'Problem':'None','msg':str(msg)} output = json.dumps(output) except Exception as e: log.info('uq test failed.n'+str(e)) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) #print(e) print(output)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging logging.getLogger('tensorflow').disabled = True #from autogluon.tabular import TabularDataset, TabularPredictor #from autogluon.core.utils.utils import setup_outputdir #from autogluon.core.utils.loaders import load_pkl #from autogluon.core.utils.savers import save_pkl import datetime, time, timeit from datetime import datetime as dt import os.path import json import io import shutil import sys #from Gluon_MultilabelPredictor import MultilabelPredictor class MultilabelPredictor(): """ Tabular Predictor for predicting multiple columns in table. Creates multiple TabularPredictor objects which you can also use individually. You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)` Parameters ---------- labels : List[str] The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object. path : str Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors. problem_types : List[str] The ith element is the `problem_type` for the ith TabularPredictor stored in this object. eval_metrics : List[str] The ith element is the `eval_metric` for the ith TabularPredictor stored in this object. consider_labels_correlation : bool Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others. If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion). Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels. kwargs : Arguments passed into the initialization of each TabularPredictor. """ multi_predictor_file = 'multilabel_predictor.pkl' def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs): if len(labels) < 2: raise ValueError("MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column).") self.path = setup_outputdir(path, warn_if_exist=False) self.labels = labels #print(self.labels) self.consider_labels_correlation = consider_labels_correlation self.predictors = {} # key = label, value = TabularPredictor or str path to the TabularPredictor for this label if eval_metrics is None: self.eval_metrics = {} else: self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))} problem_type = None eval_metric = None for i in range(len(labels)): label = labels[i] path_i = self.path + "Predictor_" + label if problem_types is not None: problem_type = problem_types[i] if eval_metrics is not None: eval_metric = self.eval_metrics[i] self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs) def fit(self, train_data, tuning_data=None, **kwargs): """ Fits a separate TabularPredictor to predict each of the labels. Parameters ---------- train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame See documentation for `TabularPredictor.fit()`. kwargs : Arguments passed into the `fit()` call for each TabularPredictor. """ if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) train_data_og = train_data.copy() if tuning_data is not None: tuning_data_og = tuning_data.copy() save_metrics = len(self.eval_metrics) == 0 for i in range(len(self.labels)): label = self.labels[i] predictor = self.get_predictor(label) if not self.consider_labels_correlation: labels_to_drop = [l for l in self.labels if l!=label] else: labels_to_drop = [self.labels[j] for j in range(i+1,len(self.labels))] train_data = train_data_og.drop(labels_to_drop, axis=1) if tuning_data is not None: tuning_data = tuning_data_og.drop(labels_to_drop, axis=1) print(f"Fitting TabularPredictor for label: {label} ...") predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs) self.predictors[label] = predictor.path if save_metrics: self.eval_metrics[label] = predictor.eval_metric self.save() def eval_metrics(self): return(self.eval_metrics) def predict(self, data, **kwargs): """ Returns DataFrame with label columns containing predictions for each label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`. kwargs : Arguments passed into the predict() call for each TabularPredictor. """ return self._predict(data, as_proba=False, **kwargs) def predict_proba(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.
DataFrame Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`. kwargs : Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call). """ return self._predict(data, as_proba=True, **kwargs) def evaluate(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`. kwargs : Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call). """ data = self._get_data(data) eval_dict = {} for label in self.labels: print(f"Evaluating TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) eval_dict[label] = predictor.evaluate(data, **kwargs) if self.consider_labels_correlation: data[label] = predictor.predict(data, **kwargs) return eval_dict def save(self): """ Save MultilabelPredictor to disk. """ for label in self.labels: if not isinstance(self.predictors[label], str): self.predictors[label] = self.predictors[label].path save_pkl.save(path=self.path+self.multi_predictor_file, object=self) print(f"MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')") @classmethod def load(cls, path): """ Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """ path = os.path.expanduser(path) if path[-1] != os.path.sep: path = path + os.path.sep return load_pkl.load(path=path+cls.multi_predictor_file) def get_predictor(self, label): """ Returns TabularPredictor which is used to predict this label. """ predictor = self.predictors[label] if isinstance(predictor, str): return TabularPredictor.load(path=predictor) return predictor def _get_data(self, data): if isinstance(data, str): return TabularDataset(data) return data.copy() def _predict(self, data, as_proba=False, **kwargs): data = self._get_data(data) if as_proba: predproba_dict = {} for label in self.labels: print(f"Predicting with TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) if as_proba: predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs) data[label] = predictor.predict(data, **kwargs) if not as_proba: return data[self.labels] else: return predproba_dict def aion_train_gluon(arg): configFile = arg with open(configFile, 'rb') as cfile: data = json.load(cfile) cfile.close() rootElement = data['basic'] modelname = rootElement['modelName'] version = rootElement['modelVersion'] dataLocation = rootElement['dataLocation'] deployFolder = rootElement['deployLocation'] analysisType = rootElement['analysisType'] testPercentage = data['advance']['testPercentage'] deployLocation = os.path.join(deployFolder,modelname+'_'+version) try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) os.makedirs(deployLocation) logLocation = os.path.join(deployLocation,'log') try: os.makedirs(logLocation) except OSError as e: pass etcLocation = os.path.join(deployLocation,'etc') try: os.makedirs(etcLocation) except OSError as e: pass logFileName=os.path.join(deployLocation,'log','model_training_logs.log') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v1.2.0 *************** \\n') msg = '-------> Execution Start Time: '+ dt.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') log.info(msg) dataLabels = rootElement['targetFeature'].split(',') # Create and Write the config file used in Prediction # ----------------------------------------------------------------------------# tdata = TabularDataset(dataLocation) #train_data = tdata train_data = tdata.sample(frac = 0.8) test_data = tdata.drop(train_data.index) if rootElement['trainingFeatures'] != '': trainingFeatures = rootElement['trainingFeatures'].split(',') else: trainingFeatures = list(train_data.columns) features = trainingFeatures for x in dataLabels: if x not in features: features.append(x) indexFeature = rootElement['indexFeature'] if indexFeature != '': indexFeature = indexFeature.split(',') for x in indexFeature: if x in features: features.remove(x) dateTimeFeature = rootElement['dateTimeFeature'] if dateTimeFeature != '': dateTimeFeature = dateTimeFeature.split(',') for x in dateTimeFeature: if x in features: features.remove(x) train_data = train_data[features] test_data = test_data[features] configJsonFile = {"targetFeature":dataLabels,"features":",".join([feature for feature in features])} configJsonFilePath = os.path.join(deployLocation,'etc','predictionConfig.json') if len(dataLabels) == 1 and analysisType['multiLabelPrediction'] == "False": dataLabels = rootElement['targetFeature'] with io.open(configJsonFilePath, 'w', encoding='utf8') as outfile: str_ = json.dumps(configJsonFile, ensure_ascii=False) outfile.write(str_) # ----------------------------------------------------------------------------# if analysisType['multiLabelPrediction'] == "True": # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiLabelPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) # ----------------------------------------------------------------------------# labels = dataLabels # which columns to predict based on the others #problem_types = dataProblem_types # type of each prediction problem save_path = os.path.join(deployLocation,'ModelPath') # specifies folder to store trained models time_limit = 5 # how many seconds to train the TabularPredictor for each label log.info('Status:-|... AION Gluon Start') try: if len(labels) < 2: log.info('Status:-|... AION Evaluation Error: Target should be multiple column') # ----------------------------------------------------------------------------# output = {'status':'FAIL','message':'Number of target variable should be 2 or more than 2'} else: multi_predictor = MultilabelPredictor(labels=labels, path=save_path) multi_predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = multi_predictor.evaluate(train_data) testevaluations = multi_predictor.evaluate(test_data) best_model = {} for label in labels: predictor_class = multi_predictor.get_predictor(label) predictor_class.get_model_best() best_model[label] = predictor_class.get_model_best() log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiLabelPrediction','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'ACCURACY','deployLocation':deployLocation,'matrix':trainevaluations,'testmatrix':testevaluations,'BestModel':best_model, 'LogFile':logFileName}} except Exception as inst: log.info('Status:-|... AION Gluon Error') output = {"status":"FAIL","message":str(inst).strip('"')} if analysisType['multiModalLearning'] == "True": from autogluon.core.utils.utils import get_cpu_count, get_gpu_count from autogluon.text import TextPredictor # check the system and then set the equivelent flag # ----------------------------------------------------------------------------# os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "0" if get_gpu_count() == 0: os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "1" # ----------------------------------------------------------------------------# # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiModalPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) time_limit = None # set to larger value in your applications save_path = os.path.join(deployLocation,'text_prediction') predictor = TextPredictor(label=dataLabels, path=save_path) predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = predictor.evaluate(train_data) log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiModelLearning','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'SCORE','deployLocation':deployLocation,'matrix':trainevaluations,'LogFile':logFileName}} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") log.info('\\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return(output) if __name__ == "__main__": aion_train_gluon(sys.argv[1])<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import shutil import subprocess import sys import glob import json def publish(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] deployFolder = jsonData['deployLocation'] model = model.replace(" ", "_") deployedPath = os.path.join(deployFolder,model+'_'+version) deployedPath = os.path.join(deployedPath,'WHEELfile') whlfilename='na' if os.path.isdir(deployedPath): for file in os.listdir(deployedPath): if file.endswith(".whl"): whlfilename = os.path.join(deployedPath,file) if whlfilename != 'na': subprocess.check_call([sys.executable, "-m", "pip", "uninstall","-y",model]) subprocess.check_call([sys.executable, "-m", "pip", "install", whlfilename]) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': service_stop(json.dumps(jsonData)) service_start(json.dumps(jsonData)) output_json = {'status':"SUCCESS"} output_json = json.dumps(output_json) else: output_json = {'status':'Error','Msg':'Installation Package not Found'} output_json = json.dumps(output_json) return(output_json) def check_service_running(model,serviceFolder): model = model.replace(" ", "_") filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' ip = '' port = '' pid = '' if os.path.exists(modelservicefile): status = 'File Exist' import psutil for proc in psutil.process_iter(): pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections']) if 'python' in pinfo['name']: if filename in pinfo['cmdline'][1]: status = 'Running' pid = pinfo['pid'] for x in pinfo['connections']: ip = x.laddr.ip port = x.laddr.port return(status,pid,ip,port) def service_stop(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json
.load(f) else: jsonData = json.loads(data) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': import psutil p = psutil.Process(int(pid)) p.terminate() time.sleep(2) output_json = {'status':'SUCCESS'} output_json = json.dumps(output_json) return(output_json) def service_start(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] ip = jsonData['ip'] port = jsonData['port'] deployFolder = jsonData['deployLocation'] serviceFolder = jsonData['serviceFolder'] model = model.replace(" ", "_") deployLocation = os.path.join(deployFolder,model+'_'+version) org_service_file = os.path.abspath(os.path.join(os.path.dirname(__file__),'model_service.py')) filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' if os.path.exists(modelservicefile): status = 'File Exist' r = ([line.split() for line in subprocess.check_output("tasklist").splitlines()]) for i in range(len(r)): if filename in r[i]: status = 'Running' if status == 'File Not Exist': shutil.copy(org_service_file,modelservicefile) with open(modelservicefile, 'r+') as file: content = file.read() file.seek(0, 0) line = 'from '+model+' import aion_performance' file.write(line+"\\n") line = 'from '+model+' import aion_drift' file.write(line+ "\\n") line = 'from '+model+' import featureslist' file.write(line+ "\\n") line = 'from '+model+' import aion_prediction' file.write(line+ "\\n") file.write(content) file.close() status = 'File Exist' if status == 'File Exist': status,pid,ipold,portold = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status != 'Running': command = "python "+modelservicefile+' '+str(port)+' '+str(ip) os.system('start cmd /c "'+command+'"') time.sleep(2) status = 'Running' output_json = {'status':'SUCCESS','Msg':status} output_json = json.dumps(output_json) return(output_json) if __name__ == "__main__": aion_publish(sys.argv[1]) <s> import json import logging import os import shutil import time import sys from sys import platform from distutils.util import strtobool from config_manager.pipeline_config import AionConfigManager from summarizer import Summarizer # Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules. class AionTextManager: def __init__(self): self.log = logging.getLogger('eion') self.data = '' self.problemType = '' self.basic = [] self.advance=[] def readTextfile(self,dataPath): #dataPath=self.[baisc][] file = open(dataPath, "r") data = file.read() return data #print(data) def generateSummary(self,data,algo,stype): bert_model = Summarizer() if stype == "large": bert_summary = ''.join(bert_model(data, min_length=300)) return(bert_summary) elif stype == "medium": bert_summary = ''.join(bert_model(data, min_length=150)) return(bert_summary) elif stype == "small": bert_summary = ''.join(bert_model(data, min_length=60)) return(bert_summary) def aion_textsummary(arg): Obj = AionTextManager() configObj = AionConfigManager() readConfistatus,msg = configObj.readConfigurationFile(arg) dataPath = configObj.getTextlocation() text_data = Obj.readTextfile(dataPath) getAlgo, getMethod = configObj.getTextSummarize() summarize = Obj.generateSummary(text_data, getAlgo, getMethod) output = {'status':'Success','summary':summarize} output_json = json.dumps(output) return(output_json) if __name__ == "__main__": aion_textsummary(sys.argv[1]) <s> import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import requests import json import os from datetime import datetime import socket import getmac def telemetry_data(operation,Usecase,data): now = datetime.now() ID = datetime.timestamp(now) record_date = now.strftime("%y-%m-%d %H:%M:%S") try: user = os.getlogin() except: user = 'NA' computername = socket.getfqdn() macaddress = getmac.get_mac_address() item = {} item['ID'] = str(int(ID)) item['record_date'] = record_date item['UseCase'] = Usecase item['user'] = str(user) item['operation'] = operation item['remarks'] = data item['hostname'] = computername item['macaddress'] = macaddress url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' record = {} record['TableName'] = 'AION_OPERATION' record['Item'] = item record = json.dumps(record) try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) check_telemetry_file() except Exception as inst: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') f=open(filename, "a+") f.write(record+'\\n') f.close() def check_telemetry_file(): file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') if(os.path.isfile(file_path)): f = open(file_path, 'r') file_content = f.read() f.close() matched_lines = file_content.split('\\n') write_lines = [] url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' for record in matched_lines: try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) except: write_lines.append(record) f = open(file_path, "a") f.seek(0) f.truncate() for record in write_lines: f.write(record+'\\n') f.close() return True else: return True<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import argparse import logging logging.getLogger('tensorflow').disabled = True import math import shutil import re from datetime import datetime as dt import warnings from config_manager.pipeline_config import AionConfigManager import pandas as pd import numpy as np import sklearn import string from records import pushrecords import logging from pathlib import Path from pytz import timezone from config_manager.config_gen import code_configure import joblib from sklearn.model_selection import train_test_split from config_manager.check_config import config_validate from utils.file_ops import save_csv_compressed,save_csv,save_chromadb LOG_FILE_NAME = 'model_training_logs.log' if 'AION' in sys.modules: try: from appbe.app_config import DEBUG_ENABLED except: DEBUG_ENABLED = False else: DEBUG_ENABLED = True def getversion(): configFolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config') version = 'NA' for file in os.listdir(configFolder): if file.endswith(".var"): version = file.rsplit('.', 1) version = version[0] break return version AION_VERSION = getversion() def pushRecordForTraining(): try: status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) def set_log_handler( basic, mode='w'): deploy_loc = Path(basic.get('deployLocation')) log_file_parent = deploy_loc/basic['modelName']/basic['modelVersion']/'log' log_file_parent.mkdir(parents=True, exist_ok=True) log_file = log_file_parent/LOG_FILE_NAME filehandler = logging.FileHandler(log_file, mode,'utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) return log class server(): def __init__(self): self.response = None self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.textFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.dfcols=0 self.dfrows=0 self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj, codeConfigure, log): oldStdout = sys.stdout model_training_details = '' model_tried='' learner_type = '' topics = {} pred_filename = '' numericContinuousFeatures='' discreteFeatures='' sessonal_freq = '' additional_regressors = '' threshold=-1 targetColumn = '' numericalFeatures ='' nonNumericFeatures='' categoricalFeatures='' dataFolderLocation = '' featureReduction = 'False' original_data_file = '' normalizer_pickle_file = '' pcaModel_pickle_file = '' bpca_features= [] apca_features = [] lag_order = 1 profiled_data_file = '' trained_data_file = '' predicted_data_file='' dictDiffCount={} cleaning_kwargs = {} grouperbyjson = '' rowfilterexpression='' featureEngineeringSelector = 'false' conversion_method = '' params={} loss_matrix='binary_crossentropy' optimizer='Nadam' numericToLabel_json='[]' preprocessing_pipe='' firstDocFeature = '' secondDocFeature = '' padding_length = 30 pipe = None scalertransformationFile=None column_merge_flag = False merge_columns = [] score = 0 profilerObj = None imageconfig='' labelMaps={} featureDataShape=[] normFeatures = [] preprocess_out_columns = [] preprocess_pipe = None label_encoder = None unpreprocessed_columns = [] import pickle iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings() inlierLabels=config_obj.getEionInliers() scoreParam = config_obj.getScoringCreteria() noofforecasts = config_obj.getNumberofForecasts() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() filter_expression = config_obj.getFilterExpression() refined_filter_expression = "" sa_images = [] model_tried = '' deploy_config = {} iterName = iterName.replace(" ", "_") deployFolder = deployLocation usecaseLocation,deployLocation,dataFolderLocation,imageFolderLocation,original_data_file,profiled
