$0.01$
$\underset{\pm 0.10}{2.15}$
$(\operatorname{\bm{\theta}}_{\text{client}}^{(t)}=\operatorname{\bm{\theta}}_{% \text{client}}^{(0)}$
$r=64$
$297.78$
$\mathbf{0.43}$
$\operatorname{\mathbf{v}}_{i}\in\mathcal{V}$
$0.76$
$\underset{\pm 0.66}{45.89}$
$0$
$\rho$
$0.26$
$0.95$
$p\approx 8.69\times 10^{-8}$
$0.69$
$47.32$
$\mathbf{0.69}$
$2.30$
$\mathbf{A}\in\mathbb{R}^{d\times r}$
$\operatorname{\bm{\theta}}_{\text{client}}^{(t)}$
$500$
$\operatorname{\mathbf{v}}_{i}$
$0.78$
$308$
$\mathbf{0.36}$
$-\frac{1}{|\mathcal{D}^{(t)}_{\bigtriangledown}|}\sum_{\operatorname{\mathbf{d% }}^{(t)}\in\mathcal{D}^{(t)}_{\bigtriangledown}}\log p_{(\cdot)}\big{(}% \operatorname{\mathbf{d}}^{(t)}\big{|}\operatorname{\bm{\theta}}_{(\cdot)}^{(t% )}),$
$\operatorname{\mathbf{pr}}_{\text{client}}$
$p$
$0.66$
$2.65$
$\operatorname{\bm{\theta}}_{\text{client}}^{(0)}$
$25$
$277.25$
$\%$
$57.16$
$0.74$
$0.77$
$\tau=0.5$
$256$
$4.3$
$\operatorname{\bm{\theta}}_{\text{agent}}^{(0)}$
$0.90$
$0.80$
$4$
$0.8$
$9000$
$\operatorname{\bm{\theta}}_{\text{client}}$
$F_{1}$
$\mathbf{55.25}$
$0.60$
$\operatorname{\mathbf{v}}_{\text{next}}\in\text{Children}(\operatorname{% \mathbf{v}}_{i})$
$\displaystyle\geq bx_{j}^{\prime}+\sum_{i>j}x_{i}^{\prime}+(b-1)\sum_{i>j}x_{i}$
$x_{i}^{\prime}\geq x_{i}$
$A_{1}$
$\displaystyle(b^{k}-b^{k-1}-(b-1)^{k}+b^{k-1})x_{1}$
$(u,w)$
$C_{1},C_{2}$
$P:(u,v)\cup P^{\prime}$
$e_{>i}$
$(u_{1},u_{2},\dots,u_{k},v)$
$\displaystyle=\frac{(b-1)^{k-1}}{b^{k}-(b-1)^{k}}x.$
$(v,z)\in N(u)\times N(u)$
$1\leq i\leq k$
$x_{\tau+1},\dots,x_{k}\mapsto\textsf{Chunk-Shortest-Edge}(k-\tau,x-\delta)$
$\sum_{i}x_{i} $\displaystyle=bx+c(v\to t)-c(u,w)-c(w\to t)=\delta+(b-1)x$ $p(e_{k}^{O})<\beta$ $i\geq\tau$ $\displaystyle=\begin{cases*}c(u,y)+cost[y,y,i]&if $(y,z)\in\mathcal{P}^{\prime%
}(u,y)$\\
\infty&otherwise\end{cases*}$ $y^{*}\leq\frac{x}{k-1}$ $x-\delta$ $p(e;b_{i})$ $\displaystyle=\frac{b^{k-1}}{b^{k-1}-(b-1)^{k-1}}\left(\frac{b^{k}-(b-1)^{k-1}%
(b-1+1)}{b^{k}-(b-1)^{k}}\right)x+c(v\to t)$ $(s,s_{1})$ $i+j\leq k$ $\displaystyle=\left(\frac{b^{k-1}}{b^{k-1}-(b-1)^{k-1}}-1\right)x$ $\begin{array}[]{ll}p(e_{\tau})&=bx_{\tau}+c(u_{\tau+1}\to t)\\
&=bx_{\tau}+\sum_{i=\tau+1}^{k}x_{i}+c(v\to t)\hfill\mbox{(shortest path from
$u_{\tau+1}$ follows the chunking)}\\
&=bx_{\tau}+x-\sum_{i=1}^{\tau}x_{i}+c(v\to t)\\
&=b\cdot\frac{\delta}{\tau}-\tau\cdot\frac{\delta}{\tau}+x+c(v\to t)\hfill%
\mbox{(substituing $x_{i}=\delta/\tau$ for $i\leq\tau$)}\\
&=\frac{b\delta}{\tau}+c(u,w)+c(w\to t)\hfill\mbox{(since $\delta=x+c(v\to t)-%
c(u,w)-c(w\to t)$).}\end{array}$ $(u_{3},z)$ $\displaystyle\frac{(b-1)(b^{k-1}-(b-1)^{k-1})+b^{k-1}}{b^{k-1}-(b-1)^{k-1}}x_{1}$ $\sum_{l>i}x_{l}\leq x$ $\displaystyle(b-1)x_{1}+x$ $c^{n}$ $\delta/k$ $p(e_{i})=bx_{i}+c(u,w)+c(w\to t)$ $\alpha=\beta$ $p(e_{i};b_{1})\leq\alpha_{u}^{(j)}$ $p(e_{i}^{C})=bx_{i}^{C}+c(u_{i}^{C}\to t)$ $x_{i}-x_{i}^{\prime}\geq 0$ $p(e_{i})=\beta^{\prime}$ $\displaystyle\min_{(v,z)\in\mathcal{P}(u,y)}\min(C_{1}(u,v,y),C_{2}(u,y,z),C_{%
3}(u,v,y,z)).$ $c(u,v)$ $\beta^{*}=p(e_{i})$ $p(e_{j};b_{1})\leq\alpha_{u}^{(1)}$ $\displaystyle=\frac{x}{1-\left(\frac{b-1}{b}\right)^{k-\tau+1}}+c(v\to t)-c(w%
\to t)-c(u,w).$ $x_{1}$ $O(|E|^{2}k^{3}\log k+|V|)$ $\beta\leftarrow\frac{x-\delta}{z_{\tau}}+c(v\to t)$ $min\_bottleneck\leftarrow\min(\alpha,\beta)$ $\delta/\tau$ $(y,z)$