Eli-S commited on
Commit
ad182f3
1 Parent(s): 1a9583d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - image-segmentation
4
+ - image-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - agritech
9
+ - hyperspectral
10
+ - spectroscopy
11
+ - fruit
12
+ - sub-class classification
13
+ - detection
14
+ size_categories:
15
+ - n<1K
16
+ ---
17
+ # Living Optics Orchard Dataset
18
+ ## Overview
19
+ This dataset contains 100 images of various fruits and vegetables captured under controlled lighting, with the [Living Optics Camera](livingoptics.com).
20
+
21
+ The data consists of RGB images, sparse spectral samples and instance segmentation masks.
22
+
23
+ From the 100 images, we extract >400,000 spectral samples, of which >83,000 belong to one of the 15 classes in the dataset. The rest of the spectra can be used for negative sampling when training classifiers.
24
+
25
+ ### Classes
26
+
27
+ The dataset contains 15 classes:
28
+ - Pink Lady Apple
29
+ - Granny Smith Apple
30
+ - Royal Gala Apple
31
+ - Plastic Apple
32
+ - Cucumber
33
+ - Melon
34
+ - Yellow Pepper
35
+ - Green Pepper
36
+ - Orange Pepper
37
+ - Lemon
38
+ - Tomato
39
+ - Cherry Tomato
40
+ - Plastic Tomato
41
+ - Orange
42
+ - Easy Peeler Orange
43
+
44
+ ## Requirements
45
+
46
+ - [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/)
47
+ - [lo-examples](https://github.com/livingoptics/python-examples)
48
+
49
+
50
+ ## Download instructions
51
+
52
+ ### Command line
53
+ ```commandline
54
+ huggingface-cli ...
55
+ ```
56
+
57
+ ### Python
58
+ ```python
59
+ from huggingface_hub import hf_hub_download
60
+ ...
61
+ ```
62
+
63
+ ## Usage
64
+
65
+ ```python
66
+ import os.path as op
67
+ import numpy.typing as npt
68
+ from typing import List, Dict, Generator
69
+ from lo_data_tools import Annotation, LODataItem, LOJSONDataset, draw_annotations
70
+ from dataset_visualisation import get_object_spectra, plot_labelled_spectra
71
+ from lo.sdk.api.acquisition.io.open import open as lo_open
72
+ # Load the dataset
73
+ path_to_download = op.expanduser("~/Downloads/LivingOpticsOrchardData")
74
+ dataset = LOJSONDataset(path_to_download)
75
+
76
+ # Get the training data as an iterator
77
+ training_data: List[LODataItem] = dataset.load("train")
78
+
79
+ # Inspect the data
80
+
81
+ lo_data_item: LODataItem
82
+ for lo_data_item in training_data[:3]:
83
+
84
+ draw_annotations(lo_data_item)
85
+
86
+ ann: Annotation
87
+ for ann in lo_data_item.annotations:
88
+ print(ann.class_name, ann.category, ann.subcategories)
89
+
90
+ # Plot the spectra for each class
91
+ fig, ax = plt.subplots(1)
92
+ object_spectra_dict = {}
93
+ class_numbers_to_labels = {0: "background_class"}
94
+ for lo_data_item in training_data:
95
+ object_spectra_dict, class_numbers_to_labels = get_object_spectra(
96
+ lo_data_item, object_spectra_dict, class_numbers_to_labels
97
+ )
98
+
99
+ plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax)
100
+ plt.show()
101
+
102
+ ```