File size: 2,437 Bytes
b317c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

import json
import pandas as pd
import datasets

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
Korean Book Summarization Data
"""

_URL = "https://huggingface.co/datasets/LeverageX/book-summarization/resolve/main/"
_URLS = {
    "train_data": _URL + "train_data.json",
    "validation_data": _URL + "validation_data.json",
}

class KoreanNewspaper(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="Aihub Book Summarization",
            version=datasets.Version("1.0.0", ""),
            description="Korean Summarization Data",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "name": datasets.Value("string"),
                    "publisher": datasets.Value("string"),
                    "passage": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://aihub.or.kr/aidata/30713",
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train_data"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation_data"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f :
            data = json.load(f)

        for info in data :
            doc_id = info['id']  
            doc_name = info['name']
            publisher = info['publisher']
            passage = info['passage']
            summary = info['summary']

            yield key, {
                "id" : doc_id,
                "name" : doc_name,
                "publisher" : publisher,
                "passage" : passage,
                "summary" : summary,
            }
            key += 1