_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile,reduction_data_file = config_obj.createDeploymentFolders(deployFolder,iterName,iterVersion) outputLocation=deployLocation mlflowSetPath(deployLocation,iterName+'_'+iterVersion) # mlflowSetPath shut down the logger, so set again set_log_handler( config_obj.basic, mode='a') xtrain=pd.DataFrame() xtest=pd.DataFrame() log.info('Status:-|... AION Training Configuration started') startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textsummarizationStatus,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus, objectDetectionStatus,stateTransitionStatus, similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus = config_obj.getModulesDetails() status, error_id, msg = config_obj.validate_config() if not status: if error_id == 'fasttext': raise ValueError(msg) VideoProcessing = False if(problem_type.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output from transformations.dataReader import dataReader objData = dataReader() DataIsFolder = False folderdetails = config_obj.getFolderSettings() if os.path.isfile(dataLocation): log.info('Status:-|... AION Loading Data') dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) status,msg = save_csv_compressed(dataFrame,original_data_file) if not status: log.info('CSV File Error: '+str(msg)) elif os.path.isdir(dataLocation): if problem_type.lower() == 'summarization': from document_summarizer import summarize keywords, pretrained_type, embedding_sz = summarize.get_params() dataFrame = summarize.to_dataframe(dataLocation,keywords, deploy_loc, pretrained_type, embedding_sz) problem_type = 'classification' targetFeature = 'label' scoreParam = 'Accuracy' elif folderdetails['fileType'].lower() == 'document': dataFrame, error = objData.documentsTodf(dataLocation, folderdetails['labelDataFile']) if error: log.info(error) elif folderdetails['fileType'].lower() == 'object': testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati intermediateLocation = os.path.join(deployLocation,'intermediate') os.mkdir(intermediateLocation) AugEnabled,keepAugImages,operations,augConf = config_obj.getEionImageAugmentationConfiguration() dataFrame, n_class = objData.createTFRecord(dataLocation, intermediateLocation, folderdetails['labelDataFile'], testPercentage,AugEnabled,keepAugImages,operations, "objectdetection",augConf) #Unnati DataIsFolder = True else: datafilelocation = os.path.join(dataLocation,folderdetails['labelDataFile']) dataFrame = objData.csvTodf(datafilelocation,delimiter,textqualifier) DataIsFolder = True if textSimilarityStatus or similarityIdentificationStatus or contextualSearchStatus: similaritydf = dataFrame filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) if timeseriesStatus or anomalyDetectionStatus: from utils.validate_inputs import dataGarbageValue status,msg = dataGarbageValue(dataFrame,datetimeFeature) if status.lower() == 'error': raise ValueError(msg) if not DataIsFolder: if timeseriesStatus: if(modelFeatures != 'NA' and datetimeFeature != ''): if datetimeFeature: if isinstance(datetimeFeature, list): #to handle if time series having multiple time column unpreprocessed_columns = unpreprocessed_columns + datetimeFeature else: unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) elif survival_analysis_status or anomalyDetectionStatus: if(modelFeatures != 'NA'): if datetimeFeature != 'NA' and datetimeFeature != '': unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) else: dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfrows=dataFrame.shape[0] self.dfcols=dataFrame.shape[1] log.info('\\n-------> Rows: '+str(self.dfrows)) log.info('\\n-------> Columns: '+str(self.dfcols)) topFeatures=[] profilerObj = None normalizer=None dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if timeseriesStatus: if datetimeFeature != 'NA' and datetimeFeature != '': preproces_config = config_obj.basic.get('preprocessing',{}).get('timeSeriesForecasting',{}) if preproces_config: from transformations.preprocess import timeSeries as ts_preprocess preprocess_obj = ts_preprocess( preproces_config,datetimeFeature, log) dataFrame = preprocess_obj.run( dataFrame) log.info('-------> Input dataFrame(5 Rows) after preprocessing: ') log.info(dataFrame.head(5)) deploy_config['preprocess'] = {} deploy_config['preprocess']['code'] = preprocess_obj.get_code() if profiler_status: log.info('\\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') from transformations.dataProfiler import profiler as dataProfiler dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati if DataIsFolder: if folderdetails['type'].lower() != 'objectdetection': profilerObj = dataProfiler(dataFrame) topFeatures,VideoProcessing,tfrecord_directory = profilerObj.folderPreprocessing(dataLocation,folderdetails,deployLocation) elif textSimilarityStatus: firstDocFeature = config_obj.getFirstDocumentFeature() secondDocFeature = config_obj.getSecondDocumentFeature() profilerObj = dataProfiler(dataFrame,targetFeature, data_path=dataFolderLocation) dataFrame,pipe,targetColumn,topFeatures = profilerObj.textSimilarityStartProfiler(firstDocFeature,secondDocFeature) elif recommenderStatus: profilerObj = dataProfiler(dataFrame) dataFrame = profilerObj.recommenderStartProfiler(modelFeatures) else: if deeplearner_status or learner_status: if (problem_type.lower() != 'clustering') and (problem_type.lower() != 'topicmodelling'): if targetFeature != '': try: biasingDetail = config_obj.getDebiasingDetail() if len(biasingDetail) > 0: if biasingDetail['FeatureName'] != 'None': protected_feature = biasingDetail['FeatureName'] privileged_className = biasingDetail['ClassName'] target_feature = biasingDetail['TargetFeature'] algorithm = biasingDetail['Algorithm'] from debiasing.DebiasingManager import DebiasingManager mgrObj = DebiasingManager() log.info('Status:-|... Debiasing transformation started') transf_dataFrame = mgrObj.Bias_Mitigate(dataFrame, protected_feature, privileged_className, target_feature, algorithm) log.info('Status:-|... Debiasing transformation completed') dataFrame = transf_dataFrame except Exception as e: print(e) pass # ---------------------------------------------- ---------------------------------------------- targetData = dataFrame[targetFeature] featureData = dataFrame[dataFrame.columns.difference([targetFeature])] testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati xtrain,ytrain,xtest,ytest = self.split_into_train_test_data(featureData,targetData,testPercentage,log,problem_type.lower()) xtrain.reset_index(drop=True,inplace=True) ytrain.reset_index(drop=True,inplace=True) xtest.reset_index(drop=True,inplace=True) ytest.reset_index(drop=True,inplace=True) dataFrame = xtrain dataFrame[targetFeature] = ytrain encode_target_problems = ['classification','anomalyDetection', 'timeSeriesAnomalyDetection'] #task 11997 if problem_type == 'survivalAnalysis' and dataFrame[targetFeature].nunique() > 1: encode_target_problems.append('survivalAnalysis') if timeseriesStatus: #task 12627 calling data profiler without target feature specified separately (i.e) profiling is done for model features along with target features profilerObj = dataProfiler(dataFrame, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) else: profilerObj = dataProfiler(dataFrame, target=targetFeature, encode_target= problem_type in encode_target_problems, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) #task 12627 dataFrame, preprocess_pipe, label_encoder = profilerObj.transform() preprocess_out_columns = dataFrame.columns.tolist() if not timeseriesStatus: #task 12627 preprocess_out_columns goes as output_columns in target folder script/input_profiler.py, It should contain the target feature also as it is what is used for forecasting if targetFeature in preprocess_out_columns: preprocess_out_columns.remove(targetFeature) for x in unpreprocessed_columns: preprocess_out_columns.remove(x) if label_encoder: joblib.dump(label_encoder, Path(deployLocation)/'model'/'label_encoder.pkl') labelMaps = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_))) codeConfigure.update_config('train_features',list(profilerObj.train_features_type.keys())) codeConfigure.update_config('text_features',profilerObj.text_feature) self.textFeatures = profilerObj.text_feature deploy_config['profiler'] = {} deploy_config['profiler']['input_features'] = list(profilerObj.train_features_type.keys()) deploy_config['profiler']['output_features'] = preprocess_out_columns deploy_config['profiler']['input_features_type'] = profilerObj.train_features_type deploy_config['profiler']['word2num_features'] = profilerObj.wordToNumericFeatures deploy_config['profiler']['unpreprocessed_columns'] = unpreprocessed_columns deploy_config['profiler']['force_numeric_conv'] = profilerObj.force_numeric_conv if self.textFeatures: deploy_config['profiler']['conversion_method'] = config_obj.get_conversion_method() if anomalyDetectionStatus and datetimeFeature != 'NA' and datetimeFeature != '': if unpreprocessed_columns: dataFrame.set_index( unpreprocessed_columns[0], inplace=True) log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) if not xtest.empty: if targetFeature != '': non_null_index = ytest.notna() ytest = ytest[non_null_index] xtest = xtest[non_null_index] if profilerObj.force_numeric_conv: xtest[ profilerObj.force_numeric_conv] = xtest[profilerObj.force_numeric_conv].apply(pd.to_numeric,errors='coerce') xtest.astype(profilerObj.train_features_type) if unpreprocessed_columns: xtest_unprocessed = xtest[unpreprocessed_columns] xtest = preprocess_pipe.transform(xtest) if not isinstance(xtest, np.ndarray): xtest = xtest.toarray() xtest = pd.DataFrame(xtest, columns=preprocess_out_columns) if unpreprocessed_columns: xtest[unpreprocessed_columns] = xtest_unprocessed if survival_analysis_status: xtest.astype({x:'float' for x in unpreprocessed_columns}) xtrain.astype({x:'float' for x in unpreprocessed_columns}) #task 11997 removed setting datetime column as index of dataframe code as it is already done before if label_encoder: ytest = label_encoder
.transform(ytest) if preprocess_pipe: if self.textFeatures: from text.textProfiler import reset_pretrained_model reset_pretrained_model(preprocess_pipe) # pickle is not possible for fasttext model ( binary) joblib.dump(preprocess_pipe, Path(deployLocation)/'model'/'preprocess_pipe.pkl') self.features=topFeatures if targetColumn in topFeatures: topFeatures.remove(targetColumn) self.topFeatures=topFeatures if normalizer != None: normalizer_file_path = os.path.join(deployLocation,'model','normalizer_pipe.sav') normalizer_pickle_file = 'normalizer_pipe.sav' pickle.dump(normalizer, open(normalizer_file_path,'wb')) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\\n') else: datacolumns=list(dataFrame.columns) if targetFeature in datacolumns: datacolumns.remove(targetFeature) if not timeseriesStatus and not anomalyDetectionStatus and not inputDriftStatus and not outputDriftStatus and not imageClassificationStatus and not associationRuleStatus and not objectDetectionStatus and not stateTransitionStatus and not textsummarizationStatus: self.textFeatures,self.vectorizerFeatures,pipe,column_merge_flag,merge_columns = profilerObj.checkForTextClassification(dataFrame) self.topFeatures =datacolumns if(pipe is not None): preprocessing_pipe = 'pppipe'+iterName+'_'+iterVersion+'.sav' ppfilename = os.path.join(deployLocation,'model','pppipe'+iterName+'_'+iterVersion+'.sav') pickle.dump(pipe, open(ppfilename, 'wb')) status, msg = save_csv_compressed(dataFrame,profiled_data_file) if not status: log.info('CSV File Error: ' + str(msg)) if selector_status: log.info("\\n================== Feature Selector has started ==================") log.info("Status:-|... AION feature engineering started") fs_mlstart = time.time() selectorJson = config_obj.getEionSelectorConfiguration() if self.textFeatures: config_obj.updateFeatureSelection(selectorJson, codeConfigure, self.textFeatures) log.info("-------> For vectorizer 'feature selection' is disabled and all the features will be used for training") from feature_engineering.featureSelector import featureSelector selectorObj = featureSelector() dataFrame,targetColumn,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,self.similarGroups,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pcaModel,bpca_features,apca_features,featureEngineeringSelector = selectorObj.startSelector(dataFrame, selectorJson,self.textFeatures,targetFeature,problem_type) if(str(pcaModel) != 'None'): featureReduction = 'True' status, msg = save_csv(dataFrame,reduction_data_file) if not status: log.info('CSV File Error: ' + str(msg)) pcaFileName = os.path.join(deployLocation,'model','pca'+iterName+'_'+iterVersion+'.sav') pcaModel_pickle_file = 'pca'+iterName+'_'+iterVersion+'.sav' pickle.dump(pcaModel, open(pcaFileName, 'wb')) if not xtest.empty: xtest = pd.DataFrame(pcaModel.transform(xtest),columns= apca_features) if targetColumn in self.topFeatures: self.topFeatures.remove(targetColumn) fs_mlexecutionTime=time.time() - fs_mlstart log.info('-------> COMPUTING: Total Feature Selection Execution Time '+str(fs_mlexecutionTime)) log.info('================== Feature Selection completed ==================\\n') log.info("Status:-|... AION feature engineering completed") if deeplearner_status or learner_status: log.info('Status:-|... AION training started') ldp_mlstart = time.time() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problem_type.