# conda install sentence-transformers -c conda-forge from sentence_transformers import SentenceTransformer import pandas as pd from collections import defaultdict import torch from tqdm import tqdm from test_pytrec_eval import ndcg_in_all if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') def load_dataset(path): df = pd.read_parquet(path, engine="pyarrow") return df def load_all_dataset(path, convert=False): qrels_pd = load_dataset(path + r'\qrels.parquet') corpus = load_dataset(path + r'\corpus.parquet') queries = load_dataset(path + r'\queries.parquet') if convert: qrels = defaultdict(dict) for i, e in tqdm(qrels_pd.iterrows(), desc="load_all_dataset: Converting"): qrels[e['qid']][e['cid']] = e['score'] else: qrels = qrels_pd return corpus, queries, qrels corpus, queries, qrels = load_all_dataset(r'D:\datasets\G2Retrieval\data_sample2k') randEmbed = False if randEmbed: corpusEmbeds = torch.rand((1, len(corpus))) queriesEmbeds = torch.rand((len(queries), 1)) else: with torch.no_grad(): path = r'D:\models\bce' model = SentenceTransformer(path, device='cuda:0') corpusEmbeds = model.encode(corpus['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=32) queriesEmbeds = model.encode(queries['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=32) queriesEmbeds = torch.tensor(queriesEmbeds, device=device) corpusEmbeds = corpusEmbeds.T corpusEmbeds = torch.tensor(corpusEmbeds, device=device) @torch.no_grad() def getTopK(corpusEmbeds, qEmbeds, qid, k=200): scores = qEmbeds @ corpusEmbeds top_k_indices = torch.argsort(scores, descending=True)[:k] scores = scores.cpu() top_k_indices = top_k_indices.cpu() retn = [] for x in top_k_indices: x = int(x) retn.append((qid, corpus['cid'][x], float(scores[x]))) return retn def print_ndcgs(k): with torch.no_grad(): results = [] for i in tqdm(range(len(queries)), desc="Converting"): results.extend(getTopK(corpusEmbeds, queriesEmbeds[i], queries['qid'][i], k=k)) results = pd.DataFrame(results, columns=['qid', 'cid', 'score']) results['score'] = results['score'].astype(float) tmp = ndcg_in_all(qrels, results) ndcgs = torch.tensor([x for x in tmp.values()], device=device) mean = torch.mean(ndcgs) std = torch.std(ndcgs) print(f'NDCG@{k}: {mean*100:.2f}±{std*100:.2f}') print_ndcgs(3) print_ndcgs(10) print_ndcgs(50) print_ndcgs(100) print_ndcgs(200) # # 手动释放CUDA缓存内存 # del queriesEmbeds # del corpusEmbeds # del model # torch.cuda.empty_cache()