sanchit-gandhi
commited on
Commit
·
39e9b1f
1
Parent(s):
44fd86d
Update sharded gzip paths
Browse files- tedlium.py +326 -70
tedlium.py
CHANGED
@@ -11,9 +11,13 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
|
|
|
15 |
|
16 |
import os
|
|
|
|
|
|
|
17 |
from pathlib import Path
|
18 |
|
19 |
import numpy as np
|
@@ -23,107 +27,359 @@ import datasets
|
|
23 |
from datasets.tasks import AutomaticSpeechRecognition
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
"""
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
VERSION = datasets.Version("1.1.0")
|
55 |
|
56 |
-
BUILDER_CONFIGS =
|
57 |
|
58 |
def _info(self):
|
59 |
features = datasets.Features(
|
60 |
{
|
61 |
-
"audio": datasets.features.Audio(sampling_rate=
|
62 |
"text": datasets.Value("string"),
|
|
|
|
|
63 |
"file": datasets.Value("string"),
|
64 |
"id": datasets.Value("string"),
|
65 |
}
|
66 |
)
|
67 |
return datasets.DatasetInfo(
|
68 |
-
description=
|
69 |
features=features,
|
70 |
supervised_keys=("audio", "text"),
|
71 |
-
homepage=
|
72 |
license=_LICENSE,
|
73 |
-
citation=
|
74 |
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
75 |
)
|
76 |
|
77 |
def _split_generators(self, dl_manager):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
|
125 |
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
|
|
126 |
start_sample = int(start_sec * sampling_rate)
|
127 |
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
|
128 |
samples = segment[start_sample:end_sample]
|
129 |
return samples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
|
15 |
+
"""TED-LIUM speech recognition dataset."""
|
16 |
|
17 |
import os
|
18 |
+
import re
|
19 |
+
from collections import defaultdict
|
20 |
+
from io import BytesIO
|
21 |
from pathlib import Path
|
22 |
|
23 |
import numpy as np
|
|
|
27 |
from datasets.tasks import AutomaticSpeechRecognition
|
28 |
|
29 |
|
30 |
+
_DL_URL = "https://huggingface.co/datasets/LIUM/tedlium/resolve/main/"
|
31 |
+
|
32 |
+
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
|
33 |
+
|
34 |
+
|
35 |
+
class TedliumReleaseConfig(datasets.BuilderConfig):
|
36 |
+
"""BuilderConfig for a release of the TED-LIUM dataset."""
|
37 |
+
|
38 |
+
def __init__(self, *, url, download_urls, split_paths, citation, **kwargs):
|
39 |
+
super(TedliumReleaseConfig, self).__init__(version=datasets.Version("1.0.1"), **kwargs)
|
40 |
+
self.url = url
|
41 |
+
self.download_urls = download_urls
|
42 |
+
# List of split, path pairs containing the relative path within the
|
43 |
+
# extracted tarball to the data for each split.
|
44 |
+
self.split_paths = split_paths
|
45 |
+
self.citation = citation
|
46 |
+
|
47 |
+
|
48 |
+
def _make_builder_configs():
|
49 |
+
"""Creates builder configs for all supported Tedlium dataset releases."""
|
50 |
+
release1 = TedliumReleaseConfig(
|
51 |
+
name="release1",
|
52 |
+
description="""\
|
53 |
+
The TED-LIUM corpus is English-language TED talks, with transcriptions,
|
54 |
+
sampled at 16kHz. It contains about 118 hours of speech.
|
55 |
+
|
56 |
+
This is the TED-LIUM corpus release 1,
|
57 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
58 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
59 |
+
""",
|
60 |
+
citation="""\
|
61 |
+
@inproceedings{rousseau2012tedlium,
|
62 |
+
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
|
63 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
64 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
65 |
+
pages={125--129},
|
66 |
+
year={2012}
|
67 |
+
}
|
68 |
+
""",
|
69 |
+
url="https://www.openslr.org/7/",
|
70 |
+
download_urls={
|
71 |
+
"train": [_DL_URL + os.path.join("TEDLIUM_release1", "train.tar.gz")],
|
72 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release1", "dev.tar.gz")],
|
73 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release1", "test.tar.gz")],
|
74 |
+
},
|
75 |
+
split_paths=[
|
76 |
+
(datasets.Split.TRAIN, "train"),
|
77 |
+
(datasets.Split.VALIDATION, "dev"),
|
78 |
+
(datasets.Split.TEST, "test"),
|
79 |
+
],
|
80 |
+
)
|
81 |
+
|
82 |
+
release2 = TedliumReleaseConfig(
|
83 |
+
name="release2",
|
84 |
+
description="""\
|
85 |
+
This is the TED-LIUM corpus release 2,
|
86 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
87 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
88 |
+
|
89 |
+
All talks and text are property of TED Conferences LLC.