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' else: modelType='clustering' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if(modelType == 'clustering') or (modelType == 'topicmodelling'): xtrain = featureData ytrain = pd.DataFrame() xtest = featureData ytest = pd.DataFrame() elif (targetColumn!=''): xtrain = dataFrame[features] ytrain = dataFrame[targetColumn] else: pass categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) if learner_status: base_model_score=0 log.info('\\n================== ML Started ==================') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() from learner.machinelearning import machinelearning mlobj = machinelearning() anomalyDetectionStatus = False anomalyMethod =config_obj.getEionanomalyModels() if modelType.lower() == "anomalydetection" or modelType.lower() == "timeseriesanomalydetection": #task 11997 anomalyDetectionStatus = True if anomalyDetectionStatus == True : datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) if datetimeFeature in datacolumns: datacolumns.remove(datetimeFeature) self.features = datacolumns from learner.anomalyDetector import anomalyDetector anomalyDetectorObj=anomalyDetector() model_type ="anomaly_detection" saved_model = model_type+'_'+iterName+'_'+iterVersion+'.sav' if problem_type.lower() == "timeseriesanomalydetection": #task 11997 anomalyconfig = config_obj.getAIONTSAnomalyDetectionConfiguration() modelType = "TimeSeriesAnomalyDetection" else: anomalyconfig = config_obj.getAIONAnomalyDetectionConfiguration() testPercentage = config_obj.getAIONTestTrainPercentage() ##Multivariate feature based anomaly detection status from gui (true/false) mv_featurebased_selection = config_obj.getMVFeaturebasedAD() mv_featurebased_ad_status=str(mv_featurebased_selection['uniVariate']) model,estimator,matrix,trainmatrix,score,labelMaps=anomalyDetectorObj.startanomalydetector(dataFrame,targetColumn,labelMaps,inlierLabels,learnerJson,model_type,saved_model,anomalyMethod,deployLocation,predicted_data_file,testPercentage,anomalyconfig,datetimeFeature,mv_featurebased_ad_status) #Unnati score = 'NA' if(self.matrix != '{'): self.matrix += ',' self.matrix += matrix if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix scoreParam = 'NA' scoredetails = f'{{"Model":"{model}","Score":"{score}"}}' if model_tried != '': model_tried += ',' model_tried += scoredetails model = anomalyMethod else: log.info('-------> Target Problem Type:'+ self.targetType) log.info('-------> Target Model Type:'+ modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() codeConfigure.update_config('scoring_criteria',scoreParam) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=mlobj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps,'MB',codeConfigure,featureEngineeringSelector,config_obj.getModelEvaluationConfig(),imageFolderLocation) #Getting model,data for ensemble calculation e_model=loaded_model base_model_score=score if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('================== ML Completed ==================\\n') if deeplearner_status: learner_type = 'DL' log.info('Status:- |... AION DL training started') from dlearning.deeplearning import deeplearning dlobj = deeplearning() from learner.machinelearning import machinelearning mlobj = machinelearning() log.info('\\n================== DL Started ==================') dlstart = time.time() deeplearnerJson = config_obj.getEionDeepLearnerConfiguration() targetColumn = targetFeature method = deeplearnerJson['optimizationMethod'] optimizationHyperParameter = deeplearnerJson['optimizationHyperParameter'] cvSplit = optimizationHyperParameter['trainTestCVSplit'] roundLimit=optimizationHyperParameter['roundLimit'] if 'randomMethod' in optimizationHyperParameter: randomMethod = optimizationHyperParameter['randomMethod'] else: randomMethod = 'Quantum' modelType = problem_type.lower() modelParams = deeplearnerJson['modelParams'] modelParamsFile=deeplearnerJson['modelparamsfile'] if roundLimit =="": roundLimit=None else: roundLimit=int(roundLimit) if len(self.modelSelTopFeatures) !=0: dl_features=self.modelSelTopFeatures best_feature_model = 'ModelBased' elif len(self.topFeatures) != 0: dl_features=self.topFeatures if featureEngineeringSelector.lower() == 'true': best_feature_model = 'DimensionalityReduction' else: best_feature_model = 'StatisticalBased' elif len(self.allFeatures) != 0: dl_features=self.allFeatures best_feature_model = 'AllFeatures' else: datacolumns=list(dataFrame.columns) datacolumns.remove(targetColumn) dl_features =datacolumns best_feature_model = 'AllFeatures' log.info('-------> Features Used For Modeling: '+(str(dl_features))[:500]) if cvSplit == "": cvSplit =None else: cvSplit =int(cvSplit) xtrain = xtrain[dl_features] xtest = xtest[dl_features] df_test = xtest.copy() df_test['actual'] = ytest modelParams,modelList = config_obj.getEionDeepLearnerModelParams(modelType) if modelType.lower() == 'classification': scoreParam = dlobj.setScoreParams(scoreParam,modelType) featureDataShape = xtrain.shape model_type = 'Classification' log.info('\\n------ Training DL: Classification ----') elif modelType.lower() == 'regression': model_type = "Regression" if scoreParam == 'None': scoreParam = None log.info('\\n------ Training DL: Regression ----') featureDataShape = xtrain.shape model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix = dlobj.startLearning(model_type,modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,labelMaps,df_test,deployLocation,iterName,iterVersion,best_feature_model) if model_tried != '': model_tried += ',' model_tried += model_tried_dl bestDL = True if learner_status: if score_dl <= score: bestDL = False log.info("\\n----------- Machine Learning is Good ---") log.info("-------> Model: "+str(model) +" Score
: "+str(score)) log.info("---------------------------------------\\n") else: os.remove(filename) os.remove(predicted_data_file) log.info("\\n------------ Deep Learning is Good---") log.info("-------> Model: "+str(model_dl)+" Score: "+str(score_dl)) log.info("---------------------------------------\\n") if bestDL: model = model_dl score = score_dl best_model = best_model_dl params = params_dl filename = filename_dl status, msg = save_csv(df_test,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) saved_model = saved_model_dl self.matrix = '{'+performancematrix self.trainmatrix = '{'+trainingperformancematrix self.features = dl_features else: learner_type = 'ML' shutil.rmtree(filename_dl) dlexecutionTime=time.time() - dlstart log.info('-------> DL Execution Time '+str(dlexecutionTime)) log.info('Status:- |... AION DL training completed') log.info('================== Deep Completed ==================\\n') if deeplearner_status or learner_status: log.info('Status:-|... AION training completed') if stateTransitionStatus: log.info('Status:-|... AION State Transition start') learner_type = modelType = model_type = 'StateTransition' model = 'MarkovClustering' scoreParam = 'NA' score = 0 from state_transition.pattern import pattern patternobj = pattern(modelFeatures,targetFeature) model_tried,probabilityfile,clusteringfile = patternobj.training(dataFrame,outputLocation) deploy_status = False visualizationstatus = False log.info('Status:-|... AION State Transition completed') if associationRuleStatus: log.info('\\n================== Association Rule Started ==================') log.info('Status:-|... AION Association Rule start') learner_type = 'AR' modelType = 'Association Rule' model = 'apriori' scoreParam = 'NA' score = 'NA' model_type = modelType associationRuleJson = config_obj.getEionAssociationRuleConfiguration() modelparams,modelList = config_obj.getEionAssociationRuleModelParams() invoiceNoFeature,itemFeature = config_obj.getAssociationRuleFeatures() if model in modelparams: modelparam = modelparams[model] log.info('\\n-------- Assciation Rule Start -----') from association_rules.associationrules import associationrules associationrulesobj = associationrules(dataFrame,associationRuleJson,modelparam,invoiceNoFeature,itemFeature) model_tried = associationrulesobj.apply_associationRules(outputLocation) log.info('-------- Association Rule End -----\\n') log.info('<--------Association Rule Completed----->') log.info('Status:-|... AION Association Rule completed') deploy_status = False if textSimilarityStatus: log.info('================ Text Similarity Started ====================') log.info('Status:-|... AION Text Similarity started') learner_type = 'Text Similarity' model_type = 'Text Similarity' scoreParam = 'Accuracy' modelType = model_type firstDocFeature = config_obj.getFirstDocumentFeature() secondDocFeature = config_obj.getSecondDocumentFeature() textSimilarityCongig = config_obj.getEionTextSimilarityConfig() testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati from recommender.text_similarity import eion_similarity_siamese objTextSimilarity = eion_similarity_siamese() model,score,matrix,trainmatrix,modeltried,saved_model,filename,padding_length,threshold = objTextSimilarity.siamese_model(dataFrame,firstDocFeature,secondDocFeature,targetFeature,textSimilarityCongig,pipe,deployLocation,iterName,iterVersion,testPercentage,predicted_data_file) if(self.matrix != '{'): self.matrix += ',' self.matrix += matrix if model_tried != '': model_tried += ',' model_tried += modeltried if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix log.info('Status:-|... AION Text Similarity completed') log.info('================ Text Similarity Started End====================') if timeseriesStatus: log.info('================ Time Series Forecasting Started ====================') #task 11997 log.info('Status:-|... AION TimeSeries Forecasting started') #task 11997 modelType = 'TimeSeriesForecasting' #task 11997 model_type = 'TimeSeriesForecasting' #task 11997 learner_type = 'TS' modelName='ARIMA' numericContinuousFeatures = targetFeature.split(",") profilerJson = config_obj.getEionTimeSeriesConfiguration() modelParams,modelList = config_obj.getEionTimeSeriesModelParams() modelName = modelList testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati from time_series.timeseries import timeseries allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'rmse' objTS = timeseries(profilerJson,modelParams,modelList,dataFrame,targetFeature,datetimeFeature,modelName,testPercentage,iterName,iterVersion,deployLocation,scoreParam) modelName,model,scoreParam,score,best_model,sfeatures,errormatrix,model_tried,dictDiffCount,pred_freq,additional_regressors,filename,saved_model,lag_order,scalertransformationFile = objTS.timeseries_learning(trained_data_file,predicted_data_file,deployLocation) xtrain = dataFrame self.matrix += errormatrix log.info("Best model to deploy: \\n"+str(model)) ## Below part is for var,arima,fbprophet try: with open(filename, 'rb') as f: loaded_model = pickle.load(f) f.close() except: loaded_model=best_model pass df_l=len(dataFrame) pred_threshold=0.1 max_pred_by_user= round((df_l)*pred_threshold) #prediction for 24 steps or next 24 hours if noofforecasts == -1: noofforecasts = max_pred_by_user no_of_prediction=noofforecasts if (no_of_prediction > max_pred_by_user): log.info("-------> Forecast beyond the threshold.So, Reset to Maximum:" +str(max_pred_by_user)) no_of_prediction=max_pred_by_user noofforecasts = no_of_prediction log.info("-------> Number of Forecast Records: "+str(no_of_prediction)) log.info("\\n------ Forecast Prediction Start -------------") if(model.lower() == 'var'): sfeatures.remove(datetimeFeature) self.features = sfeatures originalPredictions=objTS.var_prediction(no_of_prediction) log.info("-------> Predictions") log.info(originalPredictions) predictions=originalPredictions forecast_output = predictions.to_json(orient='records') else: if (model.lower() == 'fbprophet'): self.features = sfeatures if not pred_freq: sessonal_freq = 'H' else: sessonal_freq=pred_freq ts_prophet_future = best_model.make_future_dataframe(periods=no_of_prediction,freq=sessonal_freq,include_history = False) #If additional regressor given by user. if (additional_regressors): log.info("------->Prophet additional regressor given by user: "+str(additional_regressors)) ts_prophet_future[additional_regressors] = dataFrame[additional_regressors] ts_prophet_future.reset_index(drop=True) ts_prophet_future=ts_prophet_future.dropna() else: pass train_forecast = best_model.predict(ts_prophet_future) train_forecast = train_forecast.round(2) prophet_forecast_tail=train_forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] prophet_forecast_tail['ds'] = prophet_forecast_tail['ds'].dt.strftime('%Y-%m-%d %H:%i:%s') log.info("------->Prophet Predictions") log.info(prophet_forecast_tail) forecast_output = prophet_forecast_tail.to_json(orient='records') elif (model.lower() == 'arima'): predictions = loaded_model.predict(n_periods=no_of_prediction) predictions = predictions.round(2) self.features = sfeatures col = targetFeature.split(",") pred = pd.DataFrame(predictions,columns=col) predictionsdf = pred log.info("-------> Predictions") log.info(predictionsdf) forecast_output = predictionsdf.to_json(orient='records') elif (model.lower() == 'encoder_decoder_lstm_mvi_uvo'): log.info(datetimeFeature) log.info(sfeatures) self.features = sfeatures if len(sfeatures) == 1: xt = xtrain[self.features].values else: xt = xtrain[self.features].values with open(scalertransformationFile, 'rb') as f: loaded_scaler_model = pickle.load(f) f.close() xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) pred_data = xt y_future = [] featuerlen = len(sfeatures) targetColIndx = (xtrain.columns.get_loc(targetFeature)) #in case of lstm multivariate input and univariate out prediction only one sequence can be predicted #consider the last xtrain window as input sequence pdata = pred_data[-lag_order:] pdata = pdata.reshape((1,lag_order, featuerlen)) pred = loaded_model.predict(pdata) pred_1d = pred.ravel() #pred_1d = pred_1d.reshape(len(pred_1d),1) pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, featuerlen) pdata_2d[:,targetColIndx] = pred_1d pred_2d_inv = loaded_scaler_model.inverse_transform(pdata_2d) predout = pred_2d_inv[:, targetColIndx] predout = predout.reshape(len(pred_1d),1) #y_future.append(predout) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(predout)),columns=col) for i in range(0, len(predout)): pred.iloc[i] = predout[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') elif (model.lower() == 'mlp' or model.lower() == 'lstm'): sfeatures.remove(datetimeFeature) self.features = sfeatures if len(sfeatures) == 1: xt = xtrain[self.features].values else: xt = xtrain[self.features].values with open(scalertransformationFile, 'rb') as f: loaded_scaler_model = pickle.load(f) f.close() xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) pred_data = xt y_future = [] for i in range(no_of_prediction): pdata = pred_data[-lag_order:] if model.lower() == 'mlp': pdata = pdata.reshape((1,lag_order)) else: pdata = pdata.reshape((1,lag_order, len(sfeatures))) if (len(sfeatures) > 1): pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout) pred_data=np.append(pred_data,pred,axis=0) else: pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout.flatten()[-1]) pred_data = np.append(pred_data,pred) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(y_future)),columns=col) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') else: pass log.info('Status:-|... AION TimeSeries Forecasting completed') #task 11997 log.info("------ Forecast Prediction End -------------\\n") log.info('================ Time Series Forecasting Completed ================\\n') #task 11997 if recommenderStatus: log.info('\\n================ Recommender Started ================ ') log.info('Status:-|... AION Recommender started') learner_type = 'RecommenderSystem' model_type = 'RecommenderSystem' modelType = model_type model = model_type targetColumn='' datacolumns=list(dataFrame.columns) self.features=datacolumns svd_params = config_obj.getEionRecommenderConfiguration() from recommender.item_rating import recommendersystem recommendersystemObj = recommendersystem(modelFeatures,svd_params) testPercentage = config_obj.getAION
TestTrainPercentage() #Unnati saved_model,rmatrix,score,trainingperformancematrix,model_tried = recommendersystemObj.recommender_model(dataFrame,outputLocation) scoreParam = 'NA' #Task 11190 log.info('Status:-|... AION Recommender completed') log.info('================ Recommender Completed ================\\n') if textsummarizationStatus: log.info('\\n================ text Summarization Started ================ ') log.info('Status:-|... AION text Summarization started') modelType = 'textsummarization' model_type = 'textsummarization' learner_type = 'Text Summarization' modelName='TextSummarization' from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from scipy import spatial model = model_type dataLocationTS,deployLocationTS,KeyWordsTS,pathForKeywordFileTS = config_obj.getEionTextSummarizationConfig() #print("dataLocationTS",dataLocationTS) #print("deployLocationTS",deployLocationTS) #print("KeyWordsTS",KeyWordsTS) #print("pathForKeywordFileTS",pathForKeywordFileTS) #PreTrained Model Download starts------------------------- from appbe.dataPath import DATA_DIR preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' models = {'glove':{50:'glove.6B.50d.w2vformat.txt'}} supported_models = [x for y in models.values() for x in y.values()] modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' Path(modelsPath).mkdir(parents=True, exist_ok=True) p = Path(modelsPath).glob('**/*') modelsDownloaded = [x.name for x in p if x.name in supported_models] selected_model="glove.6B.50d.w2vformat.txt" if selected_model not in modelsDownloaded: print("Model not in folder, downloading") import urllib.request location = Path(modelsPath) local_file_path = location/f"glove.6B.50d.w2vformat.txt" urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.50d.w2vformat.txt', local_file_path) from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") tokenizer.save_pretrained(preTrainedModellocation) model.save_pretrained(preTrainedModellocation) #PreTrained Model Download ends----------------------- deployLocationData=deployLocation+"\\\\data\\\\" modelLocation=Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'/'glove.6B.50d.w2vformat.txt' KeyWordsTS=KeyWordsTS.replace(",", " ") noOfKeyword = len(KeyWordsTS.split()) keywords = KeyWordsTS.split() embeddings = {} word = '' with open(modelLocation, 'r', encoding="utf8") as f: header = f.readline() header = header.split(' ') vocab_size = int(header[0]) embed_size = int(header[1]) for i in range(vocab_size): data = f.readline().strip().split(' ') word = data[0] embeddings[word] = [float(x) for x in data[1:]] readData=pd.read_csv(pathForKeywordFileTS,encoding='utf-8',encoding_errors= 'replace') for i in range(noOfKeyword): terms=(sorted(embeddings.keys(), key=lambda word: spatial.distance.euclidean(embeddings[word], embeddings[keywords[i]])) )[1:6] readData = readData.append({'Keyword': keywords[i]}, ignore_index=True) for j in range(len(terms)): readData = readData.append({'Keyword': terms[j]}, ignore_index=True) deployLocationDataKwDbFile=deployLocationData+"keywordDataBase.csv" readData.to_csv(deployLocationDataKwDbFile,encoding='utf-8',index=False) datalocation_path=dataLocationTS path=Path(datalocation_path) fileList=os.listdir(path) textExtraction = pd.DataFrame() textExtraction['Sentences']="" rowIndex=0 for i in range(len(fileList)): fileName=str(datalocation_path)+"\\\\"+str(fileList[i]) if fileName.endswith(".pdf"): print("\\n files ",fileList[i]) from pypdf import PdfReader reader = PdfReader(fileName) number_of_pages = len(reader.pages) text="" textOutputForFile="" OrgTextOutputForFile="" for i in range(number_of_pages) : page = reader.pages[i] text1 = page.extract_text() text=text+text1 import nltk tokens = nltk.sent_tokenize(text) for sentence in tokens: sentence=sentence.replace("\\n", " ") if (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) : continue textExtraction.at[rowIndex,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 if fileName.endswith(".txt"): print("\\n txt files",fileList[i]) data=[] with open(fileName, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele sentences=str1.split(".") count=0 for sentence in sentences: count += 1 textExtraction.at[rowIndex+i,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 df=textExtraction #print("textExtraction",textExtraction) deployLocationDataPreProcessData=deployLocationData+"preprocesseddata.csv" save_csv_compressed(deployLocationDataPreProcessData, df, encoding='utf-8') df['Label']=0 kw=pd.read_csv(deployLocationDataKwDbFile,encoding='utf-8',encoding_errors= 'replace') Keyword_list = kw['Keyword'].tolist() for i in df.index: for x in Keyword_list: if (str(df["Sentences"][i])).find(x) != -1: df['Label'][i]=1 break deployLocationDataPostProcessData=deployLocationData+"postprocesseddata.csv" #df.to_csv(deployLocationDataPostProcessData,encoding='utf-8') save_csv_compressed(deployLocationDataPostProcessData, df, encoding='utf-8') labelledData=df train_df=labelledData labelencoder = LabelEncoder() train_df['Sentences'] = labelencoder.fit_transform(train_df['Sentences']) X = train_df.drop('Label',axis=1) y = train_df['Label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) Classifier = RandomForestClassifier(n_estimators = 10, random_state = 42) modelTs=Classifier.fit(X, y) import pickle deployLocationTS=deployLocation+"\\\\model\\\\"+iterName+'_'+iterVersion+'.sav' deployLocationTS2=deployLocation+"\\\\model\\\\"+"classificationModel.sav" pickle.dump(modelTs, open(deployLocationTS, 'wb')) pickle.dump(modelTs, open(deployLocationTS2, 'wb')) print("\\n trainModel Ends") saved_model = 'textsummarization_'+iterName+'_'+iterVersion log.info('Status:-|... AION text summarization completed') model = learner_type log.info('================ text summarization Completed ================\\n') if survival_analysis_status: sa_method = config_obj.getEionanomalyModels() labeldict = {} log.info('\\n================ SurvivalAnalysis Started ================ ') log.info('Status:-|... AION SurvivalAnalysis started') log.info('\\n================ SurvivalAnalysis DataFrame ================ ') log.info(dataFrame) from survival import survival_analysis from learner.machinelearning import machinelearning sa_obj = survival_analysis.SurvivalAnalysis(dataFrame, preprocess_pipe, sa_method, targetFeature, datetimeFeature, filter_expression, profilerObj.train_features_type) if sa_obj != None: predict_json = sa_obj.learn() if sa_method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']: predicted = sa_obj.models[0].predict(dataFrame[datetimeFeature]) status, msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) self.features = [datetimeFeature] elif sa_method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']: predicted = sa_obj.models[0].predict_cumulative_hazard(dataFrame) datacolumns = list(dataFrame.columns) targetColumn = targetFeature if targetColumn in datacolumns: datacolumns.remove(targetColumn) self.features = datacolumns score = sa_obj.score scoreParam = 'Concordance_Index' status,msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) model = sa_method modelType = "SurvivalAnalysis" model_type = "SurvivalAnalysis" modelName = sa_method i = 1 for mdl in sa_obj.models: saved_model = "%s_%s_%s_%d.sav"%(model_type,sa_method,iterVersion,i) pickle.dump(mdl, open(os.path.join(deployLocation,'model',saved_model), 'wb')), i+=1 p = 1 for plot in sa_obj.plots: img_name = "%s_%d.png"%(sa_method,p) img_location = os.path.join(imageFolderLocation,img_name) plot.savefig(img_location,bbox_inches='tight') sa_images.append(img_location) p+=1 log.info('Status:-|... AION SurvivalAnalysis completed') log.info('\\n================ SurvivalAnalysis Completed ================ ') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('\\n================== Visualization Recommendation Started ==================') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfrows,self.dfcols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('================== Visualization Recommendation Started ==================\\n') if similarityIdentificationStatus or contextualSearchStatus: datacolumns=list(dataFrame.columns) features = modelFeatures.split(",") if indexFeature != '' and indexFeature != 'NA': iFeature = indexFeature.split(",") for ifea in iFeature: if ifea not in features: features.append(ifea) for x in features: dataFrame[x] = similaritydf[x] #get vectordb(chromadb) status selected if similarityIdentificationStatus: learner_type = 'similarityIdentification' else: learner_type = 'contextualSearch' vecDBCosSearchStatus = config_obj.getVectorDBCosSearchStatus(learner_type) if vecDBCosSearchStatus: status, msg = save_chromadb(dataFrame, config_obj, trained_data_file, modelFeatures) if not status: log.info('Vector DB File Error: '+str(msg)) else: status, msg = save_csv(dataFrame,trained_data_file) if not status: log.info('CSV File Error: '+str(msg)) self.features = datacolumns model_type = config_obj.getAlgoName(problem_type) model = model_type #bug 12833 model_tried = '{"Model":"'+model_type+'","FeatureEngineering":"NA","Score":"NA","ModelUncertainty":"NA"}' modelType = learner_type saved_model = learner_type score = 'NA' if deploy_status: if str(model) != 'None': log.info('\\n================== Deployment Started ==================') log.info('Status:-|... AION Creating Prediction Service Start') deployer_mlstart = time.time() deployJson = config_obj.getEionDeployerConfiguration() deploy_name = iterName+'_'+iterVersion from prediction_package.model_deploy import DeploymentManager if textsummarizationStatus : deploy = DeploymentManager() deploy.deployTSum(deployLocation,preTrainedModellocation) codeConfigure.save_config(deployLocation
) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Deployer completed') log.info('================== Deployment Completed ==================') else: deploy = DeploymentManager() deploy.deploy_model(deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deployLocation,self.features,self.profilerAction,dataLocation,labelMaps,column_merge_flag,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer_pickle_file,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,self.method,deployFolder,iterName,iterVersion,self.wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,noofforecasts,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,deploy_config) codeConfigure.update_config('deploy_path',os.path.join(deployLocation,'publish')) codeConfigure.save_config(deployLocation) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Creating Prediction Service completed') log.info('================== Deployment Completed ==================') if not outputDriftStatus and not inputDriftStatus: from transformations.dataProfiler import set_features self.features = set_features(self.features,profilerObj) self.matrix += '}' self.trainmatrix += '}' print(model_tried) model_tried = eval('['+model_tried+']') matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) deployPath = deployLocation.replace(os.sep, '/') if survival_analysis_status: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"survivalProbability":json.loads(predict_json),"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,"imageLocation":str(sa_images),"LogFile":logFileName}} elif not timeseriesStatus: try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} else: if config_obj.summarize: modelType = 'Summarization' output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,'forecasts':json.loads(forecast_output),"LogFile":logFileName}} if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w',encoding='utf-8') as f: json.dump(output_json, f) f.close() output_json = json.dumps(output_json) log.info('\\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfrows)+','+str(self.dfcols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) for i in range(0,len(self.similarGroups)): log.info('------->Similar Groups '+str(i+1)+' '+str(self.similarGroups[i])) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\\n') log.info('Status:-|... AION Model Training Successfully Done') except Exception as inst: log.info('server code execution failed !....'+str(inst)) log.error(inst, exc_info = True) output_json = {"status":"FAIL","message":str(inst).strip('"'),"LogFile":logFileName} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\\nTotal execution time(sec) :'+str(executionTime)) log.info('\\n------------- Output JSON ------------') log.info('aion_learner_status:'+str(output_json)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def split_into_train_test_data(self,featureData,targetData,testPercentage,log,modelType='classification'): #Unnati log.info('\\n-------------- Test Train Split ----------------') if testPercentage == 0 or testPercentage == 100: #Unnati xtrain=featureData ytrain=targetData xtest=pd.DataFrame() ytest=pd.DataFrame() else: testSize= testPercentage/100 #Unnati if modelType == 'regression': log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) else: try: log.info('-------> Split Type: Stratify Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,random_state=42) except Exception as ValueError: count_unique = targetData.value_counts() feature_with_single_count = count_unique[ count_unique == 1].index.tolist() error = f"The least populated class in {feature_with_single_count} has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2" raise Exception(error) from ValueError except: log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) log.info('Status:- !... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test') #Unnati log.info('-------> Train Data Shape: '+str(xtrain.shape)+' ---------->') log.info('-------> Test Data Shape: '+str(xtest.shape)+' ---------->') log.info('-------------- Test Train Split End ----------------\\n') return(xtrain,ytrain,xtest,ytest) def aion_train_model(arg): warnings.filterwarnings('ignore') config_path = Path( arg) with open( config_path, 'r') as f: config = json.load( f) log = set_log_handler(config['basic']) log.info('************* Version - v'+AION_VERSION+' *************** \\n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) try: config_validate(arg) valid, msg = pushRecordForTraining() if valid: serverObj = server() configObj = AionConfigManager() codeConfigure = code_configure() codeConfigure.create_config(config) readConfistatus,msg = configObj.readConfigurationFile(config) if(readConfistatus == False): raise ValueError( msg) output = serverObj.startScriptExecution(configObj, codeConfigure, log) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print( f"\\naion_learner_status:{output}\\n") log.info( f"\\naion_learner_status:{output}\\n") except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(f"\\naion_learner_status:{output}\\n") log.info( f"\\naion_learner_status:{output}\\n") return output if __name__ == "__main__": aion_train_model( sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import time import os import sys import numpy as np from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.preprocessing import binarize from learner.optimizetechnique import OptimizationTq from learner.parameters import parametersDefine import logging from learner.aion_matrix import aion_matrix # apply threshold to positive probabilities to create labels def to_labels(pos_probs, threshold): return (pos_probs >= threshold).astype('int') class incClassifierModel(): def __init__(self,noOfClasses,modelList,params,scoreParam,cvSplit,numIter,geneticParam,trainX,trainY,testX,testY,method,modelType,MakeFP0,MakeFN0,deployLocation): self.noOfClasses = noOfClasses self.modelList =modelList self.params =params self.trainX =trainX self.X =trainX self.trainY =trainY self.testX = testX self.testY = testY self.method =method self.scoreParam=scoreParam self.cvSplit=cvSplit self.numIter=numIter self.geneticParam=geneticParam self.MakeFP0= MakeFP0 self.MakeFN0=MakeFN0 self.log = logging.getLogger('eion') self.modelType = modelType self.deployLocation = deployLocation self.isRiverModel = False self.AlgorithmNames={'Online Logistic Regression':'Online Logistic Regression', 'Online Softmax Regression':'Online Softmax Regression', 'Online Decision Tree Classifier':'Online Decision Tree Classifier', 'Online KNN Classifier':'Online KNN Classifier'} self.modelToAlgoNames = {value: key for key, value in self.AlgorithmNames.items()} def check_threshold(self,estimator,testX,testY,threshold_range,checkParameter,modelName): thresholdx = -1 for threshold in threshold_range: predictedData = estimator.predict_proba(testX) predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold)#bug 12437 p_score = precision_score(testY, predictedData) r_score = recall_score(testY, predictedData) tn, fp, fn, tp = confusion_matrix(testY, predictedData).ravel() if(checkParameter.lower() == 'fp'): if fp == 0: if(p_score == 1): thresholdx = threshold self.log.info('---------------> Best Threshold:'+str(threshold)) self.log.info('---------------> Best Precision:'+str(p_score)) self.log.
