import json import os import ast from pathlib import Path import datasets from PIL import Image import pandas as pd import glob logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{, title={}, author={}, journal={}, year={}, volume={} } """ _DESCRIPTION = """\ This is a sample dataset for training layoutlmv3 model on custom annotated data. """ def load_image(image_path): image = Image.open(image_path).convert("RGB") w, h = image.size return image, (w,h) def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] _URLS = [] data_dir = r"D:\Study\LayoutLMV3\data_ne" class DatasetConfig(datasets.BuilderConfig): """BuilderConfig for InvoiceExtraction Dataset""" def __init__(self, **kwargs): """BuilderConfig for InvoiceExtraction Dataset. Args: **kwargs: keyword arguments forwarded to super. """ super(DatasetConfig, self).__init__(**kwargs) class InvoiceExtraction(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DatasetConfig(name="InvoiceExtraction", version=datasets.Version("1.0.0"), description="InvoiceExtraction dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names = [ 'address', 'company_name', 'customer_id', 'invoice_id', 'invoice_date', 'invoice_total', 'sub_total', 'total_tax', 'item', 'amount', ] ) ), "image_path": datasets.Value("string"), "image": datasets.features.Image() } ), supervised_keys=None, citation=_CITATION, homepage="", ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" """Uses local files located with data_dir""" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/training_data/")} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "dataset/testing_data/")} ), ] def get_line_bbox(self, bboxs): x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)] y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)] x0, y0, x1, y1 = min(x), min(y), max(x), max(y) assert x1 >= x0 and y1 >= y0 bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))] return bbox def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) ann_dir = os.path.join(filepath, "annotations") img_dir = os.path.join(filepath, "images") for guid, file in enumerate(sorted(os.listdir(ann_dir))): tokens = [] bboxes = [] ner_tags = [] file_path = os.path.join(ann_dir, file) with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = os.path.join(img_dir, file.replace('.json', '.png')) # Adjust the file extension print("Image Path:", image_path) # Add this line image, size = load_image(image_path) for item in data["form"]: cur_line_bboxes = [] words, label = item["words"], item["label"] words = [w for w in words if w["text"].strip() != ""] if len(words) == 0: continue if label == "other": for w in words: tokens.append(w["text"]) ner_tags.append("O") cur_line_bboxes.append(normalize_bbox(w["box"], size)) else: tokens.append(words[0]["text"]) ner_tags.append("B-" + label.upper()) cur_line_bboxes.append(normalize_bbox(words[0]["box"], size)) for w in words[1:]: tokens.append(w["text"]) ner_tags.append("I-" + label.upper()) cur_line_bboxes.append(normalize_bbox(w["box"], size)) cur_line_bboxes = self.get_line_bbox(cur_line_bboxes) bboxes.extend(cur_line_bboxes) yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}