--- task_categories: - image-segmentation - image-classification language: - en tags: - agritech - hyperspectral - spectroscopy - fruit - sub-class classification - detection size_categories: - 10K430,000 spectral samples, of which >85,000 belong to one of the 19 classes in the dataset. The rest of the spectra can be used for negative sampling when training classifiers. Additionally, we provide a set of demo videos in `.lo` format which are unannotated but which can be used to qualititively test algorithms built on this dataset. ### Classes The dataset contains 19 classes: - 🍋 lemon - 8275 total spectral samples - 🍈 melon - 9507 total spectral samples - 🥒 cucumber - 227 total spectral samples - 🍏 granny smith apple - 3984 total spectral samples - 🍏 jazz apple - 272 total spectral samples - 🍎 plastic apple - 6693 total spectral samples - 🍎 pink lady apple - 17311 total spectral samples - 🍎 royal gala apple - 21319 total spectral samples - 🍅 tomato - 3748 total spectral samples - 🍅 cherry tomato - 360 total spectral samples - 🍅 plastic tomato - 569 total spectral samples - 🫑 green pepper - 226 total spectral samples - 🫑 yellow pepper - 4752 total spectral samples - 🫑 orange pepper - 552 total spectral samples - 🍊 orange - 4641 total spectral samples - 🍊 easy peeler orange - 2720 total spectral samples - 🍐 pear - 194 total samples - 🍇 green grape - 106 total spectral samples - 🍋‍🟩 lime - 43 total spectral samples ## Requirements - [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/) - [lo-data](https://huggingface.co/spaces/LivingOptics/README/discussions/3) ## Download instructions ### Command line ```commandline mkdir -p hyperspectral-fruit huggingface-cli download LivingOptics/hyperspectral-fruit --repo-type dataset --local-dir hyperspectral-fruit ``` ### Python ```python from huggingface_hub import hf_hub_download dataset_path = hf_hub_download(repo_id="LivingOptics/hyperspectral-fruit", filename="train", repo_type="dataset") print(dataset_path) ``` ## Usage ```python import os.path as op import numpy.typing as npt from typing import List, Dict, Generator from lo.data.tools import Annotation, LODataItem, LOJSONDataset, draw_annotations from lo.data.dataset_visualisation import get_object_spectra, plot_labelled_spectra from lo.sdk.api.acquisition.io.open import open as lo_open # Load the dataset path_to_download = op.expanduser("~/Downloads/hyperspectral-fruit") dataset = LOJSONDataset(path_to_download) # Get the training data as an iterator training_data: List[LODataItem] = dataset.load("train") # Inspect the data lo_data_item: LODataItem for lo_data_item in training_data[:3]: draw_annotations(lo_data_item) ann: Annotation for ann in lo_data_item.annotations: print(ann.class_name, ann.category, ann.subcategories) # Plot the spectra for each class fig, ax = plt.subplots(1) object_spectra_dict = {} class_numbers_to_labels = {0: "background_class"} for lo_data_item in training_data: object_spectra_dict, class_numbers_to_labels = get_object_spectra( lo_data_item, object_spectra_dict, class_numbers_to_labels ) plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax) plt.show() ``` See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset.