|
import datasets |
|
from datasets import DatasetBuilder, DatasetInfo |
|
import pandas as pd |
|
|
|
class TMDataset(datasets.GeneratorBasedBuilder): |
|
def __init__(self): |
|
self.downloads = [ |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_1.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_10.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_11.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_12.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_13.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_2.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_3.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_4.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_5.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_6.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_7.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_8.parquet", |
|
"https://huggingface.co/datasets/Locutusque/TM-DATA/resolve/main/combined_datasets_batch_9.parquet", |
|
|
|
] |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features({ |
|
"text": datasets.Value("string"), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description="Combination of text completion datasets", |
|
features=features, |
|
supervised_keys=None |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = dl_manager.download_and_extract(self.downloads) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir}) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
for file in filepath: |
|
df = pd.read_parquet(file) |
|
|
|
for idx, row in df.iterrows(): |
|
yield idx, { |
|
"text": row["text"], |
|
} |