|
90 |
+
|
91 |
+
The TED-LIUM corpus was made from audio talks and their transcriptions
|
92 |
+
available on the TED website. We have prepared and filtered these data
|
93 |
+
in order to train acoustic models to participate to the International
|
94 |
+
Workshop on Spoken Language Translation 2011 (the LIUM English/French
|
95 |
+
SLT system reached the first rank in the SLT task).
|
96 |
+
|
97 |
+
Contains 1495 talks and transcripts.
|
98 |
+
""",
|
99 |
+
citation="""\
|
100 |
+
@inproceedings{rousseau2014tedlium2,
|
101 |
+
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
|
102 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
103 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
104 |
+
year={2014}
|
105 |
+
}
|
106 |
+
""",
|
107 |
+
url="https://www.openslr.org/19/",
|
108 |
+
download_urls={
|
109 |
+
"train": [
|
110 |
+
_DL_URL + os.path.join("TEDLIUM_release2", "train_1.tar.gz"),
|
111 |
+
_DL_URL + os.path.join("TEDLIUM_release2", "train_2.tar.gz"),
|
112 |
+
],
|
113 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release2", "dev.tar.gz")],
|
114 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release2", "test.tar.gz")],
|
115 |
+
},
|
116 |
+
split_paths=[
|
117 |
+
(datasets.Split.TRAIN, "train"),
|
118 |
+
(datasets.Split.VALIDATION, "dev"),
|
119 |
+
(datasets.Split.TEST, "test"),
|
120 |
+
],
|
121 |
+
)
|
122 |
+
|
123 |
+
release3 = TedliumReleaseConfig(
|
124 |
+
name="release3",
|
125 |
+
description="""\
|
126 |
+
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
127 |
+
BY-NC-ND 3.0. This is the 'legacy' version of the corpus, in which the dev and test datasets are the same as in
|
128 |
+
TED-LIUM 2 (and TED-LIUM 1).
|
129 |
|
130 |
+
All talks and text are property of TED Conferences LLC.
|
131 |
|
132 |
+
This new TED-LIUM release was made through a collaboration between the
|
133 |
+
Ubiqus company and the LIUM (University of Le Mans, France)
|
|
|
134 |
|
135 |
+
Contents:
|
136 |
|
137 |
+
- 2351 audio talks in NIST sphere format (SPH), including talks from
|
138 |
+
TED-LIUM 2: be careful, same talks but not same audio files (only
|
139 |
+
these audio file must be used with the TED-LIUM 3 STM files)
|
140 |
+
- 452 hours of audio
|
141 |
+
- 2351 aligned automatic transcripts in STM format
|
142 |
+
- TEDLIUM 2 dev and test data: 19 TED talks in SPH format with
|
143 |
+
corresponding manual transcriptions.
|
144 |
+
- Dictionary with pronunciations (159848 entries), same file as the one
|
145 |
+
included in TED-LIUM 2
|
146 |
+
- Selected monolingual data for language modeling from WMT12 publicly
|
147 |
+
available corpora: these files come from the TED-LIUM 2 release, but
|
148 |
+
have been modified to get a tokenization more relevant for English
|
149 |
+
language
|
150 |
|
151 |
+
""",
|
152 |
+
citation="""\
|
153 |
+
@inproceedings{hernandez2018tedlium3,
|
154 |
+
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
155 |
+
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
156 |
+
booktitle={International Conference on Speech and Computer},
|
157 |
+
pages={198--208},
|
158 |
+
year={2018},
|
159 |
+
organization={Springer}
|
160 |
+
}
|
161 |
+
""",
|
162 |
+
url="https://www.openslr.org/51/",
|
163 |
+
download_urls={
|
164 |
+
"train": [
|
165 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_1.tar.gz"),
|
166 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_2.tar.gz"),
|
167 |
+
],
|
168 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "dev.tar.gz")],
|
169 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "test.tar.gz")],
|
170 |
+
},
|
171 |
+
split_paths=[
|
172 |
+
(datasets.Split.TRAIN, "train"),
|
173 |
+
(datasets.Split.VALIDATION, "dev"),
|
174 |
+
(datasets.Split.TEST, "test"),
|
175 |
+
],
|
176 |
+
)
|
177 |
|
178 |
+
release3_speaker_adaptation = TedliumReleaseConfig(
|
179 |
+
name="release3-speaker-adaptation",
|
180 |
+
description="""\
|
181 |
+
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
182 |
+
BY-NC-ND 3.0. This is the 'speaker adaptation' version of the corpus, specially designed for experiments on
|
183 |
+
speaker adaptation.
|
184 |
|
185 |
+
All talks and text are property of TED Conferences LLC.
|
186 |
+
|
187 |
+
This new TED-LIUM release was made through a collaboration between the
|
188 |
+
Ubiqus company and the LIUM (University of Le Mans, France)
|
189 |
+
""",
|
190 |
+
citation="""\
|
191 |
+
@inproceedings{hernandez2018tedlium3,
|
192 |
+
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
193 |
+
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
194 |
+
booktitle={International Conference on Speech and Computer},
|
195 |
+
pages={198--208},
|
196 |
+
year={2018},
|
197 |
+
organization={Springer}
|
198 |
+
}
|
199 |
+
""",
|
200 |
+
url="https://www.openslr.org/51/",
|
201 |
+
download_urls={
|
202 |
+
"train": [
|
203 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_1.tar.gz"),
|
204 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_2.tar.gz"),
|
205 |
+
],
|
206 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "dev.tar.gz")],
|
207 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "test.tar.gz")],
|
208 |
+
},
|
209 |
+
split_paths=[
|
210 |
+
(datasets.Split.TRAIN, "train"),
|
211 |
+
(datasets.Split.VALIDATION, "dev"),
|
212 |
+
(datasets.Split.TEST, "test"),
|
213 |
+
],
|
214 |
+
)
|
215 |
+
|
216 |
+
return [release1, release2, release3, release3_speaker_adaptation]
|
217 |
+
|
218 |
+
|
219 |
+
class TedLium(datasets.GeneratorBasedBuilder):
|
220 |
+
"""The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
|
221 |
|
222 |
VERSION = datasets.Version("1.1.0")
|
223 |
|
224 |
+
BUILDER_CONFIGS = _make_builder_configs()
|
225 |
|
226 |
def _info(self):
|
227 |
features = datasets.Features(
|
228 |
{
|
229 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
230 |
"text": datasets.Value("string"),
|
231 |
+
"speaker_id": datasets.Value("string"),
|
232 |
+
"gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
|
233 |
"file": datasets.Value("string"),
|
234 |
"id": datasets.Value("string"),
|
235 |
}
|
236 |
)
|
237 |
return datasets.DatasetInfo(
|
238 |
+
description=self.config.description,
|
239 |
features=features,
|
240 |
supervised_keys=("audio", "text"),
|
241 |
+
homepage=self.config.url,
|
242 |
license=_LICENSE,
|
243 |
+
citation=self.config.citation,
|
244 |
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
245 |
)
|
246 |
|
247 |
def _split_generators(self, dl_manager):
|
248 |
+
archive_path = dl_manager.download(self.config.download_urls)
|
249 |
+
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
250 |
+
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
251 |
+
splits = []
|
252 |
+
for split, path in self.config.split_paths:
|
253 |
+
kwargs = {
|
254 |
+
"filepath": [dl_manager.iter_archive(sharded_path) for sharded_path in archive_path[split]],
|
255 |
+
"local_extracted_archive": local_extracted_archive.get(split),
|
256 |
+
"split_path": path,
|
257 |
+
}
|
258 |
+
splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
|
259 |
+
return splits
|
260 |
+
|
261 |
+
def _generate_examples(self, filepath, local_extracted_archive, split_path):
|
262 |
+
"""Generate examples from a TED-LIUM stm file."""
