--- task_categories: - image-segmentation - image-classification language: - en tags: - agritech - hyperspectral - spectroscopy - fruit - sub-class classification - detection size_categories: - 10K430,000 spectral samples, of which >85,000 belong to one of the 19 classes in the dataset. The rest of the spectra can be used for negative sampling when training classifiers. ### Classes The dataset contains 19 classes: - lemon - 8275 total samples - melon - 9507 total samples - yellow pepper - 4752 total samples - cucumber - 227 total samples - granny smith apple - 3984 total samples - jazz apple - 272 total samples - plastic apple - 6693 total samples - pink lady apple - 17311 total samples - royal gala apple - 21319 total samples - tomato - 3748 total samples - cherry tomato - 360 total samples - plastic tomato - 569 total samples - green pepper - 226 total samples - orange - 4641 total samples - easy peeler orange - 2720 total samples - orange pepper - 552 total samples - pear - 194 total samples - green grape - 106 total samples - lime - 43 total samples ## Requirements - [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/) - [lo-examples](https://github.com/livingoptics/python-examples) - [lo-data] TODO ## Download instructions ### Command line ```commandline huggingface-cli download LivingOptics/hyperspectral-fruit --repo-type dataset ``` ### Python ```python from huggingface_hub import hf_hub_download dataset_path = hf_hub_download(repo_id="LivingOptics/hyperspectral-fruit", filename="train", repo_type="dataset") ``` ## Usage ```python import os.path as op import numpy.typing as npt from typing import List, Dict, Generator from lo_data_tools import Annotation, LODataItem, LOJSONDataset, draw_annotations from dataset_visualisation import get_object_spectra, plot_labelled_spectra from lo.sdk.api.acquisition.io.open import open as lo_open # Load the dataset path_to_download = op.expanduser("~/Downloads/LivingOpticsOrchardData") dataset = LOJSONDataset(path_to_download) # Get the training data as an iterator training_data: List[LODataItem] = dataset.load("train") # Inspect the data lo_data_item: LODataItem for lo_data_item in training_data[:3]: draw_annotations(lo_data_item) ann: Annotation for ann in lo_data_item.annotations: print(ann.class_name, ann.category, ann.subcategories) # Plot the spectra for each class fig, ax = plt.subplots(1) object_spectra_dict = {} class_numbers_to_labels = {0: "background_class"} for lo_data_item in training_data: object_spectra_dict, class_numbers_to_labels = get_object_spectra( lo_data_item, object_spectra_dict, class_numbers_to_labels ) plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax) plt.show() ```