info('---------------> Best Recall:'+str(r_score)) self.log.info('---------------> TN:'+str(tn)) self.log.info('---------------> FP:'+str(fp)) self.log.info('---------------> FN:'+str(fn)) self.log.info('---------------> TP:'+str(tp)) break if(checkParameter.lower() == 'fn'): if fn == 0: if(r_score == 1): thresholdx = threshold self.log.info('---------------> Best Threshold:'+str(threshold)) self.log.info('---------------> Best Precision:'+str(p_score)) self.log.info('---------------> Best Recall:'+str(r_score)) self.log.info('---------------> TN:'+str(tn)) self.log.info('---------------> FP:'+str(fp)) self.log.info('---------------> FN:'+str(fn)) self.log.info('---------------> TP:'+str(tp)) break return(thresholdx,p_score,r_score) def getBestModel(self,fp0,fn0,threshold,bestthreshold,rscore,brscore,pscore,bpscore,tscore,btscore): cmodel = False if(threshold != -1): if(bestthreshold == -1): cmodel = True bestthreshold = threshold brscore = rscore bpscore = pscore btscore = tscore elif fp0: if rscore > brscore: cmodel = True bestthreshold = threshold brscore = rscore bpscore = pscore btscore = tscore elif rscore == brscore: if tscore > btscore or btscore == -0xFFFF: cmodel = True bestthreshold = threshold brscore = rscore bpscore = pscore btscore = tscore elif fn0: if pscore > bpscore: cmodel = True bestthreshold = threshold brscore = rscore bpscore = pscore btscore = tscore elif pscore == bpscore: if tscore > btscore or btscore == -0xFFFF: cmodel = True bestthreshold = threshold brscore = rscore bpscore = pscore btscore = tscore else: if tscore > btscore or btscore == -0xFFFF: cmodel = True btscore = tscore else: if(bestthreshold == -1): if tscore > btscore or btscore == -0xFFFF: cmodel = True btscore = tscore return cmodel,btscore,bestthreshold,brscore,bpscore def firstFit(self): bestModel='None' bestParams={} bestScore=-0xFFFF bestEstimator = 'None' scoredetails = '' threshold = -1 bestthreshold = -1 precisionscore =-1 bestprecisionscore=-1 recallscore = -1 bestrecallscore=-1 self.bestTrainPredictedData = None self.bestPredictedData = None self.log.info('\\n---------- ClassifierModel has started ----------') objClf = aion_matrix() try: for modelName in self.modelList: paramSpace=self.params[modelName] algoName = self.AlgorithmNames[modelName] from incremental.riverML import riverML riverMLObj = riverML() self.log.info("-------> Model Name: "+str(modelName)) start = time.time() model, modelParams, estimator, trainPredictedData = riverMLObj.startLearn('classification',algoName,paramSpace,self.trainX, self.trainY, self.noOfClasses) modelParams = str(modelParams) predictedData = riverMLObj.getPrediction(estimator,self.testX) executionTime=time.time() - start self.testY.reset_index(inplace=True, drop=True) score = objClf.get_score(self.scoreParam,self.testY.values.flatten(),predictedData.values.flatten()) self.log.info(str(score)) metrices = {} metrices["score"] = score threshold = -1 precisionscore = precision_score(self.testY, predictedData, average='macro') recallscore = recall_score(self.testY, predictedData, average='macro') self.log.info('---------> Total Execution: '+str(executionTime)) if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"'+self.modelToAlgoNames[model]+'","Score":'+str(score)+'}' status,bscore,bthres,brscore,bpscore = self.getBestModel(self.MakeFP0,self.MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,score,bestScore) if status: bestScore =bscore bestModel =model bestParams=modelParams bestEstimator=estimator bestthreshold = threshold bestrecallscore = recallscore bestprecisionscore = precisionscore self.bestTrainPredictedData = trainPredictedData self.bestPredictedData = predictedData self.log.info('Status:- |... ML Algorithm applied: '+modelName) self.log.info("Status:- |... Testing Score: "+str(score)) self.log.info('---------- ClassifierModel End ---------- \\n') self.log.info('\\n------- Best Model and its parameters -------------') self.log.info('Status:- |... Best Algorithm selected: '+str(self.modelToAlgoNames[bestModel])+' Score='+str(round(bestScore,2))) self.log.info("-------> Best Name: "+str(bestModel)) self.log.info("-------> Best Score: "+str(bestScore)) return self.modelToAlgoNames[bestModel],bestParams,bestScore,bestEstimator,scoredetails,bestthreshold,bestprecisionscore,bestrecallscore except Exception as inst: self.log.info( '\\n-----> ClassifierModel failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings warnings.filterwarnings('ignore') import logging import sklearn from random import sample from numpy.random import uniform import numpy as np import math import pickle import os import json from math import isnan from sklearn.preprocessing import binarize from sklearn.preprocessing import LabelEncoder import pandas as pd from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from incremental.incClassificationModel import incClassifierModel from incremental.incRegressionModel import incRegressionModel class incMachineLearning(object): def __init__(self,mlobj): self.features=[] self.mlobj=mlobj self.log = logging.getLogger('eion') def startLearning(self,mlconfig,modelType,modelParams,modelList,scoreParam,features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps): model = 'None' params = 'None' score = 0xFFFF estimator = None model_tried = '' threshold = -1 pscore = -1 rscore = -1 topics = {} if(targetColumn != ''): targetData = dataFrame[targetColumn] datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) scoreParam = self.mlobj.setScoreParams(scoreParam,modelType,categoryCountList) self.log.info('\\n-------------- Training ML: Start --------------') model_type,model,params, score, estimator,model_tried,xtrain,ytrain,xtest,ytest,threshold,pscore,rscore,method,incObj=self.startLearnerModule(mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps) self.log.info('-------------- Training ML: End --------------\\n') filename = os.path.join(deployLocation,'production','model',model+'.pkl') saved_model = model+'.pkl' pickle.dump(estimator, open(filename, 'wb')) df_test = xtest.copy() df_test.reset_index(inplace = True,drop=True) trainPredictedData = incObj.bestTrainPredictedData predictedData = incObj.bestPredictedData try: if(model_type == 'Classification'): self.log.info('\\n--------- Performance Matrix with Train Data ---------') train_matrix = self.mlobj.getClassificationPerformaceMatrix(ytrain,trainPredictedData,labelMaps) self.log.info('--------- Performance Matrix with Train Data End ---------\\n') self.log.info('\\n--------- Performance Matrix with Test Data ---------') performancematrix = self.mlobj.getClassificationPerformaceMatrix(ytest,predictedData,labelMaps) ytest.reset_index(inplace=True,drop=True) df_test['actual'] = ytest df_test['predict'] = predictedData self.log.info('--------- Performance Matrix with Test Data End ---------\\n') matrix = performancematrix elif(model_type == 'Regression'): self.log.info('\\n--------- Performance Matrix with Train Data ---------') train_matrix = self.mlobj.get_regression_matrix(ytrain, trainPredictedData) self.log.info('--------- Performance Matrix with Train Data End ---------\\n') self.log.info('\\n--------- Performance Matrix with Test Data ---------') matrix = self.mlobj.get_regression_matrix(ytest, predictedData) ytest.reset_index(inplace=True, drop=True) df_test['actual'] = ytest df_test['predict'] = predictedData self.log.info('--------- Performance Matrix with Test Data End ---------\\n') except Exception as Inst: self.log.info('--------- Error Performance Matrix ---------\\n') self.log.info(str(Inst)) df_test['predict'] = predictedData matrix = "" train_matrix = "" self.log.info('--------- Performance Matrix with Test Data End ---------\\n') df_test.to_csv(predicted_data_file) return 'Success',model_type,model,saved_model,matrix,train_matrix,xtrain.shape,model_tried,score,filename,self.features,threshold,pscore,rscore,method,estimator,xtrain,ytrain,xtest,ytest,topics,params def startLearnerModule(self,mlconfig,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,targetType,deployLocation,iterName,iterVersion,trained_data_file,labelMaps): matrix = '' threshold = -1 pscore = -1 rscore = -1 datacolumns=list(xtrain.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) self.features =datacolumns self.log.info('-------> Features Used For Training the Model: '+(str(self.features))[:500]) xtrain = xtrain[self.features] xtest = xtest[self.features] method = mlconfig['optimizationMethod'] method = method.lower() geneticParam = '' optimizationHyperParameter = mlconfig['optimizationHyperParameter'] cvSplit = optimizationHyperParameter['trainTestCVSplit'] nIter = int(optimizationHyperParameter['iterations']) if(method.lower() == 'genetic'): geneticParam = optimizationHyperParameter['geneticparams'] scoreParam = scoreParam if 'thresholdTunning' in mlconfig: thresholdTunning = mlconfig['thresholdTunning']