|
263 |
+
if local_extracted_archive:
|
264 |
+
for local_archive in local_extracted_archive:
|
265 |
+
# The stm directory houses the speaker and transcription information in .stm format
|
266 |
+
split_dir = os.path.join(local_archive, split_path)
|
267 |
+
stm_files = [os.path.join(split_dir, f) for f in os.listdir(split_dir) if f.endswith(".stm")]
|
268 |
+
for file in stm_files:
|
269 |
+
# the .sph speaker file almost always has the same file name as the .stm file
|
270 |
+
speaker_file = Path(file).stem
|
271 |
+
audio_file = os.path.join(split_dir, speaker_file + ".sph")
|
272 |
+
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
|
273 |
+
with open(file) as f:
|
274 |
+
for line in f:
|
275 |
+
line = line.strip()
|
276 |
+
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
277 |
+
transcript = _maybe_trim_suffix(transcript)
|
278 |
+
if speaker_file != fn:
|
279 |
+
# handle the case where the stm file does not have the same file name as the transcript
|
280 |
+
speaker_file = fn
|
281 |
+
audio_file = os.path.join(split_dir, speaker_file + ".sph")
|
282 |
+
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
|
283 |
+
samples = _extract_audio_segment(segment, sampling_rate, float(start), float(end))
|
284 |
+
key = "-".join([speaker, start, end, label])
|
285 |
+
example = {
|
286 |
+
"audio": {"path": audio_file, "array": samples, "sampling_rate": sampling_rate},
|
287 |
+
"text": transcript,
|
288 |
+
"speaker_id": speaker,
|
289 |
+
"gender": _parse_gender(label),
|
290 |
+
"file": audio_file,
|
291 |
+
"id": key,
|
292 |
+
}
|
293 |
+
yield key, example
|
294 |
+
|
295 |
+
else:
|
296 |
+
audio_data = {}
|
297 |
+
transcripts = defaultdict(list)
|
298 |
+
for file in filepath:
|
299 |
+
for path, f in file:
|
300 |
+
if path.endswith(".sph"):
|
301 |
+
# get the speaker id
|
302 |
+
fn = path.split("/")[-1].strip(".sph")
|
303 |
+
# read the audio data from raw byte form and add key-value pair to dict
|
304 |
+
audio_data[fn] = sf.read(BytesIO(f.read()), dtype=np.int16)
|
305 |
+
elif path.endswith(".stm"):
|
306 |
+
for line in f:
|
307 |
+
if line:
|
308 |
+
line = line.decode("utf-8").strip()
|
309 |
+
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
310 |
+
transcript = _maybe_trim_suffix(transcript)
|
311 |
+
audio_file = path.replace("stm", "sph")
|
312 |
+
key = "-".join([speaker, start, end, label])
|
313 |
+
# append metadata information to the dict of transcripts for the associated speaker
|
314 |
+
transcripts[fn].append(
|
315 |
+
{
|
316 |
+
"text": transcript,
|
317 |
+
"speaker_id": speaker,
|
318 |
+
"gender": _parse_gender(label),
|
319 |
+
"file": audio_file,
|
320 |
+
"id": key,
|
321 |
+
"start": start,
|
322 |
+
"end": end,
|
323 |
+
"channel": channel,
|
324 |
+
"fn": fn,
|
325 |
+
}
|
326 |
+
)
|
327 |
+
|
328 |
+
if audio_data and audio_data.keys() == transcripts.keys():
|
329 |
+
for fn, speaker in transcripts.items():
|
330 |
+
for transcript in speaker:
|
331 |
+
segment, sampling_rate = audio_data[transcript["fn"]]
|
332 |
+
samples = _extract_audio_segment(
|
333 |
+
segment,
|
334 |
+
int(transcript["channel"]),
|
335 |
+
float(transcript["start"]),
|
336 |
+
float(transcript["end"]),
|
337 |
+
)
|
338 |
+
audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
|
339 |
+
key = transcript["id"]
|
340 |
+
yield key, {
|
341 |
+
"audio": audio,
|
342 |
+
"text": transcript["text"],
|
343 |
+
"speaker_id": transcript["speaker_id"],
|
344 |
+
"gender": transcript["gender"],
|
345 |
+
"file": transcript["file"],
|
346 |
+
"id": transcript["id"],
|
347 |
+
}
|
348 |
+
audio_data = {}
|
349 |
+
transcripts = defaultdict(list)
|
350 |
+
|
351 |
+
|
352 |
+
def _maybe_trim_suffix(transcript):
|
353 |
+
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
|
354 |
+
# parens) at the end.
|
355 |
+
splits = transcript.rsplit(" ", 1)
|
356 |
+
transcript = splits[0]
|
357 |
+
if len(splits) > 1:
|
358 |
+
suffix = splits[-1]
|
359 |
+
if not suffix.startswith("("):
|
360 |
+
transcript += " " + suffix
|
361 |
+
return transcript
|
362 |
|
363 |
|
364 |
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
|
365 |
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
366 |
+
# The dataset only contains mono audio.
|
367 |
start_sample = int(start_sec * sampling_rate)
|
368 |
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
|
369 |
samples = segment[start_sample:end_sample]
|
370 |
return samples
|
371 |
+
|
372 |
+
|
373 |
+
def _parse_gender(label_str):
|
374 |
+
"""Parse gender string from STM "<label>" field."""
|
375 |
+
gender = re.split(",|_", label_str)[-1][:-1]
|
376 |
+
# Fix inconsistencies in the data.
|
377 |
+
if not gender:
|
378 |
+
gender = -1 # Missing label.
|
379 |
+
elif gender == "<NA": # In TEDLIUM release 3 training data.
|
380 |
+
gender = -1 # Missing label.
|
381 |
+
elif gender == "F":
|
382 |
+
gender = "female"
|
383 |
+
elif gender == "M":
|
384 |
+
gender = "male"
|
385 |
+
return gender
|