--- task_categories: - image-segmentation - image-classification language: - en tags: - agritech - hyperspectral - spectroscopy - fruit - sub-class classification - detection size_categories: - n<1K --- # Living Optics Orchard Dataset ## Overview This dataset contains 100 images of various fruits and vegetables captured under controlled lighting, with the [Living Optics Camera](livingoptics.com). The data consists of RGB images, sparse spectral samples and instance segmentation masks. From the 100 images, we extract >400,000 spectral samples, of which >83,000 belong to one of the 15 classes in the dataset. The rest of the spectra can be used for negative sampling when training classifiers. ### Classes The dataset contains 15 classes: - Pink Lady Apple - Granny Smith Apple - Royal Gala Apple - Plastic Apple - Cucumber - Melon - Yellow Pepper - Green Pepper - Orange Pepper - Lemon - Tomato - Cherry Tomato - Plastic Tomato - Orange - Easy Peeler Orange ## Requirements - [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/) - [lo-examples](https://github.com/livingoptics/python-examples) ## Download instructions ### Command line ```commandline huggingface-cli ... ``` ### Python ```python from huggingface_hub import hf_hub_download ... ``` ## Usage ```python import os.path as op import numpy.typing as npt from typing import List, Dict, Generator from lo_data_tools import Annotation, LODataItem, LOJSONDataset, draw_annotations from dataset_visualisation import get_object_spectra, plot_labelled_spectra from lo.sdk.api.acquisition.io.open import open as lo_open # Load the dataset path_to_download = op.expanduser("~/Downloads/LivingOpticsOrchardData") dataset = LOJSONDataset(path_to_download) # Get the training data as an iterator training_data: List[LODataItem] = dataset.load("train") # Inspect the data lo_data_item: LODataItem for lo_data_item in training_data[:3]: draw_annotations(lo_data_item) ann: Annotation for ann in lo_data_item.annotations: print(ann.class_name, ann.category, ann.subcategories) # Plot the spectra for each class fig, ax = plt.subplots(1) object_spectra_dict = {} class_numbers_to_labels = {0: "background_class"} for lo_data_item in training_data: object_spectra_dict, class_numbers_to_labels = get_object_spectra( lo_data_item, object_spectra_dict, class_numbers_to_labels ) plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax) plt.show() ```