|
import pandas as pd |
|
import os |
|
import gzip |
|
import random |
|
import re |
|
from tqdm import tqdm |
|
from collections import defaultdict |
|
|
|
|
|
def get_all_files_in_directory(directory, ext=''): |
|
all_files = [] |
|
for root, dirs, files in os.walk(directory): |
|
root = root[len(directory):] |
|
if root.startswith('\\') or root.startswith('/'): |
|
root = root[1:] |
|
for file in files: |
|
if file.endswith(ext): |
|
file_path = os.path.join(root, file) |
|
all_files.append(file_path) |
|
return all_files |
|
|
|
reg_q = re.compile(r'''['"“”‘’「」『』]''') |
|
reg_e = re.compile(r'''[?!。?!]''') |
|
def readOne(filePath): |
|
with gzip.open(filePath, 'rt', encoding='utf-8') if filePath.endswith('.gz') else open(filePath, |
|
encoding='utf-8') as f: |
|
retn = [] |
|
cache = '' |
|
for line in f: |
|
line = reg_q.sub('', line) |
|
if len(cache) + len(line) < 384: |
|
cache += line |
|
continue |
|
if not bool(reg_e.findall(line)): |
|
cache += line |
|
retn.append(cache.strip()) |
|
cache = '' |
|
continue |
|
i = 1 |
|
s = 0 |
|
while i <= len(line): |
|
if len(cache) + (i - s) < 384: |
|
i = (384 - len(cache)) + s |
|
if i > len(line): |
|
break |
|
cache += line[s:i] |
|
s = i |
|
if line[i-1] in ('?', '!', '。', '?', '!'): |
|
cache += line[s:i] |
|
s = i |
|
retn.append(cache.strip()) |
|
cache = '' |
|
i += 1 |
|
if len(line) > s: |
|
cache += line[s:] |
|
|
|
cache = cache.strip() |
|
if cache: |
|
retn.append(cache) |
|
return retn |
|
|
|
|
|
def load_dataset(path): |
|
df = pd.read_parquet(path, engine="pyarrow") |
|
return df |
|
|
|
|
|
def load_all_dataset(path, convert=False): |
|
qrels_pd = load_dataset(path + r'\qrels.parquet') |
|
corpus = load_dataset(path + r'\corpus.parquet') |
|
queries = load_dataset(path + r'\queries.parquet') |
|
if convert: |
|
qrels = defaultdict(dict) |
|
for i, e in tqdm(qrels_pd.iterrows(), desc="load_all_dataset: Converting"): |
|
qrels[e['qid']][e['cid']] = e['score'] |
|
else: |
|
qrels = qrels_pd |
|
return corpus, queries, qrels |
|
|
|
|
|
def save_dataset(path, df): |
|
return df.to_parquet( |
|
path, |
|
engine="pyarrow", |
|
compression="gzip", |
|
index=False |
|
) |
|
|
|
|
|
def save_all_dataset(path, corpus, queries, qrels): |
|
save_dataset(path + r"\corpus.parquet", corpus) |
|
save_dataset(path + r"\queries.parquet", queries) |
|
save_dataset(path + r"\qrels.parquet", qrels) |
|
|
|
|
|
def create_dataset(corpus, queries, qrels): |
|
corpus_pd = pd.DataFrame(corpus, columns=['cid', 'text']) |
|
queries_pd = pd.DataFrame(queries, columns=['qid', 'text']) |
|
qrels_pd = pd.DataFrame(qrels, columns=['qid', 'cid', 'score']) |
|
|
|
corpus_pd['cid'] = corpus_pd['cid'].astype(str) |
|
queries_pd['qid'] = queries_pd['qid'].astype(str) |
|
qrels_pd['qid'] = qrels_pd['qid'].astype(str) |
|
qrels_pd['cid'] = qrels_pd['cid'].astype(str) |
|
qrels_pd['score'] = qrels_pd['score'].astype(int) |
|
|
|
return corpus_pd, queries_pd, qrels_pd |
|
|
|
|
|
def sample_from_dataset(corpus, queries, qrels, k=2000): |
|
sample_k = sorted(random.sample(queries['qid'].to_list(), k=k)) |
|
queries_pd = queries[queries['qid'].isin(sample_k)] |
|
qrels_pd = qrels[qrels['qid'].isin(sample_k)] |
|
corpus_pd = corpus[corpus['cid'].isin(qrels_pd['cid'])] |
|
|
|
return corpus_pd, queries_pd, qrels_pd |
|
|
|
path = r'D:\datasets\v-corpus-zh' |
|
rawcorpus = get_all_files_in_directory(path, '.txt.gz') |
|
corpus = [] |
|
queries = [] |
|
qrels = [] |
|
|
|
for sub_path in tqdm(rawcorpus, desc="Reading all data..."): |
|
s_sub_path = sub_path.split('\\') |
|
会社 = s_sub_path[0] |
|
if len(s_sub_path) == 3: |
|
系列 = None |
|
作品 = s_sub_path[-2] |
|
篇章 = s_sub_path[-1] |
|
elif len(s_sub_path) == 4: |
|
系列 = s_sub_path[1] |
|
作品 = s_sub_path[-2] |
|
篇章 = s_sub_path[-1] |
|
else: |
|
print(s_sub_path) |
|
raise ValueError('s_sub_path != 3 or 4') |
|
print(会社, 系列, 作品, 篇章) |
|
tmp = readOne(os.path.join(path, sub_path)) |
|
阈值 = max(len(tmp) // 40, 4) |
|
print(阈值) |
|
old_rand = None |
|
for i in range(len(tmp)): |
|
rand = random.randint(0, 阈值) |
|
if rand == 0: |
|
queries.append((会社, 系列, 作品, 篇章, i/(len(tmp)-1), tmp[i])) |
|
elif rand <= 4 or old_rand == 0: |
|
corpus.append((会社, 系列, 作品, 篇章, i/(len(tmp)-1), tmp[i])) |
|
else: |
|
pass |
|
old_rand = rand |
|
|
|
for qid, q in tqdm(enumerate(queries), desc="计算 qrels 中..."): |
|
for cid, c in enumerate(corpus): |
|
if q[0] == c[0]: |
|
s = 1 |
|
if q[1] is not None and q[1] == c[1]: |
|
s += 4 |
|
if q[2] == q[2]: |
|
s += 8 |
|
if q[3] == q[3]: |
|
s += 8 |
|
ss = 1 - abs(q[4] - c[4]) |
|
s += (79 * ss) |
|
qrels.append((qid, cid, s)) |
|
|
|
corpus_ = [(cid, c[5]) for cid, c in enumerate(corpus)] |
|
queries_ = [(qid, q[5]) for qid, q in enumerate(queries)] |
|
|
|
path = r'D:\datasets\G2Retrieval' |
|
corpus_pd, queries_pd, qrels_pd = create_dataset(corpus_, queries_, qrels) |
|
save_all_dataset(path + r'\data', corpus_pd, queries_pd, qrels_pd) |
|
save_all_dataset(path + r'\data_sample2k', *sample_from_dataset(corpus_pd, queries_pd, qrels_pd)) |
|
|