Eli-S commited on
Commit
903579a
·
verified ·
1 Parent(s): e9c43b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - image-segmentation
4
+ - image-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - agritech
9
+ - hyperspectral
10
+ - spectroscopy
11
+ - fruit
12
+ - sub-class classification
13
+ - detection
14
+ size_categories:
15
+ - 10K<n<100K
16
+ license: mit
17
+ ---
18
+
19
+ # Living Optics Orchard Dataset
20
+ ## Overview
21
+ This dataset contains 435 images of captured in one of the UK's largest orchards, using the Living Optics Camera.
22
+
23
+ The data consists of RGB images, sparse spectral samples and instance segmentation masks.
24
+
25
+ The dataset is derived from 44 unique raw files corresponding to 435 frames.
26
+ Therefore, multiple frames could originate from the same raw file.
27
+ This structure emphasized the need for a split strategy that avoided data leakage.
28
+ To ensure robust evaluation, the dataset was divided using an 8:2 split, with splitting performed at the raw file level rather than the frame level.
29
+ This strategy guaranteed that all frames associated with a specific raw file were confined to either the training set or the test set, eliminating the
30
+ risk of overlapping information between the two sets.
31
+ The dataset contains 3,785 instances of Royal Gala Apples, 2,523 instances of Pears, and 73 instances of Cox Apples, summing to a total of 6,381 labelled instances.
32
+
33
+ The spectra which do not lie within a labelled segmentation mask can be used for negative sampling when training classifiers.
34
+
35
+
36
+ Additional unlabelled data is available upon request.
37
+
38
+
39
+ ## Classes
40
+ The training dataset contains 3 classes:
41
+ - 🍎 cox apple - 3,605 total spectral samples
42
+ - 🍎 royal gala apple - 13,282 total spectral samples
43
+ - 🍐 pear - 34,398 total spectral samples
44
+
45
+ The remaining 1,855,755 spectra are unlabelled and can be considered a single "background " class.
46
+
47
+ ## Requirements
48
+
49
+ - [lo-sdk](https://www.livingoptics.com/register-for-download-sdk/)
50
+ - [lo-data](https://huggingface.co/spaces/LivingOptics/README/discussions/3)
51
+
52
+
53
+ ## Download instructions
54
+
55
+ ### Command line
56
+ ```commandline
57
+ mkdir -p hyperspectral-orchard
58
+ huggingface-cli download LivingOptics/hyperspectral-orchard --repo-type dataset --local-dir hyperspectral-orchard
59
+ ```
60
+
61
+ ### Python
62
+ ```python
63
+ from huggingface_hub import snapshot_download
64
+ dataset_path = snapshot_download(repo_id="LivingOptics/hyperspectral-orchard", repo_type="dataset")
65
+ print(dataset_path)
66
+ ```
67
+
68
+ ## Usage
69
+
70
+ ```python
71
+ import os.path as op
72
+ import numpy.typing as npt
73
+ from typing import List, Dict, Generator
74
+ from lo.data.tools import Annotation, LODataItem, LOJSONDataset, draw_annotations
75
+ from lo.data.dataset_visualisation import get_object_spectra, plot_labelled_spectra
76
+ from lo.sdk.api.acquisition.io.open import open as lo_open
77
+
78
+ # Load the dataset
79
+ path_to_download = op.expanduser("~/Downloads/hyperspectral-orchard")
80
+ dataset = LOJSONDataset(path_to_download)
81
+
82
+ # Get the training data as an iterator
83
+ training_data: List[LODataItem] = dataset.load("train")
84
+
85
+ # Inspect the data
86
+ lo_data_item: LODataItem
87
+ for lo_data_item in training_data[:3]:
88
+
89
+ draw_annotations(lo_data_item)
90
+
91
+ ann: Annotation
92
+ for ann in lo_data_item.annotations:
93
+ print(ann.class_name, ann.category, ann.subcategories)
94
+
95
+ # Plot the spectra for each class
96
+ fig, ax = plt.subplots(1)
97
+ object_spectra_dict = {}
98
+ class_numbers_to_labels = {0: "background_class"}
99
+ for lo_data_item in training_data:
100
+ object_spectra_dict, class_numbers_to_labels = get_object_spectra(
101
+ lo_data_item, object_spectra_dict, class_numbers_to_labels
102
+ )
103
+
104
+ plot_labelled_spectra(object_spectra_dict, class_numbers_to_labels, ax)
105
+ plt.show()
106
+ ```
107
+
108
+ See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset.