File size: 9,257 Bytes
77c1175 969edfe 8316aea 77c1175 969edfe 8316aea 969edfe 9206b63 e2088eb 9206b63 5809bed 9206b63 969edfe d21d158 b0112cd d21d158 b0112cd d21d158 969edfe d21d158 b0112cd d21d158 969edfe 8b016b1 969edfe b0112cd 8b016b1 85bd82d 8b016b1 85bd82d 8b016b1 85bd82d b0112cd 85bd82d 969edfe b0112cd 969edfe b0112cd 969edfe d21d158 969edfe 765c78e b013c71 8316aea b013c71 765c78e b0112cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
pretty_name: TED-LIUM
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- en
licenses:
- cc-by-nc-nd-3-0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
---
# Dataset Card for tedlium
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [TED-LIUM homepage](https://www.openslr.org/7/)
- **Repository:** [Needs More Information]
- **Paper:** [TED-LIUM: an Automatic Speech Recognition dedicated corpus](https://aclanthology.org/L12-1405/)
- **Leaderboard:** [Paperswithcode Leaderboard](https://paperswithcode.com/sota/speech-recognition-on-tedlium)
- **Point of Contact:** [Sanchit Gandhi](mailto:sanchit@huggingface.co)
### Dataset Summary
The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. The three releases of the corpus range from 118 to 452 hours of transcribed speech data.
### Example
```python
from datasets import load_dataset
tedlium = load_dataset("LIUM/tedlium", "release1") # for Release 1
# see structure
print(tedlium)
# load audio sample on the fly
audio_input = tedlium["train"][0]["audio"] # first decoded audio sample
transcription = tedlium["train"][0]["text"] # first transcription
```
### Supported Tasks and Leaderboards
- `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/sota/speech-recognition-on-tedlium that ranks models based on their WER.
### Languages
The audio and transcriptions are in English, as per the TED talks at http://www.ted.com.
## Dataset Structure
### Data Instances
```
{'audio': {'path': '/home/sanchitgandhi/cache/downloads/extracted/6e3655f9e735ae3c467deed1df788e0dabd671c1f3e2e386e30aa3b571bd9761/TEDLIUM_release1/train/sph/PaulaScher_2008P.sph',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346,
0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'text': '{COUGH} but <sil> i was so {COUGH} utterly unqualified for(2) this project and {NOISE} so utterly ridiculous {SMACK} and ignored the brief {SMACK} <sil>',
'speaker_id': 'PaulaScher_2008P',
'gender': 'female',
'file': '/home/sanchitgandhi/cache/downloads/extracted/6e3655f9e735ae3c467deed1df788e0dabd671c1f3e2e386e30aa3b571bd9761/TEDLIUM_release1/train/sph/PaulaScher_2008P.sph',
'id': 'PaulaScher_2008P-1003.35-1011.16-<o,f0,female>'}
```
### Data Fields
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- file: A path to the downloaded audio file in .sph format.
- text: the transcription of the audio file.
- gender: the gender of the speaker. One of: male, female or N/A.
- id: unique id of the data sample.
- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.
### Data Splits
There are three releases for the TED-LIUM corpus, progressively increasing the number of transcribed speech training data from 118 hours (Release 1), to 207 hours (Release 2), to 452 hours (Release 3).
Release 1:
- 774 audio talks and automatically aligned transcriptions.
- Contains 118 hours of speech audio data.
- Homepage: https://www.openslr.org/7/
Release 2:
- 1495 audio talks and automatically aligned transcriptions.
- Contains 207 hours of speech audio data.
- Dictionary with pronunciations (159848 entries).
- Selected monolingual data for language modeling from WMT12 publicly available corpora.
- Homepage: https://www.openslr.org/19/
Release 3:
- 2351 audio talks and automatically aligned transcriptions.
- Contains 452 hours of speech audio data.
- TED-LIUM 2 validation and test data: 19 TED talks with their corresponding manual transcriptions.
- Dictionary with pronunciations (159848 entries), the same file as the one included in TED-LIUM 2.
- Selected monolingual data for language modeling from WMT12 publicly available corpora: these files come from the TED-LIUM 2 release, but have been modified to produce a tokenization more relevant for English language.
- Homepage: https://www.openslr.org/51/
Release 3 contains two different corpus distributions:
- The ‘legacy’ one, on which the dev and test datasets are the same as in TED-LIUM 2 (and TED-LIUM 1).
- The ‘speaker adaptation’ one, specially designed for experiments on speaker adaptation.
Each release is split into a training, validation and test set:
| Split | Release 1 | Release 2 | Release 3 |
|------------|-----------|-----------|-----------|
| Train | 56,803 | 92,973 | 268,263 |
| Validation | 591 | 591 | 591 |
| Test | 1,469 | 1,469 | 1,469 |
## Dataset Creation
### Curation Rationale
TED-LIUM was built during [The International Workshop on Spoken Language Trans- lation (IWSLT) 2011 Evaluation Campaign](https://aclanthology.org/2011.iwslt-evaluation.1/), an annual workshop focused on the automatic translation of public talks and included tracks for speech recognition, speech translation, text translation, and system combination.
### Source Data
#### Initial Data Collection and Normalization
The data was obtained from publicly available TED talks at http://www.ted.com. Proper alignments between the speech and the transcribed text were generated using an in-house speaker segmentation and clustering tool (_LIUM_SpkDiarization_). Speech disfluencies (e.g. repetitions, hesitations, false starts) were treated in the following way: repetitions were transcribed, hesitations mapped to a specific filler word, and false starts not taken into account. For full details on the data collection and processing, refer to the [TED-LIUM paper](https://aclanthology.org/L12-1405/).
#### Who are the source language producers?
TED Talks are influential videos from expert speakers on education, business, science, tech and creativity.
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
### Citation Information
Release 1:
```
@inproceedings{rousseau2012tedlium,
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
author={Rousseau, Anthony and Del{\'e}glise, Paul and Est{\`e}ve, Yannick},
booktitle={Conference on Language Resources and Evaluation (LREC)},
pages={125--129},
year={2012}
}
```
Release 2:
```
@inproceedings{rousseau2014enhancing,
title={Enhancing the TED-LIUM corpus with selected data for language modeling and more TED talks.},
author={Rousseau, Anthony and Del{\'e}glise, Paul and Esteve, Yannick and others},
booktitle={LREC},
pages={3935--3939},
year={2014}
}
```
Release 3:
```
@inproceedings{hernandez2018ted,
author="Hernandez, Fran{\c{c}}ois
and Nguyen, Vincent
and Ghannay, Sahar
and Tomashenko, Natalia
and Est{\`e}ve, Yannick",
title="TED-LIUM 3: Twice as Much Data and Corpus Repartition for Experiments on Speaker Adaptation",
booktitle="Speech and Computer",
year="2018",
publisher="Springer International Publishing",
pages="198--208",
}
``` |