LouisDang commited on
Commit
318f974
·
1 Parent(s): 4c2edcc

Upload layoutlmv3.py

Browse files
Files changed (1) hide show
  1. layoutlmv3.py +143 -0
layoutlmv3.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import ast
4
+ from pathlib import Path
5
+ import datasets
6
+ from PIL import Image
7
+ import pandas as pd
8
+ import glob
9
+
10
+ logger = datasets.logging.get_logger(__name__)
11
+ _CITATION = """\
12
+ @article{,
13
+ title={},
14
+ author={},
15
+ journal={},
16
+ year={},
17
+ volume={}
18
+ }
19
+ """
20
+ _DESCRIPTION = """\
21
+ This is a sample dataset for training layoutlmv3 model on custom annotated data.
22
+ """
23
+
24
+ def load_image(image_path):
25
+ image = Image.open(image_path).convert("RGB")
26
+ w, h = image.size
27
+ return image, (w,h)
28
+
29
+ def normalize_bbox(bbox, size):
30
+ return [
31
+ int(1000 * bbox[0] / size[0]),
32
+ int(1000 * bbox[1] / size[1]),
33
+ int(1000 * bbox[2] / size[0]),
34
+ int(1000 * bbox[3] / size[1]),
35
+ ]
36
+
37
+ _URLS = []
38
+ data_dir = r"D:\Study\LayoutLMV3\data_ne"
39
+
40
+ class DatasetConfig(datasets.BuilderConfig):
41
+ """BuilderConfig for InvoiceExtraction Dataset"""
42
+ def __init__(self, **kwargs):
43
+ """BuilderConfig for InvoiceExtraction Dataset.
44
+ Args:
45
+ **kwargs: keyword arguments forwarded to super.
46
+ """
47
+ super(DatasetConfig, self).__init__(**kwargs)
48
+
49
+ class InvoiceExtraction(datasets.GeneratorBasedBuilder):
50
+ BUILDER_CONFIGS = [
51
+ DatasetConfig(name="InvoiceExtraction", version=datasets.Version("1.0.0"), description="InvoiceExtraction dataset"),
52
+ ]
53
+
54
+ def _info(self):
55
+ return datasets.DatasetInfo(
56
+ description=_DESCRIPTION,
57
+ features=datasets.Features(
58
+ {
59
+ "id": datasets.Value("string"),
60
+ "tokens": datasets.Sequence(datasets.Value("string")),
61
+ "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
62
+ "ner_tags": datasets.Sequence(
63
+ datasets.features.ClassLabel(
64
+ names = [ 'address', 'company_name', 'customer_id', 'invoice_id', 'invoice_date', 'invoice_total', 'sub_total', 'total_tax', 'item', 'amount',
65
+ ]
66
+ )
67
+ ),
68
+ "image_path": datasets.Value("string"),
69
+ "image": datasets.features.Image()
70
+ }
71
+ ),
72
+ supervised_keys=None,
73
+ citation=_CITATION,
74
+ homepage="",
75
+ )
76
+
77
+ def _split_generators(self, dl_manager):
78
+ """Returns SplitGenerators."""
79
+ """Uses local files located with data_dir"""
80
+ return [
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/training_data/")}
83
+ ),
84
+ datasets.SplitGenerator(
85
+ name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/testing_data/")}
86
+ ),
87
+ ]
88
+
89
+ def get_line_bbox(self, bboxs):
90
+ x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
91
+ y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
92
+
93
+ x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
94
+
95
+ assert x1 >= x0 and y1 >= y0
96
+ bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
97
+ return bbox
98
+
99
+ def _generate_examples(self, filepath):
100
+ logger.info("⏳ Generating examples from = %s", filepath)
101
+ ann_dir = os.path.join(filepath, "annotations")
102
+ img_dir = os.path.join(filepath, "images")
103
+
104
+ for guid, file in enumerate(sorted(os.listdir(ann_dir))):
105
+ tokens = []
106
+ bboxes = []
107
+ ner_tags = []
108
+
109
+ file_path = os.path.join(ann_dir, file)
110
+ with open(file_path, "r", encoding="utf8") as f:
111
+ data = json.load(f)
112
+
113
+ image_path = os.path.join(img_dir, file.replace('.json', '.png')) # Adjust the file extension
114
+ print("Image Path:", image_path) # Add this line
115
+ image, size = load_image(image_path)
116
+
117
+ for item in data["form"]:
118
+ cur_line_bboxes = []
119
+ words, label = item["words"], item["label"]
120
+ words = [w for w in words if w["text"].strip() != ""]
121
+
122
+ if len(words) == 0:
123
+ continue
124
+
125
+ if label == "other":
126
+ for w in words:
127
+ tokens.append(w["text"])
128
+ ner_tags.append("O")
129
+ cur_line_bboxes.append(normalize_bbox(w["box"], size))
130
+ else:
131
+ tokens.append(words[0]["text"])
132
+ ner_tags.append("B-" + label.upper())
133
+ cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
134
+
135
+ for w in words[1:]:
136
+ tokens.append(w["text"])
137
+ ner_tags.append("I-" + label.upper())
138
+ cur_line_bboxes.append(normalize_bbox(w["box"], size))
139
+
140
+ cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
141
+ bboxes.extend(cur_line_bboxes)
142
+
143
+ yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}