else: thresholdTunning = 'NA' if cvSplit == "": cvSplit =None else: cvSplit =int(cvSplit) if modelType == 'classification': model_type = "Classification" MakeFP0 = False MakeFN0 = False if(len(categoryCountList) == 2): if(thresholdTunning.lower() == 'fp0'): MakeFP0 = True elif(thresholdTunning.lower() == 'fn0'): MakeFN0 = True noOfClasses= len(labelMaps) incObjClf = incClassifierModel(noOfClasses,modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,modelType,MakeFP0,MakeFN0,deployLocation) model, params, score, estimator,model_tried,threshold,pscore,rscore = incObjClf.firstFit() incObj = incObjClf elif modelType == 'regression': model_type = "Regression" incObjReg = incRegressionModel(modelList, modelParams, scoreParam, cvSplit, nIter,geneticParam, xtrain,ytrain,xtest,ytest,method,deployLocation) model,params,score,estimator,model_tried = incObjReg.firstFit() incObj = incObjReg return model_type,model,params, score, estimator,model_tried,xtrain,ytrain,xtest,ytest,threshold,pscore,rscore,method, incObj<s> import logging import pickle import os import sys import pandas as pd from river import stream from river.linear_model import LogisticRegression, SoftmaxRegression, LinearRegression from river.tree import ExtremelyFastDecisionTreeClassifier, HoeffdingAdaptiveTreeRegressor # from river.ensemble import AdaptiveRandomForestRegressor, AdaptiveRandomForestClassifier from river.neighbors import KNNClassifier, KNNRegressor from river.multiclass import OneVsRestClassifier from river.optim import SGD, Adam, AdaDelta, NesterovMomentum, RMSProp # from river.optim.losses import CrossEntropy, Log, MultiClassLoss, Poisson, RegressionLoss, BinaryLoss, Huber # from river.optim.initializers import Normal class riverML(object): def __init__(self): self.algoDict={'Online Logistic Regression':LogisticRegression, 'Online Softmax Regression':SoftmaxRegression, 'Online Decision Tree Classifier':ExtremelyFastDecisionTreeClassifier, 'Online KNN Classifier':KNNClassifier,'Online Linear Regression':LinearRegression, 'Online Decision Tree Regressor':HoeffdingAdaptiveTreeRegressor, 'Online KNN Regressor':KNNRegressor} self.optDict={'sgd': SGD, 'adam':Adam, 'adadelta':AdaDelta, 'nesterovmomentum':NesterovMomentum, 'rmsprop':RMSProp} self.log = logging.getLogger('eion') def getPrediction(self, model,X): testStream = stream.iter_pandas(X) preds = [] for (xi,yi) in testStream: pred = model.predict_one(xi) preds.append(pred) return pd.DataFrame(preds) def startLearn(self,problemType,algoName,params,xtrain,ytrain,noOfClasses=None): try: model = self.algoDict[algoName] params = self.parseParams(params, algoName) if problemType == 'classification': if noOfClasses>2: model = OneVsRestClassifier(classifier=model(**params)) else: model = model(**params) else: model = model(**params) trainStream = stream.iter_pandas(xtrain, ytrain) #head start for i, (xi, yi) in enumerate(trainStream): if i>100: break if yi!=None: model.learn_one(xi, yi) trainPredictedData = [] trainStream = stream.iter_pandas(xtrain, ytrain) for i, (xi, yi) in enumerate(trainStream): if yi!=None: trainPredictedData.append(model.predict_one(xi)) model.learn_one(xi, yi) trainPredictedData = pd.DataFrame(trainPredictedData) return algoName, params, model, trainPredictedData except Exception as inst: self.log.info( '\\n-----> '+algoName+' failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def parseParams(self, params, algoName): try: from learner.parameters import parametersDefine paramsObj = parametersDefine() paramDict =paramsObj.paramDefine(params,method=None) paramDict = {k:v[0] for k,v in paramDict.items()} if algoName=='Online Logistic Regression' or algoName=='Online Softmax Regression' or algoName=='Online Linear Regression': opt = self.optDict[paramDict.pop('optimizer').lower()] lr = float(paramDict.pop('optimizer_lr')) paramDict['optimizer'] = opt(lr) return paramDict except Exception as inst: self.log.info( '\\n-----> Parameter parsing failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' #System imports import logging import os import sys import pickle #Sci-Tools imports import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from scipy import stats from word2number import w2n #river imports from river.preprocessing import StatImputer from river import stats, compose, anomaly class incProfiler(): def __init__(self): self.DtypesDic={} self.pandasNumericDtypes=['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.allNumberTypeCols = [] #all number type columns self.allNumCols = [] #only numerical columns which includes num features and target if it is numerical self.allCatCols = [] self.numFtrs = [] self.catFtrs = [] self.textFtrs = [] self.textVectorFtrs = [] self.numDiscreteCols = [] self.numContinuousCols = [] self.wordToNumericFeatures=[] self.emptyCols=[] self.missingCols = [] self.targetColumn = "" self.le_dict = {} self.configDict = {} self.incFill = None self.incLabelMapping = None self.incCatEncoder = None self.incScaler = None self.incOutlierRem = None self.log = logging.getLogger('eion') def pickleDump(self, model, path): if model is not None: with open(path, 'wb') as f: pickle.dump(model, f) def saveProfilerModels(self, deployLocation): if isinstance(self.incFill['num_fill'], StatImputer) or isinstance(self.incFill['cat_fill'], StatImputer): self.pickleDump(self.incFill, os.path.join(deployLocation,'production','profiler','incFill.pkl')) self.pickleDump(self.incLabelMapping, os.path.join(deployLocation,'production','profiler','incLabelMapping.pkl')) self.pickleDump(self.incCatEncoder, os.path.join(deployLocation,'production','profiler','incCatEncoder.pkl')) self.pickleDump(self.incScaler, os.path.join(deployLocation,'production','profiler','incScaler.pkl')) self.pickleDump(self.incOutlierRem, os.path.join(deployLocation,'production','profiler','incOutlierRem.pkl')) def featureAnalysis(self, df, conf_json, targetFeature): try: self.log.info('-------> Remove Duplicate Rows') noofdplicaterows = df.duplicated(keep='first').sum() df = df.drop_duplicates(keep="first") df = df.reset_index(drop=True) self.log.info('Status:- |... Duplicate row treatment done: '+str(noofdplicaterows)) self.log.info(df.head(5)) self.log.info( '\\n----------- Inspecting Features -----------') ctn_count = 0 df = df.replace('-', np.nan) df = df.replace('?', np.nan) dataFDtypes=self.dataFramecolType(df) numerical_ratio = float(conf_json['numericFeatureRatio']) categoricalMaxLabel = int(conf_json['categoryMaxLabel']) indexFeatures = [] numOfRows = df.shape[0] dataCols = df.columns for item in dataFDtypes: if(item[1] == 'object'): filteredDf,checkFlag = self.smartFilter(item[0],df,numerical_ratio) if(checkFlag): self.wordToNumericFeatures.append(item[0]) self.log.info('----------> Data Type Converting to numeric :Yes') try: df[item[0]]=filteredDf[item[0]].astype(float) except: pass ctn_count = ctn_count+1 else: count = (df[item[0]] - df[item[0]].shift() == 1).sum() if((numOfRows - count) == 1): self.log.info( '-------> Feature :'+str(item[0])) self.log.info('----------> Sequence Feature') indexFeatures.append(item[0]) self.configDict['wordToNumCols'] = self.wordToNumericFeatures self.configDict['emptyFtrs'] = indexFeatures self.log.info('Status:- |... Feature inspection done for numeric data: '+str(ctn_count)+' feature(s) converted to numeric') self.log.info('Status:- |... Feature word to numeric treatment done: '+str(self.wordToNumericFeatures)) self.log.info( '----------- Inspecting Features End -----------\\n') except Exception as inst: self.log.info("Error in Feature inspection: "+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) try: self.log.info('\\n---------- Dropping Index features ----------') self.log.info('Index Features to remove '+str(indexFeatures)) if len(indexFeatures) > 0: dataCols = list(set(dataCols) - set(indexFeatures)) for empCol in indexFeatures: self.log.info('-------> Drop Feature: '+empCol) df = df.drop(columns=[empCol]) self.log.info('---------- Dropping Index features End----------\\n') dataFDtypes=self.dataFramecolType(df) categoricalMaxLabel = int(conf_json['categoryMaxLabel']) for item in dataFDtypes: self.DtypesDic[item[0]] = item[1] nUnique=len(df[item[0]].unique().tolist()) if item[1] in self.pandasNumericDtypes: self.allNumberTypeCols.append(item[0]) if nUnique >= categoricalMaxLabel: self.allNumCols.append(item[0]) #pure numerical if item[1] in ['int16', 'int32', 'int64']: self.numDiscreteCols.append(item[0]) elif item[1] in ['float16', 'float32', 'float64']: self.numContinuousCols.append(item[0]) else: self.allCatCols.append(item[0]) elif item[1] != 'bool': if (nUnique >= categoricalMaxLabel) and targetFeature != item[0]: self.textFtrs.append(item[0]) else: col = item[0] if (max(df[col